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Abstract: A defect inspection of resin films involves processes of detecting defects, size measuring,
type classification and reflective action planning. It is not only a process requiring heavy investment
in workforce, but also a tension between quality assurance with a 50-micrometer tolerance and
visibility of the naked eye. To solve the difficulties of the workforce and time consumption processes
of defect inspection, an apparatus is designed to collect high-quality images in one shot by leveraging
a large field-of-view microscope at 2K resolution. Based on the image dataset, a two-step method is
used to first locate possible defects and predict their types by a defect-shape-based deep learning
model using the LeNet-5-adjusted network. The experimental results show that the proposed method
can precisely locate the position and accurately inspect the fine-grained defects of resin films.

Keywords: microscale; defect inspection; convolution neural network; plastic resin films

1. Introduction

Defects considerably affect the quality of plastic products, and defect inspections are conducted
for quality control. Defects can stain the surfaces of plastic products if quality control is not performed
thoroughly, which could lead to a decrease in the sales of the product because of unfavorable impression
on the customer, and consequently cause losses to the company. The most common technique of plastic
product fabrication is injection molding, which involves producing parts by melting granular plastic
and injecting them into a mold, and subsequently cooling the product. However, granular plastic
defect inspection is difficult because the size of the defects is at microscale. Furthermore, the inside of
the granular plastic can have defects. Therefore, granular plastics can be first compressed into plastic
resin films. This increases microscale defect visibility. Thus, the inspection can be conducted easily.
Industrial inspection systems for defect detection can mostly be divided into two types, namely the
traditional procedure and the automatic procedure. The traditional procedure, which is currently
prominent, involves observing whether plastic resin film quality is satisfactory through human vision
by using a magnifier as the inspection tool. This inspection procedure has the following problems:

1.  Because numerous items must be inspected, high-intensity repetitive inspection can cause fatigue
and lethargy in inspectors. The quality of inspected products is not guaranteed in such scenarios.
This method is prone to workplace injuries because the inspecting staff can injure their eyes.

2. Human vision cannot precisely discern how large any defect is; humans have at best an
approximate awareness of whether a defect is present. This may cause the inspection process
to miss some defects. Furthermore, it is nearly impossible to standardize human vision; each
inspector’s eyesight will have its own peculiarities.
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3. Insome cases, the manufacturer may want to tolerate no defect larger than 25 pm. However,
human vision is limited to objects larger than approximately 50 pm; this limit is not acceptable
for high-quality products.

4. Defect detection is not immediate. Using human vision for the inspection process is considerably
time consuming and inefficient. The average number of plastic resin films that can be checked by
a person in a day is approximately 12 to 15.

Automatic procedures, including machine vision-based methods of defect detection, have gained
considerable popularity for their high speed, high precision, and real-time performance. Several
strategies for defect detection have been explored in numerous studies. These machine vision-based
methods are used in the inspection of many industrial products, such as metal [1], fabric [2], steel [3], car
surfaces [4], and light-emitting diode chips [5]. The methods of surface defect detection can be divided
into three types, as depicted in Figure 1, namely traditional image processing, feature extraction with
machine learning, and deep learning methods.
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Figure 1. Different approaches to defect detection.

Primitive attributes are used to detect defects in traditional image processing methods. These
methods can be divided into three approaches, namely threshold, structural, and spectral. The threshold
approach involves transforming grayscale images to binary images, separating the background and
defects by applying various types of thresholds such as adaptive thresholding method [6] and the
Otsu [7,8] method. The structural approach includes edge [9], skeleton [10], and morphological
operations [11]. Fourier [12], wavelet [13], and Gabor transforms [14] are used in the spectral approach.
However, it is difficult to classify various nondefect objects using traditional image processing because
nondefect items are not easily filtered.

In feature extraction using a machine learning method, defect detection has two stages, namely
feature extraction and machine learning, that is, using a feature extraction algorithm to extract various
features from images, then using machine learning techniques to determine the pattern or relationship
among different classes. Shumin [15] proposed a novel fabric defect detection technique using a
histogram of oriented gradient (HOG) for counting occurrences of gradient orientation in localized
portions of an image, AdaBoost was used to select a small set of HOG data for support vector machine
(SVM) to classify fabric defects. Kuang et al. [16] proposed a method for bamboo strip defect detection
using a set of features based on local binary pattern (LBP) and gray level co-occurrence matrix (GLCM).
LBP is used to describe the local texture features of the image and GLCM is used to characterize
the texture of an image by calculating how often pairs of pixels with specific values in a specified
spatial relationship occur in an image. After extracting the features, an SVM was proposed to classify
defects. Chang et al. [17] proposed a method for defect detection on the compact lens. He segmented
objects by applying weighted Sobel filters and watersheds and then used the SVM for classification.
Watershed is a transformation that considers the images as topographic maps, the brightness of the
images representing its height and finds the lines that run along the tops of ridges. Watershed can



Appl. Sci. 2020, 10, 1206 30f23

segment two objects that are close to each other. Zhou et al. [18] proposed a surface defect for a vehicle
body by using a multiscale Hessian matrix fusion method to determine defect regions and SVM to
classify defects.

Deep learning methods have achieved excellent results in many fields [19-21] and surface defect
detection is one of them. Several defect detection methods based on convolutional neural networks
(CNNSs) have been proposed. Arikan et al. [22] proposed a CNN model for classification, setting
two classes: defect or nondefect. This model was designed to handle capacity and real-time speed
requirements. A generative adversarial network (GAN) was used to generate more data. Wang et al. [23]
proposed a fast and robust CNN-based defect detection model by using CNNs with a sliding window
to localize the product damage. The sliding window is time consuming and is not sufficiently efficient
for our data. Mei et al. [24] designed a multiscale convolutional denoising autoencoder network
(MSCDAE) model for fabric defect detection by using reconstructed image patches with the model
at multiple Gaussian pyramid levels and synthesized results from these pyramid levels. Defective
regions in the reconstruction residual maps were generated using the CDAE networks. This model can
be trained with only a small set of defect-free samples and can deliver excellent performance. These
two methods can only localize and detect defects but cannot classify the type of defects.

An object detection method is required for resin films because an image can contain various objects
at the same time. Object detection is used to detect objects inside an image and many studies have
been conducted on object detection. Li et al. [25] proposed an improved you-only-look-once (YOLO)
network to detect six types of defects on steel strip surfaces. Cha et al. [26] proposed a structural visual
inspection method based on faster R-CNN to detect five types of defects, namely steel delamination,
steel corrosion, bolt corrosion, and concrete cracks. Yuan et al. [27] proposed a modified segmentation
method and deep neural network to detect defects on the cover glass of mobile phones. GAN was used
to generate more data for the deep learning network to overcome the problem of small amount of data.
Ferguson et al. [28] used a defect detection system based on the mask region-based CNN (mask R-CNN)
architecture to detect the casting defects on the GDXray dataset. Excellent performance is achieved
based on transfer learning, using weights pre-trained on the ImageNet dataset, and then trained the
defect detection system on the COCO (Common Objects in Context) dataset. Wen et al. [29] proposed
an object detection method to detect defects on bearing rollers, using CNN to extract the features
of the defects, then classified the defects, and calculated the position of the defects simultaneously.
Chen et al. [30] proposed a novel vision-based method in which deep CNNs (DCNNSs) are applied
in the defect detection of the fasteners on the catenary support device. The system cascades three
DCNN-based detection stages, including single shot multibox detector (SSD) and YOLO to localize
the cantilever joints and their fasteners. Then, a classifier was used to classify defects. Li et al. [31]
proposed a surface defect detection model based on the SSD network that was combined with a
MobileNet to detect the sealing surface of an oil chili to achieve real-time and accurate detection. The
Hough circle transform was applied to detect the oil chili. However, while above mentioned methods
proposes object detection networks that calculated the position and classifies defects in one whole
network, traditional image processing methods are sufficient for finding the objects because of the
simple background in the proposed system. Therefore, object detection networks such as YOLO, faster
R-CNN are not required for our inspection systems. The proposed method in this is mostly inspired
by the following methods. Song et al. [32] proposed a deep CNN-based technique for detecting
micro defects on metal screw surfaces by using traditional image processing methods to detect metal
screws, then using a CNN network to classify whether a metal screw was defective. Tao et al. [33]
designed a cascaded autoencoder architecture to obtain accurate and consistent defect detection results
under complex lighting conditions and ambiguous defects. The autoencoder could distinguish the
nonbackground objects and only required the basic thresholding method to separate nonbackground
objects and the background. A deep convolution network was used to classify various types of defects.

In the proposed method, we used a small microscope to observe data. Two types of plastic resin
films were present in our data, namely those with transparent and white backgrounds. Figure 2
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illustrates how the resin films appear under the microscope. Various types of nonbackground objects
are present on the surface; scratches (Figure 2b) and bubbles (Figure 2c) are not defined as defects.
Pollutants in the industrial environment, nondefective items, such as dust (Figure 2d) may appear on
the inspected surface. Different nonbackground objects have distinct features. Therefore, an image
processing method to segment the nonbackground objects was proposed, and a classification module
was then used to classify the defects. The results prove that the proposed method exhibited performance.

(©) (d)

Figure 2. Plastic resin film under the microscope. (a) Defect, (b) scratch, (c) bubble and (d) dust.

However, although the method exhibited excellent results, some disadvantages were observed
under the microscope. First, the microscope FOV was small—we need to capture hundreds of images
to compose one plastic resin film. Therefore, this method does not immediately raise efficiency. It is
also difficult to scan the plastic resin film completely without missing any parts; we have no method
to consider whether any parts have gone unscanned. Second, identifying defects and determining
the corresponding positions is difficult under the microscope. The aforementioned method is not
suitable for our study because our final goal is to increase the number of inspected samples. Therefore,
we proposed a machine-assisted method with a 2K-resolution camera. One plastic resin film can be
captured completely by one picture using the machine; in other words, the machine can speed up
the process and increase the number of samples that can be inspected in a day. Figure 3a,b depicts
the transparent-background and white-background plastic resin film surfaces under a 2K-resolution
camera. The transparent and white plastic resin film results vary considerably under the 2K-resolution
camera compared with the data from the microscope. The defects depicted in Figure 3(al,bl) are mostly
small and dot-like, whereas the scratch and dust are shown in Figure 3(a2,b2) and Figure 3(a4,b4),
respectively, are similar to lines. Bubbles depicted in Figure 3(a3,b3) are circular. The difference
between each type of nonbackground objects is not as obvious in the microscale version. However,
only a few images are required for composing one plastic resin film.
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Figure 3. Plastic resin film under a 2K-resolution camera. (a) White plastic resin film, (b) transparent
plastic resin film, (al,b1) defects, (a2,b2) scratches, (a3,b3) bubbles, (a4,b4) dust.

A microscale defect inspection architecture that could automatically identify defects for plastic
resin films has been presented in this paper. The proposed method on the 2K-resolution camera was
modified based on the microscope method. The microscale defect inspection architecture consists of
two steps. In the first part of the architecture, an image preprocessing method for the detection part,
segments, and local nonbackground objects was proposed. In the second part, a classification module
is used to classify the objects. Compared with traditional procedure, the proposed method has the
following advantages:

1.  With the same standards for defect detection, the proposed method can obtain the precise area
and location of defects.

2. The proposed method has high precision and high speed, which speeds up the inspection process
and reduces labor cost. The average amount of plastic resin films that can be checked in a
day increases.

The rest of paper is organized as follows: In Section 2, the overall system and proposed approach
are described in detail. Experimental results are presented in Section 3 and the discussion is presented
in Section 4. Finally, the conclusion is provided in Section 5.

2. Materials and Methods

In this section, the proposed method is discussed in detail. The microscope method is described
in Section 2.1, and Section 2.2 describes the method using a 2K-resolution camera. The 2K-resolution
camera method is based on the microscope method with some adjustments.
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2.1. Microscope Method

Figure 4 illustrates the overall architecture of the method under the microscope. The method
includes two stages, namely image processing and classification. During the image processing stage,
the traditional image process was used for detecting nonbackground objects, then nonbackground
objects that were considered as the input of the classification model were extracted and cropped. In
the classification stage, a CNN was proposed to classify various types of nonbackground objects.
The system overview is presented in Section 2.1.1, and the image processing stage is depicted in
Section 2.1.2 and the classification stage is in Section 2.1.3.

Microscope Image
Data processing
Threshold ‘.’ E ‘ defect

Morphological

Transformation G@ @ bubble
Contour o 2 &
Detection ' . scratch

 —— " and edges

Contour
Extraction

Classification

Figure 4. Architecture of the method under the microscope.

2.1.1. System Overview

Figure 5 depicts the sketch map of the inspection process under the microscope. The image
obtained by the microscope was sent to the computer and processed immediately. Because of its small
FOV, the slide should be moved through all parts of the plastic resin film.

N

Figure 5. Sketch map of the inspection process under the microscope.

2.1.2. Image Processing

The images captured by the microscope can contain more than one type of object. Therefore,
rather than using the whole image to train the classifier, objects should be detected and cropped out
first. To segment and crop the nonbackground objects, the image processing methods are required in
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this method: Threshold, blur transform, morphological transformations, and contour extraction. In the
threshold part, adaptive thresholding method was used. The formula is presented as follows:

maxValue, if sre(x,y) > T(x, y)

dst(x,y) = { 1

0, otherwise

where the threshold value T(x,y) is a mean of the blocksize x blocksize neighborhood of (x,y) minus
some constant c. Before applying adaptive threshold, Gaussian blur was used on the grayscale image
for improving performance. We did several experiments with different combinations of the parameters,
observed the data to find the most suitable parameters for our plastic resin film, afterwards obtaining
the threshold image. The experiment details are provided in Section 4.1.

The threshold image was then passed through a morphological transform, using the closing
technique for closing small holes inside the foreground objects. Closing is dilation followed by erosion.
Dilation increases the white region parts in the binary image, whereas erosion is the opposite and
erodes them away. Dilation and erosion are defined as follows:

dilation = A@B = |_J 4, @)
beB

erosion = A©B = ﬂA_b 3)
beB

where A is our threshold image and B is our structuring element, A; is the translation of A by b and
A_p, denotes the translation of A by —b. Closing is typically useful in closing small holes inside an
object and connecting broken areas. Closing can successfully connect broken areas on our data and
assist in determining nonbackground objects.

During contour detection, the findContours function in OpenCV was used to locate objects, which
extracts objects with areas more than certain pixels. In this study, 25 um was set the defect threshold.
Objects were extracted by their bounding box and cropped out of the image for further steps. Figure 6
depicts the image processing stage.

Gaussian Adaptive
K] Blur Threshold

- Morphological
. —— Transform
» .

=4 |

- Extraction Contour
l . 4m—— : 5 Detection
Figure 6. Overview of the image processing stage of the method under the microscope.

2.1.3. Classification

CNN learns the hierarchy of features from the input image and is commonly used in image
classification, object detection, natural language processing, among others. A CNN architecture
typically consists of some convolution and pooling layers that are fully connected at the end. The
convolution layer is the first layer that is used extracting features from the image; filters are defined to
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perform multimatrix convolution with the image and obtain the feature map. The pooling layer is used
for reducing the number of parameters; the number of feature reduction is defined by the filter size.
Pooling is of three types, namely max, average, and sum pooling, depending on the type of values that
should be maintained. The fully connected layer flattens the results into the most basic neural network.
Usually, a softmax activation function is used at the end for classification to output the probability of
the class.

In the classification stage, the LeNet-5-adjusted network was proposed; objects are classified
into their categories because of the observed defects having different colors. Colors do not provide
information of the classification model; therefore, data is first transferred to grayscale images before
training on CNN. The cropped out objects are resized to a size of 50 X 50 pixels. The 50 pixels size was
determined by the average size of the data. In the CNN model, the input layer limits the data size,
therefore we determine the size of the input layer by averaging. If the average is used, the overall
difference of each contour will not be too large, hoping to keep their feature. Figure 7 illustrates the
architecture of the classification module.

Fully Connected Layer
filter=16

filter=6 I
50x50
Conv2D(3x3) I

Conv2D(3x3)

84

Figure 7. LeNet-5-adjusted CNN network.

The size and style of the target image are similar to the MNIST dataset (Modified National Institute
of Standards and Technology database) [34], therefore, LeNet-5 [34], with excellent performance in
the MNIST dataset is used as the baseline creation model in the microscale defect detection. Average
pooling can result in several features being disregarded. However, all features are crucial for our
data. Therefore, average pooling was discarded and superior results were obtained in the microscale
defect detection.

2.2. 2K Resolution Camera

Because of the small FOV of the microscope, not only are we required to slide the plastic resin
film many times to capture the complete image but we must also be careful not to miss any spot of the
plastic resin film. It is difficult to determine accurate positions of the defects on the plastic resin film.
Even if we know where a defect approximately is, human vision may not be able to perceive it, because
it is too small for detection using human vision. The microscope method is not sufficiently efficient for
the plastic resin film because it is time consuming. Therefore, we proposed a machine-assisted method
with a 2K-resolution camera. Although accuracy using the microscope method is higher, the proposed
method is more efficient than the microscope method and it is considerably easier to locate the defects
on the plastic resin films. Only one image is required to be captured to obtain the complete plastic
resin film. Figure 8 depicts the architecture of the proposed method using a 2K-resolution camera.
This method consists of three stages, namely image adjustment, image processing, and classification.
The image adjustment stage improves performance during comparison using the image processing
stage. The image processing stage and classification stage are mostly the same that in the microscope
method, with the exception of a comparison part to filter noise and reduce the amount contours.
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Figure 8. Architecture of the method with the 2K-resolution camera.
2.2.1. System Overview

Figure 9 depicts the sketch map of the 2K-resolution camera. The key component of the system is the
VS-LDA series lens from vs. technology corporation [35], which has a 2K resolution (5472 x 3648 pixels)
and has been fixed at a shooting distance of 12.5 cm on our machine. This series lens is best known
for its low distortion, even when using extension tubes and is designed to support a wide range of
magnification, wide angle (WD), and depth of field. The resolution of the camera can reach 762 dpi
(30 pixels/mm), which satisfies more than 25-um defect detection requirement. A light regulator was
used to control light sources to ensure the same light condition was used throughout the study. This
minimized the influence of light on the data. A dust removal fan was used to filter dust on plastic
resin films.

Dust removal fan

O

VS-LDA len

transformer

light regulator

Figure 9. Sketch of the inspection process using the 2K-resolution camera.
2.2.2. Image Adjustment and Image Processing

Normally, the inspection process of the plastic resin film is not conducted in a dust-free environment.
Therefore, the plastic resin film can contain dust. Thus, identifying defects is difficult because dust
and defects (scratches and edges) appear similar under the 2K-resolution camera. This can decrease
the classification performance. Therefore, a comparing component was introduced to filter noise and
avoid dust before contour extraction. In this approach, three images on the same plastic resin film
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were used, the contours of each image were determined and compared, and a fan was used to remove
dust each time before capturing an image.

If the contour’s location was different than that of other contours, then the contour was mostly
dust or fiber. The comparison between the contours must be in the same location or at least close,
we used Intersection of Union (IoU) to examine whether they are the same object, which is defined

as follows:
_ Areaof Overlap

IoU = 4
oU Avrea of Union @)

when we evaluate the IoU of the bounding box of the detected objects, the bounding box is defined
during contour detection. We defined IoUs that are more than 0.3 as the same object. However, it is
impossible to capture three images at the same position. Manual adjustment of the picture to the exact
position is time consuming and reduces efficiency. Therefore, affine transformation is used. Affine
transformation is any transformation that can be expressed through matrix multiplication. Rotation,
translation, or scaled operations can be expressed using an affine transformation. Affine transform
is the relation between two images, usually shown as a 2 X 3 matrix. The formula used for image
adjustment is expressed as follows:

TNt =] e || ®)
ap a1 by a1ox + a1y + bio

where M is the affine transform matrix, (x,y) is the original image position, and T is the new position
after applying the affine transform. To apply the transform to an image, M must be defined first. Our
goal was to apply the affine transform to transform one image into another image, which required
three corresponding positions in the two images. Thus, the relation between the two images can be
obtained and can be transferred from one to the other. Three same points can be obtained from both
images to achieve the affine transform matrix, the transform can then be applied to one of the images,
and transform into the other image. The affine transformation is depicted in Figure 10.

. affine transform
> matrix :

Affine Transform

affine transform
matrix

(a) (b)

Figure 10. Affine transformation. (a) The first step: obtain the affine transform matrix, (b) the second
step: apply the transform to the image.

Therefore, three images were captured, and the affine transform was applied to two of the images
making them exactly the same, and then the locations of the contours were compared to determine
whether the objects were dust. To achieve the affine transform matrix, three exact points are required.
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Three stickers were placed on the plastic resin film. Some simple thresholding technique and contour
detection could easily determine the center position.

After the images had been transformed to the same position, image processing was performed,
and the bounding box of the contours in all three images was obtained after contour detection. IoU
more than 0.3 was counted as the same contour as mentioned before. The contours were extracted only
if all three images have them. The results indicated the method can efficiently filter most of the dust
and reduce the number of contours. Figure 11 illustrates the details of both the image adjusting stage
and image processing stage.

Affine
Transform

Threshold

Find
three
stickers
center
position “ -

Morphological
Transformation

Contour
Detection

Affine
Transform

—

Figure 11. Overview of the image adjusting and image processing stage in the 2K-resolution camera method.
2.2.3. Classification

The LeNet-5-adjusted CNN network was used as the classification model, which is the same as
the microscope method. The input size was changed to 52 X 52 pixels, the size was determined by the
average size of the data

3. Experiments and Results

In this section, we discuss the experimental setup before training on the LeNet-5-adjusted network
and the parameters that have been used during training. The microscope method is discussed in
Section 3.1 and the 2K-resolution camera is discussed in Section 3.2. The recall was used to evaluate
the performance of the classification task, which is calculated as follows:

Tp

Recall = ———
Tp+Fn

(6)
while recall is our main standard, we also want to gain a high-precision Fl-score. Their formulas are

shown as follows:
Tp

Tp+Fp
2% Tp
2xTp+Fn+Fp

Precision =

@)

F1 — Score =

®)
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Tp (true positive) indicates the number of defects classified correctly, Fy (false negative) indicates
defects classified into wrong categories and Fp (false positive) indicates the number of nondefects
classified as defects. The research goal is to reduce the number of suspicious defects of human
judgment, but also not to overkill the true positive—therefore, the recall needs to be high. However,
while the recall needs to be high, we also want to prevent having too low precision. Therefore, we
would also consider precision and F1-Score.

3.1. Microscope Method

3.1.1. Experiment Setup

For the adaptive threshold parameters, the block size was set to 205 and the constant c was set as
30 during the image processing stage by observing the defects and confirming if all the defects were
captured. Contour extraction only extracts objects with areas larger than 400 pixels because under the
microscope, a 25-um defect is approximately that size.

The dataset of plastic resin film images was provided from a production line of a plastic component
using a microscope. All the defect components were previously inspected using an expert examiner.
During the image processing stage, we cropped 237 defects and 2457 bubbles because such irregularities
would undermine the training of the neural network. Therefore, some modifications were incorporated,
including rotation and flipping. In this case, the aforementioned operation increased the number of
defects to 2796.

For the classification task, 100 images were used for testing and the remaining images were used
for training. The LeNet-5-adjusted network was trained for 100 epochs and the batch size was set
to 100.

3.1.2. Evaluation of the CNN Model

To verify the performance of the proposed CNN, in this section, we compared the inspection results
of this model with those of other CNN networks. The Arikan et al. [22] proposed SURFnet, which was
inspired by the VGG network [36] configurations and residual learning [37]. It has nine convolution
layers and one fully connected layer. Each convolution layer contains a batch normalization and using
the parametric rectified linear unit as the activation function. The LeNet-5 architecture consists of two
pairs of convolution and average pooling layers, followed by a flatten layer and two fully connected
layers. Both network epochs were set to 200 and the batch size was set to 32 during training.

Table 1 depicts the performance of the defect class with various networks. We mainly focused
on whether all defects were detected, evaluating the recall of the defect class. The results prove that
LeNet-5 has high precision, and their recall is the lowest. This proves that superior performance can
be obtained if the average pooling layer was removed. This is because extracted objects may be only
approximately 1 pixel. Average pooling can cause loss of vital features. For SURFnet, although the
precision is high (up to 1), the recall is not as high as the LeNet-5-adjusted network.

Table 1. Performance of classification with different CNN networks of the defect class.

Network Precision Recall F1-Score
SURFnet 1.00 0.84 0.91
Lenet-5 0.93 0.81 0.86

Lenet-5-adjusted 091 0.91 0.91
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3.2. K Resolution Camera Method

3.2.1. Implementation Detail

The inspection experiment system was developed using Python 3.6.7, with Keras as the deep
learning platform. The following results were obtained using a server with Intel(R) Core(TM) i7-8700K
CPU and NVIDIA TITAN-V with 11 GB of memory as graphic processing unit.

3.2.2. Experimental Setup

During the image adjustment stage, the center location of the three stickers was obtained by
applying some simple threshold transform and object extraction. The adaptive threshold parameter
was selected by observing the defects and confirming if all the defects were detected. We set the
blocksize to 55 and the constant ¢ to 19. For contour extraction, we extract objects that areas are above
1 pixel while limiting the size under 500 pixels since the size of 25 um under the 2K-resolution camera
is approximately that size and all the observed defects are under 500 pixels.

Table 2 lists the average number of objects in one plastic resin film before and after comparison.
The result indicated that it can successfully reduce most of the dust and a considerable number
of objects. More objects were observed against the transparent background than against the white
background because more bubbles were present in it.

Table 2. The average number of objects observed in one plastic resin film before and after comparison.

Type of Plastic Before After
Transparent background 260 172
White background 54 23

Because the transparent- and white-background plastic data was considerably different on the
2K-resolution camera, we trained them separately. Both networks were trained for 200 epochs, and the
batch size was set to 32 on the transparent-background plastic and 16 on white-background plastic. The
number of output classes were different. The transparent background has three classes, namely bubbles,
defects, and scratches, whereas the white background only has two classes, combining bubbles and
scratches into one. For the training process, we considered 177 bubbles, 31 defects, and 37 scratches and
edges on a transparent background, and 72 bubbles and scratches, 32 defects on a white background.
Some augmentations were made to balance the data.

3.2.3. Evaluation of the CNN Model with Feature Selection Algorithm

To verify the performance, we compare our CNN model with some traditional methods, in our
experiment we use two feature selection algorithms with SVM or MLP. Histogram of oriented gradient
(HOG) is for counting occurrences of gradient orientation in localized portions of an image while
local binary pattern (LBP) is a powerful feature for texture classification. The quantization of the gray
values in HOG is twelve and the number of circularly symmetric neighbor set points for LBP is eight.
The MLP consists two hidden layers, the first layer contains of 12 units while the second contains
8. For the transparent-background data, the output layer contains two output variables while the
white-background data contains three output variables. The MLP model were trained for 50 epochs,
and the batch size was set to 32. Table 3 displays the performance of the transparent-background
plastic and Table 4 displays the performance of the white-background plastic.

As shown in Tables 3 and 4, the LBP + SVM and HOG + SVM mostly have low recall, not only that,
their precision and f1-score did not show good results, either. In Table 3, while LBP + MLP has a rather
good result on the transparent-background data compare to the other methods, our CNN models still
has better results. HOG + MLP has a better recall than our model, however their precision is too low.
In Table 4, three of the methods have the same result on the recall with our CNN model; however, the



Appl. Sci. 2020, 10, 1206 14 0f 23

precision is lower than ours. It shows that it is difficult to fully classify the features of defects only by
gradient features and a classifier. Our method is better compared to the feature selection algorithms.

Table 3. Performance of the defect class on transparent-background plastic with various feature
selection algorithms.

Method Precision Recall F1-Score
LBP + SVM 0.54 0.77 0.64
HOG + SVM 0.55 0.69 0.61
LBP + MLP 0.70 0.80 0.75
HOG + MLP 047 0.89 0.61
Lenet-5-adjusted 0.77 0.84 0.80

Table 4. Performance of the defect class on white-background plastic with various feature
selection algorithms.

Method Precision Recall F1-Score
LBP + SVM 0.36 0.97 0.62
HOG + SVM 0.40 0.63 0.49
LBP + MLP 0.42 0.97 0.59
HOG + MLP 0.63 0.97 0.76
Lenet-5-adjusted 0.78 0.97 0.86

3.2.4. Evaluation of the CNN Model with other CNN Networks

To verify the performance of the proposed CNN network, in this section we compared the
inspection results of this model with those of other CNN networks. Table 5 lists the performance of the
transparent-background plastic and Table 6 displays the performance of the white-background plastic.

Table 5. Performance of the defect class on transparent-background plastic with various CNN networks.

Network Precision Recall F1-Score
Lenet-5 0.84 0.74 0.78
SURFnet 0.78 0.84 0.80
Lenet-5-adjusted 0.77 0.84 0.80

Table 6. Performance of the defect class on white-background plastic with various CNN networks.

Network Precision Recall F1-Score
Lenet-5 0.45 0.90 0.60
SURFnet 0.83 0.97 0.89
Lenet-5-adjusted 0.78 0.97 0.86

As depicted in Table 5, the original LeNet-5 does not exhibit high recall (0.74), whereas both
SURFnet and the proposed CNN exhibited a recall of 0.84. Table 6 lists the same concept. Both
transparent and white plastic on LeNet-5 do not perform better recall, and the precision on the white
background is notably low, and even though SURFnet on both plastics had the same recall compared
with the proposed CNN, the CNN structure of SURFnet is considerably more complex.

4. Discussion

During the development of the proposed method, a number of experiments were performed to
deliver high performance. In this section, details during experimentation are discussed. The image
processing stage is discussed in Sections 4.1 and 4.2 and the hyperparameters during the training of the
CNN model are discussed in Section 4.3. Finally, implementation issues are discussed in Section 4.4
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4.1. Threshold

When selecting the suitable thresholding method, the Otsu method and the basic thresholding
method did not provide a satisfactory performance on both kinds of data. On the microscope data, the
low-quality image causing too much noise on the image, therefore Otsu did not performance great.
As for the 2K-resolution camera data, the objects were small and not sufficiently obvious for Otsu to
obtain. The basic threshold, in which a pixel value was selected and set as the boundary line did not
provide satisfactory results because the microscope data and 2K-resolution camera has varying light at
the center. Therefore, the adaptive threshold is the most suitable approach among others. There are
different kinds of adaptive thresholding method, such as mean, Niblack [38] and Sauvola [39]. The
adaptive threshold sets the boundary line as shown in Equation (3), different adaptive thresholding
methods determine the T(x, y) value differently. The Niblack and Sauvola formula is shown as below.

T(x,y) = m(x,y)-Ks(x,y) ©)

T(x,y) = m(x, y)~[1 n K-(S(zy) - 1)] (10)

where m (x,y) is the mean of the blocksize X blocksize neighborhood, s (x,y) is the standard deviation.
The parameter K gets positive values, and R is the dynamic range of standard deviation. The results after
using different thresholding methods are shown in Figure 12. As shown in Figure 12a,b, nonuniform
light source causes bad performance on the basic thresholding method. In Figure 12¢, Otsu cannot
get any objects on the plastic resin film. Although Niblack and Sauvola shows better performance
compared to the two methods mentioned above, these methods gain a lot of unrequired noises, making
it difficult for the contour detection afterwards. In addition, many objects are fragmented while
using Sauvola. Their computation time is also rather slow compared to the mean adaptive threshold.
Therefore, we chose mean adaptive threshold.

(a)

Figure 12. Cont.
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(b)

(d)

Figure 12. Cont.
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(e)

(f)

Figure 12. Results on different thresholding methods. (a) Origin image, (b) global threshold, (c) Otsu,
(d) Niblack, (e) Sauvola, (f) mean.

However, the parameters for the mean adaptive threshold must be adjusted because of the data
difference and light effect, which requires time. Finding the best parameters for the adaptive threshold
consumed the most amount of time in the experiment. We mainly attempted the combination and
compared each of them. Figure 13 shows the comparison between different parameter values.

Here, x, y are the parameters of the adaptive threshold where x is the constant ¢ and y is the
blocksize, the total number of the missing ground true defect are depicted in Figure 13a and the total
number of contours that were found are illustrated in Figure 13b. The figure shows that only the
parameter with blocksize 55 and c 5 has gotten all the defects, however while our goal is to find all the
defects as many as possible, we also want to reduce the number of objects being detected. Therefore,
we observe the data under four different combination; each combination has a different amount of
missing ground true, the objects being detected on the threshold image are shown in Figure 14. It is
obvious that blocksize 55, ¢ 5 is not a suitable parameter; as shown in Figure 14d, it is not suitable for
finding the objects on the plastic resin film, Figure 14b will detect a lot of noises. Other than that due to
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observation, the parameters used on Figure 14c would cause some same scratches being detected as
different objects, these sub-scratches have similar features as the defects, which would cause it hard to
classify between defect and scratches. Therefore, because of the aforementioned results, a blocksize of
55 and a constant ¢ of 19 were set.

total number of missing ground true defects total number of contours

7739
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7575

6823
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(a) (b)
Figure 13. Different combinations of the adaptive threshold parameters on the 2K-resolution camera:
(a) The total number of missing ground true defects, (b) The total number of contours.
. Blocksize 55 x . )
Blocksize 55 x 55, Blocksize 55 x 55, Blocksize 55 x 55,
Parameters 55,
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Figure 14. Contour detection result using different adaptive threshold parameters. (a) Blocksize 55 x
55 pixels, ¢ 19 (b) Blocksize 55 x 55 pixels, ¢ 17 (c) Blocksize 55 x 55 pixels, ¢ 9 (d) Blocksize 55 x 55

pixels, ¢ 5.
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4.2. Contour Extraction

During contour extraction, when the minimum bounding box of the contours in the microscope
data, we did not apply the minimum on the camera data. This is mainly because we detected the
possibility of objects with area less than 10 pixels. The minimum bounding box that was used to extract
the object would then be difficult to train during the classification stage.

As depicted in Figure 15, if we selected to extract the object by the minimum bounding box of the
contour, limited background details could be compared. Because our input for the LeNet-5-adjusted
network must be of the same size, loss of attribute features occurred during resizing, which caused the
accuracy to decrease during classification. In this case, we expanded the bounding box. The extracted
objects attribute features were more obvious (Figure 14b), we expanded the area to approximately 5, 10,
and 15 pixels; then we trained them on the LeNet-5-adjusted network. The best results were obtained
for 15 pixels during the classification stage.

3x3 52x52
minimum — -—)
bounding box
33x33 52x52
expand
bounding box —) —)

area

Figure 15. Data difference in depicting the difference between expanding the bounding box area or not.

4.3. Hyperparameter

Fine adjustments were performed under the light camera. When creating the model, dropout
and pooling layers were used. However, these did not have a considerable effect. The batch size was
switched between 16, 32, and 64. Excellent results were obtained for the white-background plastic
with a batch size of 16, whereas excellent results were obtained with a batch of 32 for transparent
background. During tuning, we added different poolings, but did not achieve better results than that
using the nonpooling model. The use of the dropout layer did not achieve better results on the data.

4.4. Implementation Issues

Camera data issue: 2K resolution does not have sufficient quality for the plastic resin film; the
nonbackground object is still considerably blurry under the camera and sometimes it is difficult to
distinguish between a bubble and a defect. Many defects were less than 5 pixels across and the CNN
could not be trained to detect them. Raising the platform and lowering the FOV, the defects increased
to 10 to 15 pixels and exhibited a superior result in classification. However, three images were required
to compose one plastic resin film. This leads to other problems such as localization of the defects in
one combined image and ensuring every part of the plastic resin film is captured in the three images.
Therefore, we did not raise the height of the platform, and although classification was not better and
the nonbackground objects were not clearer, it was considerably efficient during the inspection process.

Data labeling: Considerable time was required for training the data, as every object was cropped
to be classified as the right class, most of the time microscope was required to classify the object into
the correct class. Furthermore, expanded area of 5, 10, and 15 pixels exhibited different data. This is
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time consuming and careful scrutiny is required at this stage because this strongly affects the efficiency
of our classification model.

During the classification of the camera data, unstable results were obtained for the white
background when divided into three categories, and bubbles and scratch would be categorized as
defects as shown in Table 7a and Figure 16a. Both models were trained on the same data with the
same hyperparameters. Therefore, the bubble and the scratch classes were combined, which exhibited
superior results as depicted in Table 7b and Figure 16b.

Table 7. Performance of the Lenet-5-adjusted trained on white-background plastic. (a) CNN trained in
three classes, (b) CNN trained in two classes.

(a) (b)

Type of Class Precision Recall Type of Class Precision Recall
Bubble 0.07 0.71 bubble_scratch 0.99 0.91
Defect 0.80 0.93 defect 0.78 0.97
Scratch 0.93 0.16

Confusion matrix, without normalization Confusion matrix, without normalization
- 80
bubble 5 2 0
5 - bubble_scratch 8 .
@ . s
2 ]
rT: defect 1 28 1 3 “0
> 30 =
= defect 1 29 20
20
scratch 5 14 10 . .
X &
0 é'a‘(' bé“
‘O\z \?,é' \é\ \e?
S &

Predicted label Predicted label

(@) (b)

Figure 16. Confusion matrix of the Lenet-5-adjusted trained on white-background plastic. (a) CNN
trained in three classes, (b) CNN trained in two classes.

However, while white-background plastic has better results while dividing into two categories, the
transparent-backgound plastic does not. As shown in Table 8 and Figure 17, the recall of the defect class
is higher when dividing into three categories. Therefore, during training the transparent-background
plastic data, we choose to divide the data into three categories: defect, bubble and scratches.

Table 8. Performance of the Lenet-5-adjusted trained on transparent-background plastic. (a) CNN
trained in three classes, (b) CNN trained in two classes.

(@) (b)
Type of Class Precision Recall Type of Class Precision Recall
bubble 0.94 0.89 bubble_scratch 0.97 0.97
defect 0.77 0.84 defect 0.79 0.81

scratch 0.48 0.62
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Confusion matrix, without normalization Confusion matrix, without normalization
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Figure 17. Confusion matrix of the Lenet-5-adjusted trained on transparent-background plastic.
(a) CNN trained in three classes, (b) CNN trained in two classes.

4.5. Increasing Accuracy

To increase time efficiency, the 2K-resolution camera was selected, and although recall is our
priority, precision should also increase. Therefore, the data was doubly verified by applying the
2K-resolution camera first, and then using the microscope method.

5. Conclusions

In this paper, an automatic method that could identify nonbackground objects and classify objects
was proposed by using a traditional image processing method to detect nonbackground objects,
and a CNN network to classify the defects. Based on the proposed method, the inspection was
converted to a segmentation and classification problem. Traditional image processing detected objects;
a comparison part was used to filter dust on the plastic resin film. The results indicated that the
process was successfully able to filter out a sufficient amount of dust. A LeNet-5-adjusted network
was proposed for the classification, and the results exhibited excellent accuracy, proving that an
average pooling of the data can lead to loss of vital features. The transparent-background data has
an 84% recall and a 77% precision, while the white-background data has a 97% recall and a 78%
precision. The proposed automatic defect detection with machine vision-based method can improve
the disadvantages of the traditional procedure. The proposed method exhibits uniform measurements,
unlike the traditional method in which the criteria can vary for each inspector. Whereas human vision
for the inspection process is quite time consuming and inefficient, the proposed method is fast. Using
the traditional method, the average number of plastic resin films that can be checked by a person in
a day is approximately 12 to 15. However, with the proposed method, the amount of time needed
to check one plastic resin film can be down to 3 min. In the proposed method, the labor costs of the
inspection process can be reduced, the workload of the inspectors can be lightened, and productivity
can be increased.
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