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Abstract: Waste concrete must be crushed, screened, and ground in order to produce high-quality
recycled aggregate. In this treatment process, 15-30% waste concrete powder (<0.125 mm) can be
generated. Hydration activity and the reuse of waste concrete powders (WCPs) were studied in this
work, and the results illustrated that the particle size changed after a series of thermal treatments at
temperatures from 400 °C to 800 °C. The particle size of waste concrete powder decreased by 700 °C
thermal treatment, and by 600 °C thermal treatment, it increased. More active elements appeared
in WCP heated by 800 °C. Nevertheless, the activity index (AI) of WCP, measured by the ratio of
mechanical strengths between mortar with a 30% replacement of the cement with WCP and normal
mortar without WCP, indicated that the WCP by 700 °C thermal treatment had an optimal Al value,
which meant WCP treated at 700 °C could be used in mortar or concrete as an admixture.
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1. Introduction

Due to the large volume of construction and demolition wastes and the deficiency of natural
resources, the recycling of building material wastes is urgent and of great importance. The use of
building material wastes in concrete can realize up-recycling for building materials.

Concrete wastes can rarely be reused as recycled aggregate to prepare concrete because recycled
aggregates “contaminated” with cement paste have lower mechanical properties owing to the presence
of cement paste. The workability, mechanical strength, and durability of recycled concrete are adversely
affected by recycled aggregate [1-3]. Many experiments were carried out to enhance the quality
of recycled aggregate, e.g., incorporation of thermal and mechanical treatment [4] and carbonation
treatment to strengthen the recycled aggregates [5,6].

In the process to treat the recycled aggregate, some fine powders including cement paste, sand,
and coarse aggregate powder are produced, and some studies focused on the quality improvement and
application. Increasing the particle size of recycled cement powder with 450 °C treatment and partially
replacing the cement powder with ground-granulated blast-furnace slag could effectively improve the
quality of recycled cement [7]. Xuan and Shui [8,9] reported that new calcium silicate hydrate (C-S-H)
was formed and the optimum temperature was at 700-800 °C. Splittgerber and Mueller reported
that clinker could be reproduced from cement paste by 1450 °C thermal treatment [10]. The waste
concrete powder (WCP) contained not only cement paste powder but also the fine and coarse aggregate
powders; therefore, it had a relatively complicated composition and special properties. It was expected
that WCP could be simply used in concrete as an admixture.
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Admixture is a material other than water, aggregates, hydraulic cement, and fiber reinforcement
that is used as an ingredient of concrete or mortar and is added to the batch immediately before
or during its mixing [11]. In addition, optimal packing can be achieved with some admixtures as
finer fillers, concrete absorptivity, and porosity can be reduced, and concrete has a more watertight
structure [12]. Admixtures are classified as active mineral admixtures and inert ones [13], where active
mineral admixtures are referred to those that contain latent active SiO, or Al,O3, e.g., fly ash, slag,
and silica fume. Inert mineral admixtures include no latent active compositions, e.g., CaCO3 powder.
The use of powders as admixtures in mortar or concrete is judged by standards. On the basis of the
stipulation of ASTM C618, cement mortar replaced with 20% admixture as cement can generate greater
than or equal to 75% of the strength of the reference mortar (without the replacement of cement)
at both ages of 7 and 28 days to be regarded as pozzolanic material [14]. Chinese standards have
similar requirements for different admixtures; for example, in Chinese standard JG/T 486, the ratio of
mechanical strengths at 7 days and 28 days between mortar with 30% powders replaced with cement
and mortar without powders is regarded as an index to judge if a mineral powder can be used as a
concrete admixture [13]; another method to determine the pozzolanic activity of an admixture is the
Frattini test according to BS EN 196-5:2011 [15,16].

The use of WCP as admixtures in mortar has rarely been investigated. Kim et al. reported that
the flow ability and the mechanical strength of mortar used WCP as admixtures decreased, and WCP
was certified as a nonreactive powder [17]. Bordy et al. confirmed that cement paste contained 24%
reactive residual anhydrous clinker, and the compressive strengths of mortar with 24% cement paste
replacing cement decreased; however, the compressive strength of mortar with 20% cement paste
replacement could attain 83% of that of the reference specimen [18]. Zhu et al. reported that WCP
containing unhydrated cement particles could be used, in part, to substitute the silica fume or cement
as a reactive powder in concrete [19]. Although WCP contained cement paste, unhydrated cement
particles in cement paste are related to the water/cement (w/c) ratio of concrete; the lower the w/c,
the most likely the presence of unhydrated cement particles in concrete.

In the process of thermal treatment, chemical reactions, e.g., hydration water release, C-S-H
decomposition, and crystal transfer, occurred in concrete; especially, an active material, larnite (3-C,S),
was generated at temperatures of 600-900 °C [20-22], which meant active materials could appear in
the heated WCP. The property change of WCP and the use in mortar as an admixture were investigated
in this study:.

2. Materials, Methods, and Procedure

The samples were obtained from the used concrete made before 2015. The cement P.O 42.5 was
produced by the Shandong Shanshui cement company. The polycarboxylate plasticizer was produced
by the Huadi technology company and could reduce water by 37%. The standard sand was bought
from Xiamen AisiO in China.

The used concrete was produced with calcium carbonate as aggregates, and was dealt with by
crushing, screening, and grinding. The chemical composition of WCP is shown in Table 1.

Table 1. Chemical ingredients of waste concrete powder (WCP) and cement used in the measure (%).

CaO SiOZ A1203 Fe203 MgO Kzo NaZO SO3 P205 Loss

WCP 56.75  20.50 8.42 3.99 3.84 1.08 0.49 3.49 0.13 1.04
Cement 58.14  20.65 8.62 3.13 3.33 0.63 0.21 3.95 0.18 1.16

It could be demonstrated that the chemical ingredients of WCP were similar to those of the
cement P.O 42.5. Many calcium oxides existed because the used concrete was produced with calcium
carbonate as aggregate. The particle size of WCP was mainly distributed in the range from 0.84 to
30 um (Figure 1), similar to the cement particle size.
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Figure 1. Waste concrete powder (WCP) particle distribution.

WCP was dealt with by thermal treatments of 200, 400, 600, 700, and 800 °C for 3 h in a labor
heating furnace. Three 40 X 40 x 160 mm mortar cuboids for every sample were produced with the
cement replaced by 30% thermally treated WCP according to the recipe in Table 2; then, its mechanical
property and activity index were mainly measured according to the Chinese standard GB/T 17671 [23]
and JG/T 486 [13]. In addition, heat flow change was measured by differential scanning calorimetry
(DSC), and the mass loss, content of free calcium oxide, and particle size change of WCP by the thermal
treatment were investigated. The crystalline structure and morphology of WCP were gauged by X-ray
diffraction (XRD) and scanning electron microscopy (SEM), respectively, in order to further prove the
effect of the thermal treatment for the property change of WCP.

Table 2. Recipe of the experiment according to Chinese Standard GB/T 17671.

Cement WCP Standard Sand Water W/C
Samples 8
Thermal Treatment (°C) g g /
0 200 400 600 700 800
E-0 450
E-1 135
E-2 135
E-3 135 1350 225 0.5
—F— 315
E-4 135
E-5 135
E-6 135

The mechanical properties were measured by the compression and folding experiment machine
made by the SANS company. The content of free calcium oxide was measured by the FC-6 digital free
calcium oxide machine made in Shanghai, and, in this test, ethylene glycol was used to react with
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free calcium oxide, which resulted in the change in liquid conductivity. The free calcium oxide was
measured because the machine could gauge the liquid conductivity. The laser particle size analysis
machine made by Winner of Jinan gauged the sample size. Other testing devices, such as a mixer and
grinding machine, were used in this study too.

Activity index (Al) is the ratio between the mechanical strengths of the concrete, whose 30%
cements were replaced by a powder and those of the reference concrete according to the Chinese

standard JG/T486 [13].
Al =F, /| F, x 100%. 1)

Al—activity index in %; F,—7 and 28 day strength of concrete with 30% replacement of cement

by an admixture in MPa; F,—7 and 28 day strength of reference concrete in MPa.
According to the requirement of Chinese GB/T 486, if the Al meets the values in Table 3, the powder

can be regarded as an admixture used in concrete.

Table 3. Requirement of activity index (AI) values of compound mineral admixtures for concrete
according to Chinese standard JG/T486-2015 [13].

Activity of Compound Mineral Admixtures for Concrete

Day
Class I Class I1 Class III
AT (%) >80 >70 >65
’ >90 >75 >70

3. Results

3.1. Properties of WCP by Thermal Treatment

DSC detection can explain the heat change of WCP in the process of thermal treatment (Figure 2),
where a big endothermic peak occurred at temperatures from about 700 to 900 °C because of
decomposition of calcium carbonate. WCP mass was lost in the thermal treatment process; with the
increase in temperature, more mass losses occurred because of the water escape and chemical reaction.
Figure 3 illustrates the mass change of WCP after the thermal treatment; with the increasing treatment

temperature, the mass loss of WCP increased.
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Figure 2. Heat flow change of WCP with differential scanning calorimetry (DSC) detection.



Appl. Sci. 2020, 10,998 5 0f 10

25 ~

= N
u o

=
o

Mass loss (%)

O 1 1 1 1 1
0 200 400 600 800 1000
Temperature ('C)

Figure 3. WCP mass losses with the thermal treatment.

In Figure 4, it is obvious that the free calcium oxide content increased with the increase in
temperature; especially, at 800 °C treatment, the value was up to 3.6%. Free calcium oxide could quickly
react with water and more contents could affect the cement properties. The content of free calcium
oxide in Portland linker was not more than 1.5% according to Chinese standard GB/T 21372 [24].
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Figure 4. Free calcium oxide content in WCP.

In Figure 5, it was measured that the powder particle size was influenced by the temperature;
it decreased with the thermal treatment of 700 °C, while it increased for 600 °C. With the thermal
treatments of 700 °C and 600 °C, the size of the 90% volume (D90) was 3.08 and 17.85 pm, respectively.
This was affected by the structural transformation of C-S-H, the specific surface area, and the pore
volume of cement paste by 600 °C treatment, which was the biggest compared to those by heat
treatment under 1000 °C [21].
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Figure 5. WCP particle analysis: (a) Accumulated particle size; (b) the particle size of 90% volume (D90).
3.2. Change of Activity Materials in WCP by the Thermal Treatment

Although cement paste probably contained unhydrated clinker, it was not determined in samples
of this study. WCP mainly comprises cement paste and concrete aggregate powder. Calcium carbonate
is an inert material, and therefore, the WCP property is determined by the activity of cement paste.
New active materials could be produced in WCP by the thermal treatment [25]. New larnite and
calcium silicates (Ca3SiOs and Ca;SiO,) were measured in the WCP at 800 °C by XRD experiment,
and they are active materials and can react with water (Figure 6).
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Figure 6. Mineral compositions in WCP determined by XRD.

The SEM figures illustrated the particle characteristics of the WCPs without thermal treatment
and with 600 °C, 700 °C, and 800 °C treatments (Figure 7).
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Figure 7. SEM detection for the microstructure with 20,000 times. (a) Original WCP, (b) WCP heated
by 600 °C, (c) WCP heated by 700 °C, and (d) WCP heated by 800 °C.

Compared to unheated WCP, big cluster structures like arborization in WCP were formed by
600 °C treatment. After 700 °C treatment, small clusters could be observed, and the size of WCP heated
by 800 °C was bigger than that of WCP heated by 700 °C but smaller than that of WCP heated by
600 °C. These results were consistent with the size change described in Figure 5. Unlike those of the
WCPs heated by 600 °C and without thermal treatment, the surfaces of WCPs heated by 700 and 800 °C
had many holes, and those changes were probably caused by the dehydration and recrystallization of
C-S-H [26] and the decomposition of calcium carbonate.

3.3. Application of WCP in Mortar with the Replacement of Cement

If WCP is used in concrete as an admixture, the mechanical strength of mortar must adhere to
the regulations of the standard, which means that the activity index must overrun 65% of values of
reference mortar according to the standard requirement in Table 3.

The mechanical strength of mortars is listed in Table 4. Using Equation 1, Al was calculated and is
shown in Table 5. By reference to the Chinese standard (Table 3), Al values except those treated at
700 °C could not attain the requirement for the active mineral admixture used in concrete. The Al
value of mortar with WCP heated by 700 °C could meet the class II requirement, which meant WCP
heated by 700 °C could be regarded as an admixture for mortar or concrete. The mortar with WCP
heated by 600 °C had the smallest Al value. The active larnite and Ca35iO5 were gauged in WCP
heated by 800 °C by XRD; however, the Al of mortar with WCP heated by 800 °C did not obviously
exceed the value of 65%.
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Table 4. Mechanical strengths of mortars with the heated WCP for replacing 30% cement.

D Reference Replacement 30%
ay
Mortar 0°C  200°C 400°C 600°C 700°C  800°C
. 5.44 3.58 3.33 3.66 3.81 491 3.96
FleXﬂz;‘sz,:)ength 7 7.07 443 5.72 6.52 5.15 6.42 536
28 8.79 4.63 6.18 7.06 5.89 6.83 6.23
Compressive 3 29.41 17.68 14.34 14.97 16.68 23.71 17.53
strength 7 46.82 25.16 26.20 29.92 23.16 33.43 28.44
(MPa) 28 55.34 4191 38.98 42.64 39.82 47.71 36.98
Table 5. Al values for heated WCP according to the mechanical strengths.
D Reference Replacement 30%
ay
Mortar 0°C  200°C 400°C 600°C 700°C 800 °C
3 100 65.8 61.2 673 70.0 90.0 72.8
Al of flexible strength -
(%) 7 100 60.9 78.7 89.7 70.8 883 73.7
28 100 52.7 703 803 67.0 77.7 70.9
_ 3 100 60.1 488 50.9 56.7 80.6 59.6
Al of compressive strength 7 100 53.7 56.0 63.9 495 71.4 60.7
(%) 28 100 75.7 70.4 735 72.0 86.2 66.8

4. Discussion

Property changes of WCP with thermal treatment and the use of WCP-replaced cement in concrete
were studied in this study. Finer WCP particles at 700 °C, as well as new active materials 3-C,S and
Ca3SiOs in WCP heated by 800 °C, were detected. Activity indexes (Als) of WCPs by testing and
calculating the mechanical strength were carried out. The finer WCPs with 700 °C thermal treatment
achieved an optimum AL

The mortar with thermally treated WCP by 700 °C treatment exhibited better mechanical
performance because of its smaller particle size, which meant a better packing due to the filler effect,
where it was proved by Berodier et al. that the presence of “inert” fillers could induce shearing in
the mixing, which was recognized to affect hydration. Smaller particles could enhance the shearing,
generate more nucleation sites on the cement surface, and increase the hydration acceleration rate [27].

WCP treated by 700 °C treatment can be reused as an admixture in concrete by the 30% replacement
of cement, which can meaningfully realize up-cycling for concrete waste.

5. Conclusions

WCP was heated by 200 °C, 400 °C, 600 °C, 700 °C, and 800 °C and added in mortar, replacing 30%
cement. Some properties of WCP and the mechanical strength of Mortar were determined. The following
conclusions were obtained.

(1) The particle size of waste concrete powder changed after heat treatments of 200 °C, 400 °C, 600 °C,
700 °C, and 800 °C; the treatment of 700 °C decreased the particle size of WCP; and its D90 size
was reduced by 55% with comparison to the original WCP.

(2) More mass loss and free calcium oxide generation in WCP occurred after the heat treatment
in 800 °C; furthermore, some active materials in WCP treated at 800 °C were determined by
XRD detection.

(3) The activity index (AI), which was measured by the ratio of mechanical strengths between the
mortar with 30% replacement of cement by WCP to those of the original mortar, demonstrated
that the WCP treated at 700 °C could be used in concrete as an admixture.



Appl. Sci. 2020, 10,998 9 0f 10

Author Contributions: Conceptualization and writing—original draft preparation, Y.S.; data curation, C.O.,
S.L. and J.Z.; writing—review and editing, Q.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Shandong province key R&D program (Public Welfare) 2019,
Grant number 2019GSF109108, the scientific research foundation for the returned overseas Chinese scholars,
State Education Ministry, grant number: (2013)1792 and the fund project of collaborative Innovation Center of
green building of Shandong Province.

Acknowledgments: The authors would like to thank S.S. Liu for his contribution of SEM images detection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Linss, E. Untersuchungen zur Leistung Schallimpulszerkleinerung fuer die selective Aufbereitung von Beton.
Master’s Thesis, Bauhaus-Universitat Weimar, Weimar, Germany, 2008.

2. Saez del Bosque, LE,; van den Heede, P.; de Belie, N.; Sanchez de Rojas, M.I.; Medina, C. Carbonation
of concrete with construction and demolition waste based recycled aggregates and cement with recycled
content. Constr. Build. Mater. 2020, 234, 117336. [CrossRef]

3. Bendimerad, A.Z; Delsaute, B.; Roziere, E.; Staquet, S.; Loukili, A. Advanced techniques for the study of
shrinkage-induced cracking of concrete with recycled aggregates at early age. Constr. Build. Mater. 2020,
233, 117340. [CrossRef]

4. Sui, Y;; Mueller, A. Development of thermo-mechanical treatment for recycling of used concrete. Mater. Struct.
2012, 45, 1487-1495. [CrossRef]

5. Lu, B.; Shi, C; Zhang, J.; Wang, J. Effects of carbonated hardened cement paste powder on hydrationand
microstructure of Portland cement. Constr. Build. Mater. 2018, 186, 699-708. [CrossRef]

6. Wang, ].; Zhang, J.; Cao, D.; Dang, H.; Ding, B. Comparison of recycled aggregate treatment methods on the
performance for recycled concrete. Constr. Build. Mater. 2020, 234, 117366. [CrossRef]

7. Wang, J.; Mu, M.; Liu, Y. Recycled cement. Constr. Build. Mater. 2018, 190, 1124-1132. [CrossRef]

8. Xuan, D.X; Shui, Z.H. Rehydration activity of hydrated cement paste exposed to high temperature. Fire Mater.
2011, 35, 481-490. [CrossRef]

9.  Shui, Z; Xuan, D.; Chen, W.; Yu, R,; Zhang, R. Cementitious characteristics of hydrated cement paste
subjected to various dehydration temperatures. Constr. Build. Mater. 2009, 23, 531-537. [CrossRef]

10. Splittgerber, F; Mueller, A. Identification of the Type of Cement in Hardened Concrete and Mortars.
In International Conference on Construction Hong Kong 2001; Conference Proceeding Volume One; Institution of
Civil Engineers: London, UK, 2001; pp. 143-154.

11. Farzam, H.; Bolin, G.; Hove, R.H.; Marin, J.; Erlin, B.].; Isabelle, H.L.; Mather., B.; Gibbe, FEK.; Kaetzel, H.L.;
Meseguer, A.G.; et al. Cement and Concrete Terminology Reported by ACI Committee 116; American Concrete
Institute: Farmington Hills, MI, USA, 2000.

12.  Mateusz, P; Lukasz, S. Selected physical properties of concrete modified using mineral powders. Procedia Eng.
2017, 172, 891-896.

13.  JG/T 486. Compound Mineral Admixtures for Concrete; Ministry of Housing and Urban-Rural Construction of
the People’s Republic of China: Beijing, China, 2016. (In Chinese)

14. Aliabdo, A.A.; Elmoaty, M.A.; Aboshama, A.Y. Utilization of waste glass powder in the production of cement
and concrete. Constr. Build. Mater. 2016, 124, 866-877. [CrossRef]

15. Donatello, S.; Cheeseman, M.; Tyrer, C.R. Comparison of test methods to assess pozzolanic activity.
Cem. Conc. Comp. 2010, 32, 121-127. [CrossRef]

16. BS EN 196-5:2011. Methods of Testing Cement-Part 5: Pozzolanicity Test for Pozzolanic Cement; British Standards
Institution: London, UK, 2011.

17. Kim, YJ.; Choi, Y.W. Utilization of waste concrete powder as a substitution material for cement.
Constr. Build. Mater. 2012, 30, 500-504. [CrossRef]

18. Bordy, A.; Younsi, A.; Aggoun, S.; Fiorio, B. Cement substitution by a recycled cement paste fine: Role of the
residual anhydrous clinker. Constr. Build. Mater. 2017, 132, 1-8. [CrossRef]

19.  Zhu, P; Mao, X.; Qu, W.; Li, Z.; Ma, Z.]. Investigation of using recycled powder from waste of clay bricks and
cement solids in reactive powder concrete. Constr. Build. Mater. 2016, 113, 246-254. [CrossRef]


http://dx.doi.org/10.1016/j.conbuildmat.2019.117336
http://dx.doi.org/10.1016/j.conbuildmat.2019.117340
http://dx.doi.org/10.1617/s11527-012-9852-z
http://dx.doi.org/10.1016/j.conbuildmat.2018.07.159
http://dx.doi.org/10.1016/j.conbuildmat.2019.117366
http://dx.doi.org/10.1016/j.conbuildmat.2018.09.181
http://dx.doi.org/10.1002/fam.1067
http://dx.doi.org/10.1016/j.conbuildmat.2007.10.016
http://dx.doi.org/10.1016/j.conbuildmat.2016.08.016
http://dx.doi.org/10.1016/j.cemconcomp.2009.10.008
http://dx.doi.org/10.1016/j.conbuildmat.2011.11.042
http://dx.doi.org/10.1016/j.conbuildmat.2016.11.080
http://dx.doi.org/10.1016/j.conbuildmat.2016.03.040

Appl. Sci. 2020, 10,998 10 of 10

20.

21.

22.

23.

24.

25.

26.

27.

Schneider, U.; Herbst, H.-J. Permeabilitaet und Porositaet von Beton bei hohen Temperaturen. In Deutscher
Ausschuss fuer Stahlbeton; Beuth Verlag GmbH: Berlin, Germany, 1989.

Schneider, U. Verhalten von Beton bei hohen Temperaturen. Deutscher Ausschuss fuer Stahlbeton; Verlag von
Wilhelm & Sohn: Berlin, Germany, 1982.

Wolf, G. Untersuchung Ueber das Temperaturverhalten eines Tunnelbetons mit spezieller Gesteinskoenung.
Master’s Thesis, Technische Universitaet Wien, Vienna, Austria, 2004.

GB/T17671. Method of Testing Cements-Determination of Strength; Chinese national bureau of quality supervision:
Beijing, China, 1999.

GB/T 21372. Portland Cement Clinker; Chinese National Bureau of Quality Supervision: Beijing, China, 2008.
Dora, B. Hydraulisch Erhaertende Baustoffe Aus Betonbrechsand, Phasenaenderung Durch
Temperaturebehandlung Und Einsatzmoeglichkeit. In Master’s Thesis; TU Braunschweig: Braunschweig,
Germany, 2001.

Zhang, Q.; Guang, Y.; Eduard, K. Investigation of the structure of heated Portland cement paste by using
various techniques. Constr. Build. Mater. 2013, 38, 1040-1050. [CrossRef]

Berodier, E.; Scrivener, K. Understanding the Filler Effect on the Nucleation and Growth of C-S-H. J. Am.
Ceram. Soc. 2014, 97, 3764-3773. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.conbuildmat.2012.09.071
http://dx.doi.org/10.1111/jace.13177
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials, Methods, and Procedure 
	Results 
	Properties of WCP by Thermal Treatment 
	Change of Activity Materials in WCP by the Thermal Treatment 
	Application of WCP in Mortar with the Replacement of Cement 

	Discussion 
	Conclusions 
	References

