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Abstract: A broadband generalized sidelobe canceler (Broadband-GSC) application for near-field
beamforming is proposed. This approach is implemented in the wavelet domain. Broadband-GSC
provides a set of complex, adapted apodization weights for each wavelet subband. The proposed
method constrains interference and noise signal to improve the lateral resolution with only one single
emission. Performance of the proposed beamforming is tested on simulated data obtained with
Field II. Experiments have proved that the new beamforming can significantly increase the image
quality compared with delay-and-sum (DAS) and synthetic aperture (SA). Imaging of scattering
points show that Broadband-GSC improves the lateral resolution by 43.2% and 58.0% compared with
SA and DAS, respectively. Meanwhile, Broadband-GSC reduces the peak sidelobe level by 11.6 dB
and 26.4 dB compared with SA and DAS, respectively. Plane wave emission experiment indicates
that Broadband-GSC can improve the lateral resolution by 44.2% compared with DAS. Furthermore,
the new beamforming introduces the possibility for higher frame-rate and higher investigation depth
with increased lateral resolution.

Keywords: adaptive beamforming; wavelet; phased array; lateral resolution

1. Introduction

Ultrasonic imaging with characteristics of high transmission capacity and low harm to the human
body has become one of the major medical diagnostic technologies nowadays. Imaging algorithms are
the key technology of ultrasonic imaging system [1], while delay-and-sum (DAS) is one of the most
widely used non-adaptive beamforming methods. However, DAS suffers from low lateral resolution
and low signal-noise-ratio (SNR) [2]. In order to improve the imaging quality of the ultrasonic
system, different kinds of adaptive beamformings have been introduced to process the ultrasonic
echo data [3–7]. The calculated data-dependent apodization weights are equivalent to a spatial filter,
which can maintain the desired signal and suppress the interference and noise signal of the ultrasonic
echo data.

Almost all previous work within this field is characterized by the fact that narrowband methods
have been directly applied on broadband ultrasonic echo data [8,9]. Therefore, Jørgen Arendt Jensen
proposed a broadband minimum variance beamforming implemented in the frequency domain [10,11].
Jørgen Arendt Jensen introduces the sub-discrete Fourier transform (sub-DFT) to divide the broadband
echo signal into a set of narrowband signals, and provides a set of adapted, weights for each frequency
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subband. However, how to appropriately divide the broadband signal into a set of narrowband signals
based on sub-DFT needs more exploration. Appropriate division determines the quality of the system,
thus sub-DFT beamforming is faceed with the problem of decreased robustness [12,13].

This paper proposes an approach implemented in the wavelet domain. First, broadband echo
signals are divided into a set of narrowband signals with discrete wavelet transform. Then, each wavelet
subband is processed independently by a narrowband beamforming, generalized sidelobe canceler.
Later, the processed subband responses are coalesced to provide the broadband beamforming output.

The outline of this paper is as follows: Section 2 focuses on the traditional methodologies and its
application to ultrasonic imaging. Section 3 looks into the principle and realization of the broadband
generalized sidelobe canceler in detail. Section 4 presents the experiment results based on simulated
data. Finally, the advantages of the proposed beamforming and its comparison with early proposed
methodologies are discussed and concluded in Section 5.

2. Background

The diagram of the traditional ultrasonic imaging beamforming method is shown in Figure 1.
First, one single element is excited to transmit the ultrasonic, and all elements receive the echo
signal. Delay-and-sum (DAS) is introduced to obtain a receiving focused echo image, with low
lateral resolution [14]. Then, exciting each element in turn, N’s receiving focused images will be
achieved. Later, N’s receiving focused images are summed together to form the final beamforming
output. Synthetic aperture (SA) is a passive process using fixed, data-independent apodization weights.
The phase-shift can be implemented as time-delay and space-delay, therefore, SA achieves both
receiving and transmitting focused [15,16]. The non-adaptive beamforming DAS and SA works for
both narrowband and broadband signals.
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For narrowband signals, adaptive beamforming is simply an extension of the SA. The only
difference is the choice of apodization weights. Instead of using predefined, data-independent
apodization weights, the adaptive beamforming actively updates a set of new weights that are
dependent on the received echo data.

2.1. Non-Adaptive Beamforming

Delay-and-sum (DAS) is adopted to obtain the receiving focused echo signal. The sensor elements’
response from the focus point will be added up in phase. Consequently, the desired signal from the
focus point will be maximized. An arbitrary point ∀

→
r p = (x, z) is carried out by compensating for the

propagation delay profile for this point. The delay is calculated as the propagation path from the nth
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transmitting element to the focus point and back to the mth receiving element. For a phased transducer
array of M elements, the propagation path is given by:

knm(
→
rp) =

∣∣∣∣∣∣∣∣∣∣ →rxmt
n −

→
rp||+||

→

rrcv
m −

→
rp

∣∣∣∣∣∣∣∣∣∣
c

× fs (1)

where n and m represent the transmitting and receiving element, respectively. N and M represent the
number of elements of the transmitting and receiving array, which are usually equal to total element

number of the array, respectively. n = 1, 2, . . . , N; m = 1, 2, . . . , M.
→

rxmt
n and

→

rrcv
m are spatial positions of

the transmitting element and the receiving element, respectively. c is the ultrasonic velocity, fs is the
sampling rate of ultrasonic system. The receiving focused echo image with low lateral resolution (LRI,
low-resolution imaging) is given by:

LRIn =
M∑

m=1

ωm × xnm(knm(
→
rp)) (2)

As all elements are excited in turn, N’s LRI echo imaging will be obtained. Overlay all these
LRIs with predefined, data-independent apodization weights, echo image with both transmitting and
receiving focused is obtained. The newly achieved ultrasonic imaging is the response after synthetic
aperture (SA), also known as the high-resolution imaging (HRI).

HRI =
N∑

n=1

ωn × LRIn (3)

2.2. Generalized Sidelobe Canceler

Generalized sidelobe canceler (GSC) belongs to adaptive beamforming, which can be expressed as
the following constraint conditions. GSC can maintain the desired signal and suppress the interference
and noise signal.

minωHRω, subject to ωHa = 1 (4)

where a is the steering vector, which represents the direction of desired signal. For both transmitting
and receiving the focused echo signal, a is a unit vector. R is the interference and noise covariance
matrix. The superscript {·}H denotes the conjugate transpose. Adaptive beamforming GSC separates
the linear constraints with an adaptive filter. Therefore, the constrained optimization problem of
formula (4) is converted into an unconstrained optimization problem. The apodization weights after
GSC can be expressed as [17]:

ω = ωq −Bωa (5)

ωq and ωa are temporal non-adaptive weight vector and adaptive weight vector, respectively. ωq is

determined by received echo signals, ωq = (aaH)
−1a. ωa is determined by the interference and noise

signal, ωa = (BHRB)
−1

BHωq. B is a N ∗ (N− 1) dimensional blocking matrix, which can block off the
desire signal with the interference and noise signal [18]. The blocking matrix B must satisfy BHa = 0.

The weight vector can be calculated when the interference and noise covariance matrix R is

obtained. In practical application, R is replaced by the sample covariance matrix
∧

R:

∧

R =
1

2K + 1

K∑
k=−K

X(k)X(k)H (6)
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where 2K + 1 represents the number of echo signal used to construct the
∧

R. X(k) =

[LRI1(k), LRI2(k), · · · , LRIN(k)]
T, which means the time-delayed echo signal. The final echo imaging

after GSC can be expressed as:
y(k) = ωH(k)X(k) (7)

3. Proposed Method

The adaptive beamforming GSC [19] was originally proposed for narrowband applications. The
ultrasonic echo data is the broadband signal [20]. Therefore, the broadband ultrasonic echo signals
need be divided into a set of narrowband signals [21]. The discrete wavelet transform is introduced to
divide the ultrasonic echo signals. Each separated subband fulfills the narrowband condition, and
each separated subband is processed independently.

For narrowband echo signals, the adaptive beamforming is an extension to the DAS. As illustrated
in Figure 2, firstly, proposed beamforming uses the discrete wavelet transform (DWT) to divide the
broadband echo signal into a set of narrowband signals. Then, the sets of narrowband signals after DAS
are fed to the adaptive processor GSC, consequently, provides a set of adapted apodization weights for
each wavelet subband. Later, beamformed narrowband ultrasonic echo signals are coalesced. Finally,
the inverse discrete wavelet transform (IDWT) is adopted to deal with the coalesced broadband echo
signals, and the broadband echo imaging will be achieved.
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For the given focus point ∀
→
r p = (x, z), the beamforming output for each wavelet subband,

NBq(
⇀
rp), is given by:

NBq(
⇀
rp) =

M∑
m=1

ω′m(ωq)Ym(ωq) (8)

Ym(ωq) is the discrete wavelet transform response of the mth element’s echo signal at qth wavelet
subband. ωm(ωq) is the adapted apodization weight for the qth wavelet subband, which is obtained

with adaptive beamforming GSC. {·}
′

denotes the complex conjugate. For each wavelet subband,
defining the apodization weight vectors and the wavelet subband response vectors:

ω(ωq) = [ω 1(ωq), ω2(ωq), · · · , ωM(ωq )]
T (9)

Y(ωq) = [Y 1(ωq), Y2(ωq), · · · , YM(ωq )]
T (10)

Superscripts {·}T denote the non-conjugate transpose. The beamforming output for each wavelet
subband can be rewritten as:

NBq(
⇀
rp) = ωH(ωq)Y(ωq) (11)

Using the inverse discrete wavelet transform to deal with the coalesced broadband echo signals
NB(

⇀
rp) = [NB1(

⇀
rp), NB2(

⇀
rp), · · · , NBQ(

⇀
rp)]. Q represents the total number of the wavelet subband.

The final broadband echo imaging (Bi) will be achieved using inverse discrete wavelet transform
(IDWT).

Bi = IDWT(NB(
⇀
rp)) (12)
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4. Results

In this section, several examples are provided to compare performance of the proposed
beamforming with DAS, SA, and GSC in terms of lateral resolution, sidelobe level and contrast.
A simulation tool named Field II is used to calculate the simulated ultrasonic echo data, which is highly
accepted in the medical ultrasonic imaging field [22,23]. Simulated echo data can be used to verify the
beamforming performance of the algorithm. Field II is used to obtain the simulated echo signal of
scattering points and the circular cyst of a linear phased array ultrasonic system. Key parameters of the
simulated linear phased array ultrasonic system are listed here: width of array d = 0.2413 mm; center
frequency of the ultrasonic f0 = 3.33 MHz; array number M = 64; ultrasonic velocity c = 1500 m/s;
sampling rate of system fs = 71.04 MHz.

4.1. Simulated Point Targets

Fourteen scattering points are set up in the imaging area. Figure 3 shows the beamforming
responses. Beamforming responses of the DAS are the results after delay-and-sum, which the 32nd
element generates ultrasonic and all elements receive echo signal [24]. Figure 4 shows the lateral
variation of the beamforming responses at two different depths, z = 41 mm and 45.8 mm, respectively.
Figure 4 indicates the peak sidelobe level (PSL) and the full width at half maximum (FWHM) after
each beamforming.
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Taking depth z = 41 mm as reference, the PSL and FWHM after each beamforming are shown in
Table 1. Broadband-GSC has almost the same FWHM as GSC, while the FWHM is increased by 43.2%
and 58.0% compared with SA and DAS, respectively. The observation index PSL is used to indicate the
inhibition of sidelobe energy. Broadband-GSC reduces the PSL by 11.6 dB and 26.4 dB compared with
SA and DAS, respectively. Sidelobe energy represents the interference and noise signal, consequently,
the lower PSL the better [25]. Beamforming responses indicate that Broadband-GSC can obviously
improve the PSL and FWHM compared with DAS and SA.

Table 1. Full width at half maximum (FWHM) and peak sidelobe level (PSL) of the scattering point at
depth z = 41 mm.

Beamforming FWHM (mm) PSL (dB)

DAS 1.50 −15.4
SA 1.11 −30.2

GSC 0.60 −41.8
Broadband-GSC 0.63 −44.6

Comparing GSC with Broadband-GSC, GSC needs both to receive and to transmit focused
ultrasonic echo data. Therefore, all elements are ordinal excited and N’s receiving focused echo
imaging has to be obtained. Broadband-GSC achieves an increase in lateral resolution and PSL
with only one single emission, which reduces the system’s hardware complexity. Consequently,
Broadband-GSC reduces the beamforming process complexity, introduces the possibility for high
frame-rate imaging with improved imaging quality.

4.2. Circular Cyst Experiments

Echo data for the circular cyst and scattering points in a high speckle noise environment are
obtained. Several scattering points are set around the cyst, which have different and lower scattering
coefficients to increase the background speckle noise [26,27]. Beamforming responses after different
beamformings are shown in Figure 5. Figure 6 shows the lateral variation of the beamforming responses.
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The lateral resolution of the scattering point at (x, z) = (−4, 46.5) mm is 1.71, 1.29, 0.85 and
0.73 mm after DAS, SA, Broadband-GSC and GSC, respectively. Results show that the Broadband-GSC
still can improve the lateral resolution compared with DAS and SA during the high speckle noise
environment. Broadband-GSC improves the FWHM by 34.1% and 50.3% compared with SA and DAS,
respectively. The results are the same as point targets experiments, which validate the effectiveness of
the proposed beamforming.

Comparing the lateral variation after each beamforming at z = 32 mm, Broadband-GSC has almost
the same result as DAS. Meanwhile, GSC generates the similar result as SA. The reason is that scatters
do not have obviously higher signal-to-noise ratio (SNR) than background. The system’s SNR also
influences the performance of the adaptive beamforming. Reference [28] indicates that the performance
of the adaptive beamforming is dependent on the system’s SNR. When the system’s SNR decreases,
imaging quality after adaptive beamforming will rapidly decrease. Consequently, the advantages of
combining plane wave emission with Broadband-GSC to improve both the system’s SNR and lateral
resolution will be discussed.

4.3. Plane Wave Emission Test

Plane wave emission is one of the most commonly used emission ways in commercial ultrasonic
imaging products [29]. Commercial ultrasonic imaging systems need enough emission energy to
achieve sufficient system signal-to-noise ratio (SNR). Therefore, the system will obtain better imaging
quality with higher investigation depth [30]. Plane wave emission uses all elements to transmit and
receive the ultrasonic; the entire imaging region will be covered with one single emission. Therefore,
only DAS and Broadband-GSC can be introduced to process the echo signal after the plane wave
emission. Beamforming responses of scattering points with plane wave emission are shown in Figure 7.

Beamforming responses indicate that the average FWHM of the scattering points are 1.38 mm
and 0.77 mm after DAS and Broadband-GSC at z = 40.6 mm, respectively. Broadband-GSC improves
the lateral resolution by 44.2% compared with DAS. Figure 8 also indicates that Broadband-GSC
can reduce the sidelobe energy. Plane wave emission experiment indicates that Broadband-GSC can
achieve an increase in lateral resolution with only one single emission. Consequently, Broadband-GSC
will not only reduce the system’s hardware complexity, but also introduce the possibility for higher
investigation depth.
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5. Discussion and Conclusions

The beamforming responses in Figure 3 are the key to understand the advantages of
Broadband-GSC. Compared with traditional non-adaptive beamforming DAS and SA, Broadband-GSC
will significantly improve the lateral resolution and restrain the interference and noise signal.
Broadband-GSC only uses the receiving focused echo signal after DAS, which achieves an increase in
lateral resolution with only one single emission. Compared with GSC, Broadband-GSC not only reduces
the beamforming process complexity, but also reduces the system hardware complexity. Consequently,
Broadband-GSC beamforming allows for high frame-rate imaging with increased imaging quality. The
experiment of circular cyst shows that Broadband-GSC still can improve the lateral resolution and
PSL even during the high speckle noise environment. Meanwhile, beamforming algorithms cannot
improve the axial resolution. The axial resolution of the ultrasonic imaging system is determined by
the center frequency of the ultrasonic f0, ultrasonic velocity c, and the emitted ultrasonic numbers. The
axial resolution of system can be improved by algorithm like coded excitation.

Plane wave emission experiment changes the emission way of ultrasonic imaging system. Plane
wave emission will use all elements to transmit ultrasonic, therefore, improves the system’s SNR
to obtain higher investigation depth. The system’s SNR also influences the performance of the
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adaptive beamforming. Previous work [28] indicates that the performance of adaptive beamforming
is dependent on the system’s SNR. When system’s SNR decreases, imaging quality after adaptive
beamforming will rapidly decrease. Hence, plane wave emission still is one of the most commonly used
emission methods in commercial ultrasonic imaging products. Results indicate that Broadband-GSC
can achieve an increase in lateral resolution and PSL with only one single emission. Therefore,
Broadband-GSC can be introduced to deal with the received echo data after plane wave emission.

Broadband-GSC introduces the discrete wavelet transform to divide the broadband echo signal
into a set of narrowband signals. Therefore, narrowband methods can be applied directly on broadband
ultrasonic data. Basing on adaptive beamforming GSC, a set of adapted, data-dependent apodization
weights for each wavelet subband are provided. Broadband-GSC can both maintain the desired
signal and suppress the interference and noise signal, therefore, improves the system imaging quality.
Furthermore, Broadband-GSC achieves an increase in lateral resolution with only one single emission.
New beamforming reduces the algorithm process complexity and the system’s hardware complexity.
Broadband-GSC introduces the possibility for higher frame-rate and higher investigation depth with
better imaging quality.
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