
applied  
sciences

Article

Real-Time Detection for Cache Side Channel Attack
using Performance Counter Monitor

Jonghyeon Cho 1 , Taehun Kim 2, Soojin Kim 2, Miok Im 2, Taehyun Kim 2 and Youngjoo Shin 2,*
1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Korea;

whwhdgus94@naver.com
2 School of Computer and Information Engineering, Kwangwoon University, Seoul 01897, Korea;

taehunpb.kim@gmail.com (T.K.); kipper152@naver.com (S.K.); sjsqkqh33@naver.com (M.I.);
taehyun9203@gmail.com (T.K.)

* Correspondence: yjshin@kw.ac.kr

Received: 18 December 2019; Accepted: 31 January 2020; Published: 3 February 2020
����������
�������

Abstract: Cache side channel attacks extract secret information by monitoring the cache behavior
of a victim. Normally, this attack targets an L3 cache, which is shared between a spy and a victim.
Hence, a spy can obtain secret information without alerting the victim. To resist this attack, many
detection techniques have been proposed. However, these approaches have limitations as they
do not operate in real time. This article proposes a real-time detection method against cache side
channel attacks. The proposed technique performs the detection of cache side channel attacks
immediately after observing a variation of the CPU counters. For this, Intel PCM (Performance
Counter Monitor) and machine learning algorithms are used to measure the value of the CPU counters.
Throughout the experiment, several PCM counters recorded changes during the attack. From these
observations, a detecting program was implemented by using these counters. The experimental
results show that the proposed detection technique displays good performance for real-time detection
in various environments.

Keywords: cache side channel attack; Flush + Reload; Prime + Probe; Flush + Flush; Performance
Counter Monitor

1. Introduction

Cache side channel attacks have become a major security threat for PC and cloud environments.
This attack exploits the measured access time for the shared cache memory and then extracts sensitive
information from the victim. There are a variety of well-known cache side channel attacks such as
Flush+Reload [1], Flush+Flush [2], and Prime+Probe [3].

In Flush+Reload and Flush+Flush attacks, a spy infers the cache usage of a victim by measuring
the access time of the cache line that is shared with the victim. On the other hand, the Prime+Probe
attack targets a cache set that is shared with the victim to infer the cache usage. Since all of those attacks
target the L3 cache, it is stealthy and unnoticeable to the victim. These attacks are also used to recover
secret data from transient execution attacks such as Meltdown [4], Spectre [5], Foreshadow [6], and
ZombieLoad [7]. To mitigate these transient execution attacks, CPU vendors have proposed several
countermeasures that can significantly affect the performance. However, if it is possible to detect the
cache side channel attack, it can provide a fundamental countermeasure against transient execution
attacks. Therefore, it is necessary to study the detection of cache side channel attacks.

There are several techniques that can detect and block cache side channel attacks. While a spy
executes an attack, these techniques measure the cache miss by using hardware performance counters
while attempting to detect the cache side channel attacks based on the cache measurements. However,

Appl. Sci. 2020, 10, 984; doi:10.3390/app10030984 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8688-2160
http://www.mdpi.com/2076-3417/10/3/984?type=check_update&version=1
http://dx.doi.org/10.3390/app10030984
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 984 2 of 14

these techniques have limitations since they are unable to detect attacks in real time and they depend
on the cache miss.

To sum up, the previous detection methods have two limitations: (1) inability to detect attacks in
real time and (2) lacking the detection of stealthy side channel attacks such as Flush+Flush, which
incur no cache miss. In order to deploy the detection method in practice, we need to overcome
these limitations.

In this article, we propose a novel technique to detect cache side channel attacks. The detection
techniques are constructed upon classification-based machine learning algorithms and the Intel PCM
(Performance Counter Monitor) [8]. This allows us to detect cache side channel attacks in real time
without depending on the cache miss. The Intel PCM enables the measurement of the cache state
during the attack in real-time. Machine learning algorithms detect anomalies based on the measured
cache state. The experimental results show that the proposed technique successfully detects in real
time all the cache side channel attacks including Flush+Flush attack with an average accuracy of 95%.
This result proves that the proposed detection technique can be used as a useful tool to protect the
security in a PC or cloud environment.

Contribution: This article has the following contributions. First, we propose a novel method
that enables real-time detection for all kinds of cache side channel attacks. Second, we identify new
available performance counters in the Intel PCM through extensive experiments and analysis, which
allows us to detect stealth attacks. Third, we evaluate the effectiveness of the proposed detection
method by conducting experiments in various execution environments including the virtualized
environment and the single OS environment.

Outline: In Section 2, we present related work. In Section 3, we describe some background
information about cache side channel attacks, Intel PCM, and the softmax classification algorithm.
In Section 4, the experimental results are presented to identify new useful CPU counters for detection
in the Intel PCM. In Section 5, we propose a detection method of the cache side channel attacks based
on a machine learning algorithm. In Section 6, we evaluate the effectiveness of the detection program.
Finally, we conclude by summarizing our work in Section 6.

2. Related Work

There were several previous works regarding the detection of cache side channel attacks.
Chiappetta et al. proposed three methods to detect the Flush+Reload attack by using the perf
command and machine learning techniques [9]. The first method was based on correlation and the
other two use machine learning techniques. The method proposed in the article had the advantage of
being able to detect and prevent attacks in a relatively short time. However, they only used a cache miss
counter; hence they could not detect the Flush + Flush attacks, which did not affect the cache misses [2].
Mushtaq et al. [10] used 12 hardware events to train 12 machine learning models. They could detect the
Prime+Probe attack using real-time data by selecting the best four models from 12 machine learning
models. Based on the relatively large number of 12 hardware events, fast and accurate attack detection
was possible with a low overhead. However, this had the same limitation as Chiappetta et al. [9]
since they were unable to detect the Flush+Flush attack. Mohammad-Mahdi et al. [11] proposed
an approach to detect the cross-Virtual Machine (VM) cache-based side channel attacks using the
hardware granular information provided by the Hardware Performance Counters (HPCs) and the
Intel Cache Monitoring Technology (CMT) according to the Gaussian anomaly detection method.
This study had the advantage of a high detection rate because the performance overhead was 2%
for the computing platform. However, their method determined which attacks were based on cache
misses that were affected by high false positive alarms. Therefore, our technique, which does not rely
on cache misses, would likely be more appropriate. Gulmezoglu et al. [12] proposed a method for
detecting multiple attacks (e.g., Flush+Reload, Prime+Probe, Rowhammer [13], Spectre, Meltdown,
Zombieload) using the Intel PCM and deep learning. In this investigation, Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) algorithms, which are deep leaning models, were trained



Appl. Sci. 2020, 10, 984 3 of 14

with performance counters, such as L1_INST_MISS, L1_INST_HIT, and LLC_MISS, to predict the next
counter value. The attack was detected through a difference between the predicted counter value
and the actual counter value. This method differs from the proposed method, which is capable of
detecting the attacks by predicting the counter values. Unlike previous methods, it has the advantage
of detecting multiple attacks. However, the reliability of the proposed method is higher since it trains
machine learning models with five performance counters in comparison to the method proposed
by Gulmezoglu et al. [12] Furthermore, this method requires much computation and many data for
training, which uses deep learning. However, the proposed machine learning technique from this
study is more suitable for real-time detection because it requires less computation and training data.
Table 1 summarizes the comparison to other related works.

Table 1. Comparison to related works.

Method Tool Performance
Counters

Detected
Attacks

Can Detect
Stealth Attack?

Chiappetta et al. [9] Linux perf LLC_MISS Flush+Reload
Prime+Probe No

Mushtaq et al. [10] Intel CMT L1_MISS
LLC_MISS

Flush+Reload
Prime+Probe No

Mohammad-Mahdi et al. [11] Intel CMT L1_MISS
LLC_MISS

Flush+Reload
Prime+Probe No

Gulmezoglu et al. [12] Intel PCM
L1_INST_MISS
L1_INST_HIT

LLC_MISS

Flush+Reload
Prime+Probe No

The proposed method Intel PCM

IPC
L1_MISS
L2_MISS

LLC_MISS
RETIRED_BRANCH

Flush+Reload
Flush+Flush
Prime+Probe

Yes

3. Background

3.1. Cache Side Channel Attacks

3.1.1. Flush+Reload Attack

Flush+Reload [1] is a cache side channel attack that aims at L3 or the Last Level Cache (LLC).
For a modern Intel x86 multi-core architecture, each core has a separate L1 and L2 cache and an LLC
shared by all of the cores. Owing to the cache inclusive property, the LLC can possibly allow information
to be leaked through the cache to any malicious users or Virtual Machines (VMs). A virtualized
environment, such as cloud services, sometimes uses memory sharing (i.e., content-based sharing,
memory deduplication) to reduce the duplicated memory usage. In a general environment without
using virtualization, the operating systems use content-aware sharing to share shared libraries and
a shared code section. Despite the benefits of memory sharing, it can be used as a target of the cache
side channel by sharing a physical page with a spy. By monitoring the shared LLC line, a spy knows
whether the victim accesses the sensitive data in sharing pages. The Flush+Reload attack consists
of three steps as follows. 1. FLUSH: A spy flushes the specific shared cache line by using a clflush
instruction. 2. IDLE: Then, the spy waits for a predetermined amount of time while the victim executes
sensitive operations. 3. RELOAD: The spy reloads the cache line from the shared memory. If it takes
too long to reload the cache line, it means that the victim did not access the sensitive data in the shared
page. However, if the reload time is short, the shared cache line is filled with the victim’s data, which
means that the victim accesses sensitive data. By using this reload time difference, the spy is able to
infer the victim’s access pattern for some sensitive data from the LLC cache line. Since Flush+Reload



Appl. Sci. 2020, 10, 984 4 of 14

has the highest resolution of cache side channel attacks, it is used not only to extract the secret key
of various encryption algorithms, but it also obtains the victim’s keystroke information. Because the
attack uses the clflush instruction for the flush specific cache line iteratively, an increase in the L1, L2,
and LLC miss occurs whenever the victim accesses the cache lines.

3.1.2. Flush+Flush Attack

Similar to Flush+Reload, Flush+Flush targets the LLC line shared between the victim and the spy.
This attack uses the time difference between two clflush instructions, rather than the time difference
between the cache hits and misses for the reload after the clflush instruction in the Flush+Reload attack.
Because the clflush instruction, which is irrelevant to the memory access, is faster than the memory
access instruction, it does not cause any other L1, L2, LLC miss, or hit. Therefore, the Flush+Flush attack
would ideally be a fast and stealthy cache attack. However, the time difference between the two clflush
instructions, with and without data in the cache line, is less noticeable than the difference in the reload
time for the Flush+Reload attack. Therefore, Flush+Flush has less accuracy than Flush+Reload [2].
The Flush+Flush attack consists of three steps as follows: FLUSH, IDLE, and FLUSH. This attack has
the same steps as Flush+Reload except for the final FLUSH step. In the final FLUSH step, the spy
measures the execution time of the clflush instruction. If the execution time of the clflush instruction is
measured to be too long, this implies that the victim accessed the probing cache line or the sensitive
data. If the execution time of the clflush instruction is short, it means the victim did not access the
probing cache line.

3.1.3. Prime+Probe Attack

Unlike Flush+Reload and Flush+Flush, which target the shared cache line, the Prime+Probe attack
aims at the Last Level Cache (LLC) set. Because the LLC can contain the shared memory between the
cores, the spy does not need to prepare the shared memory. Therefore, the Prime+Probe attack can be
applied more broadly than the other attacks. As the Prime+Probe targets the cache set, it has a lower
resolution than the Flush+Reload and Flush+Flush, which target the shared cache line. To make the
sharing cache set, the spy makes an eviction_set that shares a cache set between the victim and the spy
for this technique. By probing all of the lines for the eviction_set, the spy knows whether the victim
accesses the sensitive data. The attack consists of three steps as follows. 1. PRIME: A spy fills the cache
sets with data. 2. IDLE: The spy waits for a predetermined amount of time while the victim executes
the sensitive operations. 3. PROBE: The probe caches the sets with prepared data. If the probing time
is measured to be too long, or if the eviction_set is changed, it implies that the victim accessed the
cache set while evicting some cache lines of the cache sets.

3.2. Performance Counter Monitor

The Performance Counter Monitor (PCM) is a tool that allows users to monitor the performance
counter values of the CPU core and uncore (i.e., read and written bytes from the memory controller).
It is similar to the Performance Application Programming Interface (PAPI). PCM helps the users
to monitor the internal counter (e.g., instruction per cycle, L1, L2, and L3 cache miss) change rate
of each CPU in real time. PCMs typically have perf and Intel PCM and present their results using
special-purpose registers inside the CPU. perf is a command line tool to analyze the performance
in Linux. It can be visualized and aggregated through the Hardware Performance Counter (HPC).
Chiappetta et al. [9] proposed a detection method for cache side channel attacks using perf. The Intel
PCM supports the Windows environment other than the Linux environment, and it is similar to perf.
However, Intel PCM can be run as a binary file by performing a compile. Unlike perf, Intel PCM has
a CSV option that prints several counter values of the CPUs to a CSV file for a set time. Intel PCM can
be used to distinguish the characteristics of cache side channel attacks through a change of counters.
This is suitable for monitoring the experiment that is carried out in this article.



Appl. Sci. 2020, 10, 984 5 of 14

3.3. Softmax Classification

Softmax classification is used for multi-label classification, which classifies given data into three
or more labels. This contrasts with binary classification, which separates the given data into two labels.
The softmax function converts the predicted value of each label for an input to a probability value
between zero and one. The sum of the probabilities that belong to each label should be equal to one.
In particular, pi is the probability that the input belongs to each label; the softmax function defines pi as
the following Equation (1) [14].

pi =
exi∑n

j=1 ex j
for i = 1, 2, . . . , k. (1)

As the probability values arrive closer to one through the softmax function, the higher the
probability belonging to the corresponding label. Therefore, through one-hot encoding, where only
one is true for two or more inputs and all others are false, the probability of having the largest value is
one, and the rest are zero. Softmax classification is applied to the cross-entropy loss up to the softmax
function. The cross-entropy is a function that reduces the error between the actual and predicted
values. The actual value is either zero or one through one-hot encoding of the predicted value; hence,
the log value gives a zero or infinite value. If the predicted value is different from the actual value, the
cost will have a very large value. Based on this, the machine learning model is trained so that the loss
function has a minimum value.

4. Identifying New Performance Counters

This section describes the experiment to obtain useful CPU counters for detecting cache side
channel attacks such as Flush+Reload, Flush+Flush, and Prime+Probe. In our previous study, it was
only shown that the Flush+Reload attack incurred a significant cache miss rate in the PCM [15].

The experiments in this study were performed on an Asus X99-E WS server computer with
Ubuntu 16.04 LTS, an Intel Xeon® E5-2620 v4 processor, and a 32GB DDR3 memory as the victim.
As a spy, a MacBook Air with Mojave OS and an Intel Core i5-5250U 1.6GHz processor and 8GB DDR3
memory was used. Attacks proceeded via SSH remote access. Three cache side channel attacks were
implemented by using Mastik [16], a cache side channel framework. Mastik makes it easy to execute
various types of cache side channel attacks with a simple setup and compilation. A PCM tool that
was provided by Intel was used as an open source [8]. Intel PCM offers many options; thus, CSV file
options were used to extract the counter values, which created the graphs to easily see changes in the
counter values due to the attacks.

Since these cache side channel attacks can be easily mounted in various environments, it is
necessary to observe the PCM counter value in various situations. Thus, experiments were performed
with two scenarios. First, in a normal scenario, the attacks were tested without background applications.
In the second scenario, the attacks were tested with several applications such as a video player, an
office program (e.g., Libre Office Calc), and a web browser (e.g., Firefox) running in the background.
During the experiments, all of the cache side channel attacks were executed for 15 s each in a normal
scenario and the running application scenario. Prior to mounting the attacks, 15 s of wait time were
provided for each scenario to clearly identify the change in the PCM counters.

Through this experiment, five counters were discovered that significantly changed due to the
three attacks. These counters include the IPC (Instruction Per Cycle), L3 cache miss, L2 cache miss,
L1 cache miss, and the speculative and retired branch counters. Each attack had a slightly different
effect on the counters, except the IPC (average number of instructions per cycle) value showed identical
changes to all of the attacks.

Figure 1 shows the changes of the IPC value when the attack was executed in each scenario in the
experiment. In both scenarios, the IPC value was greatly reduced when the attacks were executed.
The reason for greatly changing the IPC value was that the memory access had different characteristics



Appl. Sci. 2020, 10, 984 6 of 14

for the three attacks. The Flush+Reload attack resulted in frequent main memory accesses in the
process of spy flushing and reloading the cache line, which consumed many cycles. The Prime+Probe
attack occurred mostly for main memory access at other logical cores that shared the cache set in the
process that spy filled and probed its own data. Unlike the other two attacks, the Flush+Flush attack
did not have access to the main memory; however, it took many cycles to continuously flush the cache
line [2].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 14 

The Prime+Probe attack occurred mostly for main memory access at other logical cores that shared 
the cache set in the process that spy filled and probed its own data. Unlike the other two attacks, the 
Flush+Flush attack did not have access to the main memory; however, it took many cycles to 
continuously flush the cache line [2].  

 
Figure 1. The changed values of the IPC counter when the three attacks were executed in  
two scenarios. 

Figure 2 shows the change in the L1, L2, and L3 cache misses when the attack was executed. In 
both scenarios, three cache misses were significantly increased when the Flush+Reload and 
Prime+Probe attacks were performed. However, the increment in the cache misses counter value 
was different for both attacks. In the case of the Flush+Reload attack, it was observed that the three 
cache misses were increased by approximately two million. On the other hand, in the case of the 
Prime+Probe attack, the L1 and L2 cache misses were increased by approximately 50 million; 
however, the L3 cache miss did not increase. It was observed that there was no change when the 
Flush+Flush attack was performed. The reasons for these changes were considered. For the case of 
Flush+Reload, it caused the cache misses to be increased when the spy continued to flush and reload 
the cache line while waiting for the victim’s access. For the Prime+Probe attack, the cache miss did 
not occur in L3 because the spy filled its own data in the cache set and probed while waiting for the 
victim to access it. However, L1 and L2 were shared by other logical cores that used 
hyper-threading. As a result, the cache misses were significantly increased. 

Figure 1. The changed values of the IPC counter when the three attacks were executed in two scenarios.

Figure 2 shows the change in the L1, L2, and L3 cache misses when the attack was executed. In both
scenarios, three cache misses were significantly increased when the Flush+Reload and Prime+Probe
attacks were performed. However, the increment in the cache misses counter value was different for
both attacks. In the case of the Flush+Reload attack, it was observed that the three cache misses were
increased by approximately two million. On the other hand, in the case of the Prime+Probe attack, the
L1 and L2 cache misses were increased by approximately 50 million; however, the L3 cache miss did
not increase. It was observed that there was no change when the Flush+Flush attack was performed.
The reasons for these changes were considered. For the case of Flush+Reload, it caused the cache
misses to be increased when the spy continued to flush and reload the cache line while waiting for the
victim’s access. For the Prime+Probe attack, the cache miss did not occur in L3 because the spy filled
its own data in the cache set and probed while waiting for the victim to access it. However, L1 and
L2 were shared by other logical cores that used hyper-threading. As a result, the cache misses were
significantly increased.

Figure 3 shows the change in the value of the speculative and retired branch counter when the
three attacks were executed in each scenario of the experiment. The CPU executed the speculative
execution that pre-performed some tasks in order to improve the performance in executing instructions.
The speculative and retired branch counter counted the retired branches that were not taken through the
speculative execution. The counter was used to carry out the experiment. This counter increased greatly
when a program was run and when the program contained many loops. Furthermore, the counter
value was observed to rise suddenly and remain steady when the three attacks were executed. It was
hypothesized that this was due to a feature of the three attacks that constantly accessed the cache line
or set.



Appl. Sci. 2020, 10, 984 7 of 14Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14 

 

Figure 2. The changed values of the L1, L2, and L3 cache miss counter when the three attacks were 
executed in two scenarios. 

Figure 3 shows the change in the value of the speculative and retired branch counter when the 
three attacks were executed in each scenario of the experiment. The CPU executed the speculative 
execution that pre-performed some tasks in order to improve the performance in executing 
instructions. The speculative and retired branch counter counted the retired branches that were not 
taken through the speculative execution. The counter was used to carry out the experiment. This 
counter increased greatly when a program was run and when the program contained many loops. 
Furthermore, the counter value was observed to rise suddenly and remain steady when the three 
attacks were executed. It was hypothesized that this was due to a feature of the three attacks that 
constantly accessed the cache line or set.  

 

Figure 2. The changed values of the L1, L2, and L3 cache miss counter when the three attacks were
executed in two scenarios.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14 

 

Figure 2. The changed values of the L1, L2, and L3 cache miss counter when the three attacks were 
executed in two scenarios. 

Figure 3 shows the change in the value of the speculative and retired branch counter when the 
three attacks were executed in each scenario of the experiment. The CPU executed the speculative 
execution that pre-performed some tasks in order to improve the performance in executing 
instructions. The speculative and retired branch counter counted the retired branches that were not 
taken through the speculative execution. The counter was used to carry out the experiment. This 
counter increased greatly when a program was run and when the program contained many loops. 
Furthermore, the counter value was observed to rise suddenly and remain steady when the three 
attacks were executed. It was hypothesized that this was due to a feature of the three attacks that 
constantly accessed the cache line or set.  

 
Figure 3. The changed values of the speculative and retired branch counter when the three attacks
were executed for two scenarios.

The experimental results showed that the cache side channel attacks could be distinguished
using several counters. In all three attacks, the IPC value substantially decreased. Furthermore,
the speculative and retired values increased when each attack was executed. In this situation, if the
cache miss counters were significantly increased by more than 50 million, this was determined to be
a Prime+Probe attack. If the cache miss counters were increased by more than two million, then this was
a Flush+Reload attack. If there was no change in the cache miss counter, this was a Flush+Flush attack.



Appl. Sci. 2020, 10, 984 8 of 14

5. Real-Time Detection Using PCM

5.1. Overview and Threat Model

In this section, we give an overview of the proposed detection method against cache side channel
attacks, as well as its threat model. Our proposed method basically tried to detect the attack based on
abnormal behavior of processors. For this, the method internally utilized an Intel PCM tool for the
detection. The PCM tool collected a variety of hardware performance counters associated with the
processor events in real time and provided the results through a file with CSV format. Our detection
program repeatedly read relevant performance counters from the CSV file and checked whether some
abnormal events (i.e., cache side channel attacks) happened in the processor. If so, the program
further predicted what kind of attack was in progress based on classification-based machine learning
algorithm. Since the detection program directly read some counters from the processor status registers,
we required the program to run in privileged mode (i.e., root mode).

We supposed that in practice, the detection program would be deployed and utilized in two
possible execution environments: (1) a virtualized environment and (2) a single OS environment.
In this article, we followed the threat models of other related studies [4,5,12,14–16] for the execution
environments. We describe each environment in detail, as well as its threat model in the following:

• Virtualized environment: The detection program ran in one of the Virtual Machines (VMs) on
the host (see Figure 4a). The attacker process was located on the same host, but ran in another
VM. In our threat model, we assumed that the attacker owned its VM and had a root privilege to
a guest OS in the VM. Despite its privileged access to its own VM, however, the attacker could not
interfere with the detector program by conducting sabotage on the execution file or CSV files as
the hypervisor logically separated these two VMs from each other. Cloud computing was one of
the possible scenarios for the virtualized environment.

• Single OS environment: The attacker and the detector program ran in the same operating system on
the host (see Figure 4b). In our threat model, we assumed that the attacker only had the user-level
access to the OS in this environment. Owing to the privilege-based access control of the operating
system, we could restrict access permission to any relevant resources such as CSV files so that
only a root process including the detection program could access them. By doing so, the attacker
still could not conduct sabotage on the executables and CSV files of the detector program.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 14 

 
Figure 4. Architecture of the proposed detection method and its execution environment. 

5.2. The proposed Detection Method 

Now, we describe the proposed detection method to cache side channel attacks in detail. Intel 
provides a PCM tool that extracts a wide variety of counters value and stores the results with a CSV 
file format. Although the PCM tool is easy to use, it has several unnecessary counters and consumes 
many system resources [15]. Therefore, we modified the PCM tool to make it faster and more 
lightweight so that was suitable for real-time detection. The modified tool could extract the counter 
value with the given umask and event by using less CPU than the original PCM tool. In our 
experimental environment, we used an Intel Xeon® E5-2620 v4 processor with the Haswell-EP 
microarchitecture. The software developer’s manual for Intel processors describes in detail all the 
performance counters available for users including their umasks and event numbers. Among them, 
we identified four performance counters suitable to our side channel detection method. Table 2 
shows the counter names, umasks, and events of the four counter values that were used in our 
environment. In addition to these counters, we also used a counter for IPC, which is internally 
provided by the PCM-core, for our detection algorithm. Note that all the identified counters were 
not specific to the Xeon E5-2620 v4 processor, but were applicable to any Intel processors.   

Table 2. Performance counters used in the proposed detection method. 

Counter Name Umask Event 
MEM_LOAD_UOPS_RETIRED.L1_MISS 0 × 08 0 × d1 
MEM_LOAD_UOPS_RETIRED.L2_MISS 0 × 10 0 × d1 
MEM_LOAD_UOPS_RETIRED.L3_MISS 0 × 20 0 × d1 

BR_INST_EXEC.ALL_BRANCHES 0 × ff 0 × 88 

In order to detect the attack by using the identified performance counter, we used a machine 
learning technique. In particular, we used a softmax classification algorithm for the proposed 
method. The softmax classification allowed us to detect the attack and further to classify it according 
to several known attacks. For the purpose of classification, we labelled each known attack to a 
specific constant number. More specifically, we labelled the Flush+Reload attack, the Flush+Flush 
attack, and the Prime+Probe attack A1, A2, and A3, respectively. For a normal situation without any 
attacks, we labelled it A0. 

Figure 5 illustrates the overall architecture of our machine learning model for the attack 
detection. The model consisted of a single-layer perceptron without hidden layer with five units in 
the input layer and one unit in the output layer. Units in the input layer (i.e., x ~𝑥 ) corresponded to 
the collected values from performance counters listed in Table 2 along with the IPC counter. The 
output unit y referred to one of the labels A0~A3 based on the classification. 

Figure 4. Architecture of the proposed detection method and its execution environment.

5.2. The proposed Detection Method

Now, we describe the proposed detection method to cache side channel attacks in detail. Intel
provides a PCM tool that extracts a wide variety of counters value and stores the results with a CSV file
format. Although the PCM tool is easy to use, it has several unnecessary counters and consumes many



Appl. Sci. 2020, 10, 984 9 of 14

system resources [15]. Therefore, we modified the PCM tool to make it faster and more lightweight
so that was suitable for real-time detection. The modified tool could extract the counter value with
the given umask and event by using less CPU than the original PCM tool. In our experimental
environment, we used an Intel Xeon® E5-2620 v4 processor with the Haswell-EP microarchitecture.
The software developer’s manual for Intel processors describes in detail all the performance counters
available for users including their umasks and event numbers. Among them, we identified four
performance counters suitable to our side channel detection method. Table 2 shows the counter names,
umasks, and events of the four counter values that were used in our environment. In addition to
these counters, we also used a counter for IPC, which is internally provided by the PCM-core, for our
detection algorithm. Note that all the identified counters were not specific to the Xeon E5-2620 v4
processor, but were applicable to any Intel processors.

Table 2. Performance counters used in the proposed detection method.

Counter Name Umask Event

MEM_LOAD_UOPS_RETIRED.L1_MISS 0 × 08 0 × d1
MEM_LOAD_UOPS_RETIRED.L2_MISS 0 × 10 0 × d1
MEM_LOAD_UOPS_RETIRED.L3_MISS 0 × 20 0 × d1

BR_INST_EXEC.ALL_BRANCHES 0 × ff 0 × 88

In order to detect the attack by using the identified performance counter, we used a machine
learning technique. In particular, we used a softmax classification algorithm for the proposed method.
The softmax classification allowed us to detect the attack and further to classify it according to
several known attacks. For the purpose of classification, we labelled each known attack to a specific
constant number. More specifically, we labelled the Flush+Reload attack, the Flush+Flush attack, and
the Prime+Probe attack A1, A2, and A3, respectively. For a normal situation without any attacks,
we labelled it A0.

Figure 5 illustrates the overall architecture of our machine learning model for the attack detection.
The model consisted of a single-layer perceptron without hidden layer with five units in the input layer
and one unit in the output layer. Units in the input layer (i.e., x1∼x5) corresponded to the collected
values from performance counters listed in Table 2 along with the IPC counter. The output unit y1
referred to one of the labels A0~A3 based on the classification.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 

 
Figure 5. The machine learning model used in the proposed detection method. 

We performed training by using the performance counters obtained from our PCM tool. Since 
the performance counters were likely to be influenced by other benign applications running on the 
host, we obtained the training data not only from the normal condition (i.e., no applications 
running), but also from certain conditions where various applications were running concurrently 
such as web browsers and media players. After training, we obtained 3500 samples of performance 
counters from our PCM tool. The training data were gathered according to various scenarios. That is, 
we gathered the data with or without mounting side channel attacks while also simultaneously 
running several background applications. As a result, we obtained the softmax classification model, 
which was trained with specified labels.  

We implemented the softmax classification model by using TensorFlow, an open source-based 
framework for machine learning algorithms provided by Google. We specifically configured the 
TensorFlow parameters as follows: the learning rate was set to 0.1, the epochs to 100, and the batch 
size to 100. Moreover, we used the Adam optimization [17] technique to improve detection accuracy 
by minimizing the cost. The training model showed about a 99.54% accuracy for the training cases. 
The prediction model we configured using softmax classification detected and classified the three 
attacks and the normal condition with input values, that is IPC and four counter values. The output 
was one of the labels designated by softmax classification. 

Based on the classification model, we implemented a detection program to defend against three 
cache side channel attacks. Since the model was built with TensorFlow, we implemented the 
detection program by using Python for compatibility. Algorithm 1 presents the pseudo-code of the 
overall execution process of the detection program. Once the program was executed, it first forked 
the process by using a fork function (Line 1 of the algorithm). As a result, child and parent processes 
could run simultaneously. In Line 3, the child process was invoked and continued to execute our 
modified PCM. The PCM tool was provided with an option of using CSV file format. On the other 
hand, the parent process performed appropriate initialization process and then began execution by 
loading the machine learning model that we built (Line 5). The PCM tool performed monitoring and 
continuously output the collected counter values including the IPC, L1 miss, L2 miss, L3 miss, and 
the speculative and retired counters to the CSV file. Then, the program loaded the values in the CSV 
file and ran the model with the collected values as inputs to predict the current situation (Line 8). If 
the current situation was under attack, the specified label (A1: Flush+Reload, A2: Flush+Flush, and 
A3: Prime+Probe) was used to display the result of the attack (Lines 9-14). Finally, the CSV file was 
managed by flushing it. This prevented it from being slowed down when reading the CSV file 
because it was accumulating data. 

Figure 5. The machine learning model used in the proposed detection method.



Appl. Sci. 2020, 10, 984 10 of 14

We performed training by using the performance counters obtained from our PCM tool. Since
the performance counters were likely to be influenced by other benign applications running on the
host, we obtained the training data not only from the normal condition (i.e., no applications running),
but also from certain conditions where various applications were running concurrently such as web
browsers and media players. After training, we obtained 3500 samples of performance counters from
our PCM tool. The training data were gathered according to various scenarios. That is, we gathered
the data with or without mounting side channel attacks while also simultaneously running several
background applications. As a result, we obtained the softmax classification model, which was trained
with specified labels.

We implemented the softmax classification model by using TensorFlow, an open source-based
framework for machine learning algorithms provided by Google. We specifically configured the
TensorFlow parameters as follows: the learning rate was set to 0.1, the epochs to 100, and the batch
size to 100. Moreover, we used the Adam optimization [17] technique to improve detection accuracy
by minimizing the cost. The training model showed about a 99.54% accuracy for the training cases.
The prediction model we configured using softmax classification detected and classified the three
attacks and the normal condition with input values, that is IPC and four counter values. The output
was one of the labels designated by softmax classification.

Based on the classification model, we implemented a detection program to defend against three
cache side channel attacks. Since the model was built with TensorFlow, we implemented the detection
program by using Python for compatibility. Algorithm 1 presents the pseudo-code of the overall
execution process of the detection program. Once the program was executed, it first forked the process
by using a fork function (Line 1 of the algorithm). As a result, child and parent processes could run
simultaneously. In Line 3, the child process was invoked and continued to execute our modified PCM.
The PCM tool was provided with an option of using CSV file format. On the other hand, the parent
process performed appropriate initialization process and then began execution by loading the machine
learning model that we built (Line 5). The PCM tool performed monitoring and continuously output
the collected counter values including the IPC, L1 miss, L2 miss, L3 miss, and the speculative and
retired counters to the CSV file. Then, the program loaded the values in the CSV file and ran the model
with the collected values as inputs to predict the current situation (Line 8). If the current situation was
under attack, the specified label (A1: Flush+Reload, A2: Flush+Flush, and A3: Prime+Probe) was used
to display the result of the attack (Lines 9-14). Finally, the CSV file was managed by flushing it. This
prevented it from being slowed down when reading the CSV file because it was accumulating data.

Algorithm 1 Pseudo-code of the detection program

1 P = fork()
2 if P is child process
3 Run PCM with an option of using CSV format
4 else
5 model = Load machine learning model file and initialize.
6 While(always) do
7 I = open and read CSV file
8 Result = model← I
9 if Result is A1
10 Detect Flush+Reload
11 else if Result is A2
12 Detect Flush+Flush
13 else if Result is A3
14 Detect Prime+Probe
15 flush CSV file



Appl. Sci. 2020, 10, 984 11 of 14

6. Evaluation

In this section, we conduct several experiments and validate the effectiveness of the proposed
detection technique. Specifically, we evaluate our detection method by testing whether the machine
learning model was able to detect cache side channel attacks in several environments. In order to
evaluate the performance of the detection program, we set up two execution environments as described
in Section 5.1. In the virtualized environment, we used KVM (Kernel-based Virtual Machine) as
a hypervisor and Linux Ubuntu 18.04 LTS (64 bits) as the guest operating systems. In the single OS
environment, we set up Ubuntu 18.04 LTS as a host operating system. To validate the wide applicability
to various processor models, we performed experiments on six hosts in total with different processor
models including Intel Xeon and Core.

We also needed to evaluate the detection performance in practical environments where the
detection program ran concurrently with other benign applications. In our experiment, we simulated
the activities of benign applications by using a stress-ng tool. The stress-ng incurs stress on various
system components such as CPU, memory, and I/O. As our program attempted to detect malicious
behavior based on cache activities, we used the stress-ng with an option “-c” that incurred stress on
the CPU cache.

The experimental results are presented in Tables 3 and 4, for the virtualized environment and
the single OS environment, respectively. The detection rate was measured by counting the number of
success in detection within five seconds after mounting the cache side channel attack. In the experiment,
we set the time limit of detection to five seconds. This was based on the results of previous work that
studied the minimal amount of time to recover target’s secret through cache side channel attacks [18].
The time in the tables refers to the elapsed time of successfully detecting the attacks.

The detection program was first tested on the Intel Xeon® E5-2620 v4, which was used to build
the model and run the experiments. The htop tool was used to check the CPU usage in real time
of the detection program and to evaluate the program with several applications. According to the
experimental results, high detection rates and a low CPU usage were observed in the E5-2620 v4 to
detect all of the attacks. In order to verify the performance of the detection program for the different
CPUs, we had to learn whether the umask and the event that were used in Table 2 were the same as
in the other microarchitectures. The event and umask of the Broadwell, Kaby Lake, and Coffee Lake
microarchitectures are found in Intel’s Software Developer Manuals. In addition, the values were
checked to make sure they were the same as Table 2.

Table 3. Experiment results in the virtualized environment.

CPU (Codename)
Normal (No Stress) Cache Stress (stress-ng)

Detection
Rate (%)

Time
(second)

CPU
Usage (%)

Detection
Rate (%)

Time
(second)

CPU
Usage (%)

Intel Xeon® E5-2620 v4
2.10 GHz (Broadwell)

98.4% 1.9 0.6% 92.5% 2.1 0.9%

Intel Xeon® E3-1275 v6
3.80 GHz (Kaby Lake)

97.1% 1.9 0.8% 91.9% 2.2 0.9%

Intel Core™ i5-7400
3.00 GHz (Kaby Lake) 96.2% 1.8 0.7% 92.9% 2.3 0.8%

Intel Core™ i7-7700
3.60 GHz (Kaby Lake) 98.7% 1.9 0.8% 92.3% 2.2 1.1%

Intel Core™ i7-9700
3.60 GHz (Coffee Lake) 94.5% 1.7 0.9% 92.9% 2.4 1.1%

Intel Core™ i5-5250U
1.6 GHz (Broadwell) 97% 1.8 0.9% 92.8% 2.2 0.8%



Appl. Sci. 2020, 10, 984 12 of 14

Table 4. Experiment results in the single OS environment.

CPU (Codename)
Normal (No Stress) Cache Stress (Stress-ng)

Detection
Rate (%)

Time
(second)

CPU
Usage (%)

Detection
Rate (%)

Time
(second)

CPU
Usage (%)

Intel Xeon® E5-2620 v4
2.10 GHz (Broadwell)

100% 1.5 0.7% 95% 1.8 0.9%

Intel Xeon® E3-1275 v6
3.80 GHz (Kaby Lake)

99.8% 1.6 0.7% 94.1% 1.9 0.9%

Intel Core™ i5-7400
3.00 GHz (Kaby Lake) 99.6% 1.6 0.6% 94.2% 1.9 0.8%

Intel Core™ i7-7700
3.60 GHz (Kaby Lake) 99.2% 1.7 0.7% 94.3% 1.9 0.9%

Intel Core™ i7-9700
3.60 GHz (Coffee Lake) 99.5% 1.5 0.7% 95.6% 1.8 0.9%

Intel Core™ i5-5250U
1.6 GHz (Broadwell) 100% 1.5 0.6% 95.4% 1.8 0.9%

In order to verify the exact attack only, programs were found that could change the counter values
used in the detection program, but were not attacked. The stress command can overload the Linux
environment, which can assume a situation where many users use the environment to generate many
cache misses. Therefore, it was assumed that the attacks could be applied to the server computer or
the cloud environment that many users used. We also considered how to increase the speculative and
retired branch counter. Hence, a loop code was used that repeated the rand function infinitely. This is
because many loops resulted in a speculative execution and retirement when executing the program.
The detection program was evaluated using a basic machine learning model. However, in the loop
code and stress environment, all three attacks were detected as an attack; however, each attack was
not distinguished. Therefore, additional models were created to distinguish all three attacks in each
experimental environment. The added model used 30 s of the three attack data and was normal for
each environment, which would give the appropriate label to the model. In the loop code environment,
the three attacks could be detected and distinguished with an average 95% probability in all six CPU
environments using the model. However, in environments that contained stress, the machine running
model could not simultaneously detect and distinguish the three attacks due to different overloaded
systems for each CPU. Therefore, 30 s of separate training were conducted in stressful environments
for all six CPUs. This was the same as the previous training sessions, and the detection program was
able to detect all of the attacks with a high probability in an overloaded environment.

This study showed through the evaluation process that the proposed detection programs had
high detection rates. Furthermore, the problem of misdetection rates was solved using a short training
process, which gave additional data in different environments. Therefore, these training processes could
be automated by writing a program that would create an optimal model for the current environment
in about two minutes.

7. Conclusions and Future Work

This article proposed a runtime detection technique for the cache side channel attacks by using
the Intel PCM counters and machine learning algorithms. We showed that the proposed detection
method was effective at detecting cache side channel attacks by using newly identified hardware
counters. These counters included the IPC (Instruction Per Cycle), L3 cache miss, L2 cache miss,
L1 cache miss, and the speculative and retired branch counters. By using hardware performance
counters, we trained the machine learning model to detect attacks targeting the L3 cache. This study
demonstrated that the proposed technique could distinguish all kinds of cache side channel attacks



Appl. Sci. 2020, 10, 984 13 of 14

with more than 90% probability in real time. Besides, we showed that a trained model could detect
many environments based on rigorous evaluation. By training the machine learning model through
a short training process, our method was able to detect all kinds of cache side channel attacks, even
in environments where misdetection would occur. This study used other factors, including cache
misses, to detect the attack process. Therefore, we expect that our technique may be able to successfully
detect any unidentified cache-based side channel attacks. Although our evaluation showed that the
proposed method was feasible in an experimental setting, there are some remaining issues to be solved
for practical deployment. Concerning security, the proposed method will be vulnerable if an attacker
has privileged access to the critical resources (e.g., a CSV file) for running the detection program.
Furthermore, from the performance perspective, the latency in reading and parsing the CSV file will be
intolerable in the practical system where real-time detection is necessary. In our future work, we will
address those remaining problems and continue our study to improve the proposed method.

Author Contributions: J.C. mainly wrote this article. T.K. (Taehun Kim), S.K., M.I., and T.K. (Taehyun Kim)
contributed to this work by conducting experiments and performance analysis. Y.S. revised this article and
contributed to the performance analysis. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the MIST (Ministry of Science and ICT) under the National Program for
Excellence in SW (2017-0-00096) supervised by the IITP (Institute for Information & communications Technology
Planning & Evaluation) and was supported by the IITP grant funded by the Korea government (MSIT) (No.
2019-0-00533, Research on CPU vulnerability detection and validation).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yarom, Y.; Falkner, K. Flush+Reload: A High Resolution, Low Noise, L3 Cache Side-Channel Attack.
In Proceedings of the USENIX Security Symposium, San Diego, CA, USA, 20–22 August 2014.

2. Gruss, D.; Maurice, C.; Wagner, K.; MANGARD, S. Flush+Flush: A Fast and Stealthy Cache Attack.
In Proceedings of the DIMVA’16, Donostia-San Sebastián, Spain, 7–8 July 2016.

3. Liu, F.; Yarom, Y.; Ge, Q.; Heiser, G.; Lee, R.B. Last-Level Cache Side-Channel Attacks are Practical,
Security Privacy. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA,
17–21 May 2015.

4. Lipp, M.; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.; Fogh, A.; Horn, J.; Mangard, S.; Kocher, P.; Genkin, D.;
et al. Meltdown: Reading Kernel Memory from User Space. In Proceedings of the USENIX Security
Symposium, Santa Clara, CA, USA, 15–17 August 2018.

5. Kocher, P.; Horn, J.; Fogh, A.; Genkin, D.; Gruss, D.; Haas, W.; Hamburg, M.; Lipp, M.; Mangard, S.;
Prescher, T.; et al. Spectre attacks: Exploiting speculative execution. In Proceedings of the 2019 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22 May 2019.

6. Bulck, J.V.; Inkin, M.; Eisse, O.; Genkin, D.; Kasikci, B.; Piessens, F.; Silberstein, M.; Wenisch, T.F.; Yarom, Y.;
Strackx, R. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In Proceedings of the USENIX Security Symposium, Santa Clara, CA, USA, 15–17 August 2018.

7. Schwarz, M.; Lipp, M.; Moghimi, D.; Bulck, J.V.; Stecklina, J.; Prescher, T.; Gruss, D. ZombieLoad:
Cross-Privilege Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, London, UK, 11–15 November 2019; ACM: New York, NY,
USA, 2019.

8. Willhalm, T.; Dementiev, R. Intel®Performance Counter Monitor—A Better Way to Measure CPU Utilization.
Available online: https://software.intel.com/en-us/articles/intel-performance-counter-monitor (accessed on
16 August 2012).

9. Chiappetta, M.; Savas, E.; Yilmaz, C. Real time detection of cache-based side channel attacks using hardware
performance counters. Appl. Soft Comput. 2016, 49, 1162–1174. [CrossRef]

10. Mushtaq, M.; Akram, A.; Muhammad, K.B.; Rao, N.B.R.; Lapotre, V.; Gogniat, G. Run-time Detection
of Prime+Probe Side-Channel Attack on AES Encryption Algorithm. In Proceedings of the 2018 Global
Information Infrastructure and Networking Symposium, Thessaloniki, Greece, 23–25 October 2018.

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://dx.doi.org/10.1016/j.asoc.2016.09.014


Appl. Sci. 2020, 10, 984 14 of 14

11. Mohammad-Mahdi, B.; Thibaut, S.; Marc, L.; Sudholt, M.; Menaud, J. Cache-based side channel attacks
detection through Intel Cache Monitoring Technology and Hardware Performance Counters. In Proceedings
of the 2018 Third International Conference on Fog and Mobile Edge Computing, Barcelona, Spain, 23–26 April
2018.

12. Gulmezoglu, B.; Moghimi, A.; Eisenbarth, T.; Sunar, B. FortuneTeller: Predicting Microarchitectural Attacks
via Unsupervised Deep Learning. arXiv 2019, arXiv:1907.03651.

13. Gruss, D.; Maurice, C.; Mangard, S. Rowhammer.js: A remote software-induced fault attack in javascript.
In Detection of Intrusions and Malware, and Vulnerability Assessment; Springer: Berlin/Heidelberg, Germany,
2016; pp. 300–321.

14. Memisevic, R.; Zach, C.; Pollefeys, M.; Hinton, G. Gated Softmax Classification. In Proceedings of the
Advances in Neural Information Processing Systems 23, Vancouber, BC, Canada, 3 June 2010.

15. Cho, J.H.; Kim, T.H.; Shin, Y.J. Real-time detection on FLUSH+RELOAD attack using Performance Counter
Monitor. KIPS Trans. Comput. Commun. Syst. 2019, 8, 151–158.

16. Yarom, Y. Mastik: A Micro-Architectural Side-Channel Toolkit. Available online: https://cs.adelaide.edu.au/

~{}yval/Mastik/ (accessed on 17 August 2016).
17. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International

Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.
18. Irazoqui, G.; Inci, M.S.; Eisenbarth, T.; Sunar, B. Wait a Minute! A Fast, Cross-VM Attack on AES, Research

in Attacks Intrusions and Defense; Springer International Publishing: Berlin/Heidelberg, Germany, 2014;
pp. 299–319.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://cs.adelaide.edu.au/~{}yval/Mastik/
https://cs.adelaide.edu.au/~{}yval/Mastik/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Background 
	Cache Side Channel Attacks 
	Flush+Reload Attack 
	Flush+Flush Attack 
	Prime+Probe Attack 

	Performance Counter Monitor 
	Softmax Classification 

	Identifying New Performance Counters 
	Real-Time Detection Using PCM 
	Overview and Threat Model 
	The proposed Detection Method 

	Evaluation 
	Conclusions and Future Work 
	References

