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Abstract: Nowadays, security guard patrol services are becoming roboticized. However, high
construction prices and complex systems make patrol robots difficult to be popularized. In this
research, a simplified autonomous patrolling robot is proposed, which is fabricated by upgrading
a wheeling household robot with stereo vision system (SVS), radio frequency identification (RFID)
module, and laptop. The robot has four functions: independent patrolling without path planning,
checking, intruder detection, and wireless backup. At first, depth information of the environment is
analyzed through SVS to find a passable path for independent patrolling. Moreover, the checkpoints
made with RFID tag and color pattern are placed in appropriate positions within a guard area. While
a color pattern is detected by the SVS, the patrolling robot is guided to approach the pattern and
check its RFID tag. For more, the human identification function of SVS is used to detect an intruder.
While a skeleton information of the human is analyzed by SVS, the intruder detection function is
triggered, then the robot follows the intruder and record the images of the intruder. The recorded
images are transmitted to a server through Wi-Fi to realize the remote backup, and users can query
the recorded images from the network. Finally, an experiment is made to test the functions of the
autonomous patrolling robot successfully.
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1. Introduction

Home security has always been an issue for everyone. However, hiring security guards involves
high costs, and also issues of safety about acquaintances. On the other hand, sweeping robots have
gradually become commonplace in every home environment. If there is a simple and low-cost method
that can increase the patrol function on traditional sweeping robots, it will effectively solve the problem
of home security. The patrol system is highly dependent on the function of simultaneous localization
and mapping (SLAM), and it also needs rapid SLAM execution efficiency. Therefore, much research has
been devoted to improving the working efficiency of SLAM [1–6]. Lee, C.W. et al. proposed a variable
size rectangle region to replace the traditional grid method of SLAM, and the proposed method reduces
the data storage capacity of built maps [1]. Dwijotomo, A. et al. use the adaptive multistage distance
scheduler (AMDS) method to improve the working speed of SLAM with large map size. [2]. Li, X. et al.
proposed a monocular vision fast 3D SLAM system by using a fusion of localization, mapping, and
parses scenes [3,4]. In addition, Valiente, D. et al. also used an omnidirectional monocular sensor to
improve the stability of SLAM [5]. Muñoz–Bañón, M.Á. et al. proposed a novel navigation framework
based on the robot operation system (ROS), which can separate a mission into several sub-issues
to solve them to improve the SLAM working efficiency [6]. Moreover, numerous researchers have
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addressed the issue of autonomous patrolling robots [7–9]. Li et al. employed a Kinect depth sensor
with the type-1 and type 2 fuzzy controller to overcome the problem of exploring the environment [7].
In addition, they also used ultrasonic sensors and fuzzy sensor fusion technology to fabricate a map of
the environment [8]. Cherubini et al. used LiDAR and a Kalman-based algorithm for navigation [9].
In the above study, ultrasonic sensors are inexpensive but lack accuracy, whereas LiDAR is accurate
but expensive. Thus, we selected depth sensors in the current research.

On the other hand, given that the accuracy of SLAM is based on the precision of sensors, and
the precision is sometimes related to the price of sensors, several researches are focus on how to cost
down patrol systems [10–23]. Jiang, G. et al. propose a graph optimization-based SLAM framework
through combining a low-cost LiDAR and an RGB-D camera to improve the defect of accumulated
error for building large maps only by low-cost LiDAR [10–13]. Same for in order to reduce the cost of
using high prices LiDAR, Jiang, G. et al. propose a fast Fourier transform-based scan-match method to
enhance the accuracy and resolution of a low-cost LiDAR [14]. Moreover, Shuda L. used only an RGB-D
camera to realize the SLAM application [15–17]. For more, Gong Z. et al. combine a cheap LiDAR
system and crash sensors with a NVIDIA Jetson tk1 module on a wheeling robot to fabricate a low
cost patrolling platform, and using tiny SLAM algorithm on the platform to achieve a real-time indoor
mapping [18]. Anandharaman S. et al. use a monocular camera with large-scale direct monocular
SLAM (LSD-SLAM) method on unmanned aerial vehicle to realize a low-cost navigation and mapping
system [19]. Xi W. et al. use RPLiDAR on iRobot with Lenovo G470 laptop to build an experimental
facility. The one dimensional Fourier transformation is used to build a map from cloud dots measured
which is measured by RPLiDAR [20]. Fang Z. et al. use a 2D laser scanner which is driven by a stepper
to make a SLAM system. They reduce the local drift of measured cloud data by using a coarse-to-fine
graph optimization method of a local map, and solve the global drift problem by an explicit loop
closing heuristic (ELCH) and a general framework for optimization (G2O) methods [21]. Bae H. et al.
use Bluetooth low energy (BLE) with constrained extended Kalman filter to realize a low-cost indoor
positioning system [22], and DiGiampaolo E. et al. also use passive UHF-radio frequency identification
(RFID) to aid the localizing accuracy of SLAM [23].

Moreover, several proposed methods focus on how to locate and find the patrol path in a known
environment. Chen et al. proposed the SIFT method to define the features of images by which to guide
a robot while patrolling [24]. Song et al. used multiple transient radio sources to locate the mobile
robot and plan a path, and using the Monte Carlo method to solve the problem of capturing and
analyzing the radio signals [25]. Chen, X. et al. propose a sound source based landmark for SLAM [26].
A robot with a built-in audio source is used in the research to interact with microphone arrays which
are at known coordinates in the environment to locate the robot itself. Wang, Z. et al. propose an
IMU-Assisted SLAM method to improve the localization accuracy of 2D LiDAR by using extended
Kalman filter [27]. An V. et al. propose a path planning method that a patrol robot can re-plan a patrol
path from sufficient number of observation points while meets dynamic obstacles [28]. However,
the expense of setting up and maintaining numerous signal emitting sources led us to select the image
analysis method to locate a path in this study. Moreover, we referenced the work of Huang et al. [29]
and Yu et al. [30] to realize the functions of patrolling check-ins and intruder detection. In the research
of Huang et al., the RFID indoor positioning system was visualized using geographic coordinates.
They also used the architecture of an RFID indoor positioning system for the installation of checkpoints.
In the research of Yu et al., they used an infrared sensor array to enable mobile robots to track and
follow humans.

Finally, besides functions of SLAM for patrolling, the system outlined by Hung et al. [31] is used
in our research for the backing up of patrolling data and making internet queries. Though web service
is not the latest technology, it remains useful for regional network communication. To reduce data
transmission, Lian et al. propose an embedded spatial coding method, which assigns weights to objects
of interest [32]. In this study, images of intruders are encoded and then transmitted for backing up.
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The remainder of this paper is organized as follows. In Section 2, we introduce the system
architecture. In Section 3, the algorithm used to direct all patrolling functions is explained. Experiment
results and a brief discussion are presented in Section 4. Conclusions are made in Section 5.

2. System Architecture

The three basic components of the system include a patrol robot, server, and client, as shown in
Figure 1. The system architecture of each component is outlined in the following.
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Figure 1. System architecture of autonomous patrolling robot.

2.1. Patrol Robot

The patrol robot comprises of a processor, wheeled robot, and stereo vision system (SVS). An ASUS
K401D notebook running Windows 7 was used as a processor. USB-connected ASUS Xtion pro live was
used as an SVS to provide color images and depth information. Owing to that the depth information
provided by SVS is based on its active infrared sensor, and the sensor is very sensitive to sun ray,
the proposed system in this research just can be used indoors. The wheeled robot was built by
integrating a KOBUKI robot, a product that is designed for programmable control without default
functions, and an RFID system using an Arduino Uno R3 controller. Depth information of the
environment captured by the SVS is analyzed by the processor to find a suitable path. The direction
of movement is transformed into commands controlling the robot. The SVS continues monitoring
the environment in order to make adjustments to the path in real-time. The cliff sensor, wheel drop
sensor, and bumpers of the KOBUKI are also used to modify the patrol path. The SVS also seeks out
inspection points and detects intruders. The robot is programmed to approach the inspection points
and follow intruders until they disappear. All of this information is transmitted to a database via Wi-Fi.
The structure of the proposed robot is presented in Figure 2.
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Figure 2. Proposed patrol robot.

2.2. Server

A server is used to provide the Windows communication foundation (WCF) web-service and a
database for remote image backup. We developed three web-services: upload, history, and real-time.
The upload web-service is used for the transmission of information to the server, including inspection
point number, check-in time, time of intruder detection, and images of intruder. Remote users can
access historical data by scan time and monitor the robot in real-time. The database was built using
Microsoft SQL server 2008, and the web-service was built using Visual Studio C# 2010.

3. Materials and Methods

The robot first searches for a passable path using depth information from the SVS. While on patrol,
the robot follows any detected intruder, takes an image of the individual, and uploads the images in
real-time. The robot approaches all detected inspection points and signs in electronically, whereupon
the inspection point number and sign-in time are uploaded. When all of the inspection points have
been passed, that particular patrolling task is complete. Figure 3 presents a flowchart showing the
process of autonomously patrolling a site. In the following section, we introduce the four functions
controlled by the proposed algorithm.
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3.1. Imaging Space Conversion and Patrol Path Determination

The proposed SVS is mounted on the robot parallel to the ground and separated by 212 mm.
The field of view (FOV) is 45 degrees in the vertical and 58 degrees in the horizontal, respectively, as the
plan and side views of the robot depicted in Figure 4a. The height and width of the visible windows
are as follows: 1000 mm from SVS (828 mm × 1109 mm), 2000 mm from SVS (1657 mm × 2217 mm),
and 3000 mm from SVS (2485 mm × 3326 mm), as shown in Figure 4b. The FOV is resolved
to 640 × 480 pixels, and each pixel is described with RGB color space and the world coordinates[

xi, j yi, j di, j
]
, 0 ≤ i ≤ 640, 0 ≤ j ≤ 480, where xi, j, yi, j, and di, j are the width, height and depth from

the center of SVS, respectively.
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Figure 4. (a) The plan and side views and (b) the field of view (FOV) of stereo vision system (SVS) at
various distances of the robot.

In order to make the patrol path random, depth information of the image is analyzed for searching
possible patrol paths in this research, instead of using existing path planning. In addition, to reduce
the computation required for processing information in the identification of a suitable path, a region of
interest (ROI) is defined from the following image coordinates (pixel number): (32,290) to (608,340),
as shown in Figure 5a. The ROI is chosen based on the height where the SVS is installed and the width
of the robot. Figure 5b presents a corresponding color image with ROI. Assume that i and j are the
horizontal and vertical coordinates on the ROI image plane, where 32 ≤ i ≤ 608 and 290 ≤ j ≤ 340.
In order to find a possible path region in ROI, the minimum depth at each column of ROI is selected
as D =

[
d1 d2 · · · dn

]
at first. The size thresholds of a path are defined as follows: depth dT

(1500 mm) and width wT (3520 mm). In the following, four steps of suitable path identification
are described:

1. Initially, compare each dn in D with the threshold of depth dT. The dn which are larger than dT

continuously are selected as a sub-section Dk, which Dk ∈ D.
2. Select the largest section Dk of D, and calculate the corresponding real width wk of the selected

section. Assume the selected section Dk =
[

d
k
1 d

k
2 · · · d

k
m

]
, m ≤ n, and the width of the

corresponding world coordinates are
[

xk1
i, j xk2

i, j · · · xkm
i, j

]
, then the width wk of the section Dk

can be estimated as follows:

wk =

m
640

(
d

k
1 + d

k
m

)
π+

(
xkm

i, j − xk1
i, j

)
2

, (1)



Appl. Sci. 2020, 10, 974 6 of 17

3. As long as the calculated width wk exceeds width threshold wT, then this route (the region of
selected section Dk) is adopted as a suitable path. The angle θd from the center of the image
plane (the head of the robot) to the center of the path is then calculated to control the rotation of
the robot. Assume ic is the center of FOV, and id is the middle of the selected section Dk on the
horizontal axis of image coordinate, then the angle between the head of the robot and the center
of the desired path can be calculated as follows:

θd =
( id − ic

640

)
·58

◦

. (2)

4. If the analysis results fail to provide a viable path, the robot rotates counterclockwise (CCW) in
search of another route.
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3.2. Signing in at Inspection Points

The patrolling of the robot does not only follow the path which is determined from the depth
image, but also guided to the specified location by detecting inspection points. The inspection points
are made by a colored marker and an RFID tag. As shown in Figure 6a, the RFID tag as an inspection
point is mounted on walls 12 cm above the ground in accordance with the RFID sensor of the robot.
This location was marked using a red circular patch (diameter 4.8 cm) at 21 cm above the ground for the
SVS system of robot to identify while the robot moving closer to the inspection point. The identification
process is divided into two steps, color and shape recognition. In order to prevent the influence of
light condition, color images from the SVS is transferred from RGB (red, green, and blue) to HSV
(hue, saturation, and value) color space at first. Assume pr, pg, pb are the values in RGB color space
per pixel,

[
pr pg pb

]
∈ [0, 1], and pmax, pmin are the maximum and minimum one in

[
pr pg pb

]
,

then the values in HSV color space per pixel can be calculated from:

ph = cos−1


0.5

(
2pr − pg − pb

)
√(

pr − pg
)2
+ (pr − pb)

(
pg − pb

)
 (3)

ps =

 0 , if pmax = 0
1− pmin

pmax
, else (4)

pv = pmax. (5)

The transferred image is then binarized by the threshold which is defined as 0◦ ≤ ph ≤ 10◦,
33.3% ≤ ps ≤ 56.9%, and 29.4% ≤ pv ≤ 100% to filter the red color. After the color recognition process,
the circle Hough transform (CHT) function of the openCV library is then used for shape recognition.
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Circles with a radius between 22 to 70 pixels in the binarized images are selected as candidates, and
the biggest one is considered as an inspection point, such as depicted in Figure 6b.

While the inspection point is detected, the function of the robot will change from patrolling to
signing. Moreover, the algorithm used for signing is designed by controlling the robot to align the
center of the detected circle. Assume the image coordinate of the detected circle center in horizontal is
icc, and the edges of the center region are ilT and irT. If icc is less than ilT, then the robot is turned CCW
for 15 degrees. On the other hand, if icc is larger than irT, then the robot is turned clockwise (CW) for 15
degrees. The 15 degrees of turning is limited by the minimum movement of the robot. As long as the
value of icc falls between ilT and irT, then the robot moves toward the circle marker until the RFID tag
is detected. This algorithm is described in (6). Based on experiment results, we set the values of ilT and
irT to 310 and 330, respectively. 

Turned CCW for 15
◦

, if icc < ilT
Turned CW for 15

◦

, if icc > irT

Go forward, if ilT ≤ icc ≤ irT

, (6)

When the robot is sufficiently close to the RFID sensor to detect the RFID tag, the tag ID and
sign-in time are recorded, and the signing task is deemed to have been completed. Based on the
left-hand-rule, the robot then rotates CCW until the circle target is outside the viewing window,
whereupon it continues its patrolling task.
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Figure 6. (a) An inspection point marker with radio frequency identification (RFID) tag and (b) the
corresponding binarized results from SVS.

3.3. Detection and Tracking of Intruders

When an intruder appears in the FOV of the SVS, the skeleton of the individual is analyzed to
identify its feature. The functions of the openNI library is used for skeleton detection, and the identified
feature is composed of joints and limb links, as shown in Figure 7a. Given the height of the intruder is
about 170 cm, then the proposed distance between the intruder and the robot (or the SVS) for detection
is 2500 mm to 3000 mm. In this range, the full body of the intruder can be viewed in the field of view
(FOV) of SVS for skeleton analysis without being too close or too far. In order to track the intruder,
the center between left and right hip nodes is used to estimate the orientation and the distance between
the robot and the intruder. Assume that the image coordinate in horizontal and depth of the left and
right hip nodes are (ilh irh) and (dlh drh), respectively. Thus, the tracking target of the intruder and its
distance are defined as ich = (ilh + irh)/2 and dch = (dlh + drh)/2. The detection results are presented
in Figure 7b. In addition, while an intruder is detected, the function of the robot is changed from
patrolling to tracking until the intruder disappears from the FOV of SVS.
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On the other hand, the tracking algorithm is similar to the inspection point approach algorithm,
except for the near and far threshold values of tracking length, dkn and dk f . At first, the robot is turned
until ilT ≤ ih ≤ irT. As long as the value of dch exceeds the far threshold value of tracking length dk f ,
then the robot moves forward; i.e., until the value of dch is less than dk f . Conversely, the robot moves
backward until dch is larger than dkn. If the value of dch falls between dkn and dk f , then the robot remains
in the same position. The code of the tracking algorithm is shown in algorithm 1. Moreover, to view the
intruder fully, the values of dkn and dk f are set to 2500 mm and 3000 mm, respectively. The robot also
records images of intruders while tracking them, and uploads the images to a server via the upload
web-service. When the target moves beyond the viewing window, the robot ceases its tracking task
and returns to its patrol task.

Algorithm 1 Tracking of intruders.

1: Detecting the skeleton of an intruder
2: Getting the image coordinates and distance of the left and right hip,

(
ilh irh

)
and

(
dlh drh

)
3: Calculating the tracking target, ich = (ilh + irh)/2, and dch = (dlh + drh)/2
4: if ich < ilT then
5: The robot is turned CCW for 15

◦

6: else if ich > irT then
7: The robot is turned CW for 15

◦

8: else if ilT ≤ ich ≤ irT then
9: If dch > dk f then
10: The robot moves forward
11: else if dch < dkn then
12: The robot moves backward
13: else if dkn ≤ dch ≤ dk f then
14: The robot remains in the same position
15: end if
16: end if

3.4. Wireless Backup and Query Service

Three web-service functions (upload, history and real-time information service) were installed on
the server for the remote backup of monitoring data and the submission of queries. The upload service
is used for the transmission of data from the robot to the server, whereas the other two services enable
remote users to submit queries pertaining to historical or real-time monitoring data held on the server.
The robot backs up information when signing in at inspection points and when an intruder is detected.
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The processor first connects to a wireless access point using a Wi-Fi module. The human–machine
interface (HMI) contacts the upload web service to transmit the tag number and sign-in time to the
server. After receiving the data, the server records the information within a table in the SQL database.
When an image of an intruder is captured by the robot, the image data is encoded to base64 format
and then transmitted (along with the time of detection) to the upload service. The base 64 data is then
decoded back into an image by the server, whereupon it is saved in PNG format within a specific folder.
The image file is named using the time of detection to facilitate subsequent queries. A client program
was also developed to assist in data queries. This program provides real-time monitoring data as
well as historical data by accessing the real-time information service or history service, respectively.
The real-time information service searches for the latest data within the database, whereas the history
service searches for data pertaining to the specific period of time defined by the user. The architecture
of the data remote backup and querying system is presented in Figure 8.
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4. Experiment and Results

An environment based on the proposed functions was created to verify the efficacy of the proposed
algorithm. The environment was a 9100 mm x 5100 mm square space with several pieces of office
furniture located in the center, and inspection points were set in each corner of the room, as shown
in Figure 9. At the beginning of the experiment, the robot was placed along a wall. Patrolling began
when a user pressed the start button on the robot’s HMI. The sequence of the patrol task is outlined in
the following.
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1. From the start point until 21 s, the robot searched for a passable path and followed the
resulting path.

2. At 31 s, the 1st inspection point marker was detected by the robot, to which the robot approached.
3. At 44 s, the robot reached the 1st inspection point. The RFID tag number was recorded by the

robot, thereby completing the 1st inspection point sign-in.
4. From 44 s to 54 s, the robot rotated CCW in search of its next route to follow.
5. From 54 s to 74 s, the robot moved from the 1st to the 2nd inspection point.
6. At 84 s, the robot located the 2nd inspection point. The center of the marker image was not located

in the target region of the image plane (between 310 and 330 pixels); therefore, the robot rotated
until the image marker was near the center of the image plane (at 94 s), as shown in the figure.

7. At 94 s, the robot proceeded forward to sign-in at this inspection point at 101 s, whereupon it
rotated and began patrolling from the 2nd inspection point to the 3rd inspection point (109 s to
the 139 s).

8. The 3rd and 4th inspection points were identified at 159 s and the 203 s, respectively. After
checking-in at the final (4th) inspection point, the robot continued patrolling for approximately
30 seconds before halting.

A color image and the corresponding depth information from the SVS of the above
procedure are recorded throughout the experiment, as shown in Figures 10 and 11, and Video S1
(Supplementary Materials).
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The depth information D of the ROI was also recorded to analyze the trajectory of the robot while
on patrol. In order to fix the distortion caused by size-changing of FOV in different distance from SVS,
the recorded data is transformed by Equation (2) and presented in the form of polar space, as shown in
Figure 12. The FOV is depicted with a blue dashed line, and the threshold of depth dT is shown with a
red dashed line. In addition, the color scale is used to present the values of each dn in D. The analysis
results are listed in the following:

1. At 11 s and 129 s, the center of the section Dk was near the origin of the polar space, which means
that the robot was moving toward the center of the patrol path.

2. Between 21 s and 31 s, the robot was approaching the 1st inspection point, as indicated by the
decrease in recorded depth.

3. While the robot was signing in at the 1st inspection point (at 44 s), the distance between the
wall and the robot was less than the minimum distance required by the SVS for detection. Thus,
no depth information appears in the polar space during this time. Similarly, the depth values
disappeared at 94 s, 159 s, and 203 s, corresponding to the sign-in process at the 2nd, 3rd, and 4th
inspection points.

4. After signing in, the robot rotated CCW to search for a suitable path, whereupon the depth values
increased considerably from the left side to the right side from 44 s to 64 s. This is similar to the
records from 94 s to 119 s, 159 s to 173 s, and 193 s to 216 s.

As shown in Figure 13, the robot followed the proposed algorithm in identifying patrol paths and
signing in at inspection points.
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There were eight experiments made for patrolling; four of them were patrolling with inspection
points placed, and the others did not. The robot started patrolling from the same location in each
experiment. The patrol time comparison of each experiment is shown in Table 1. The average time of
patrolling with/without inspection points was about 206/205.75 sec, respectively. Though the average
time of patrolling with the inspection point was larger than the other one, however, the minimum
elapsed time of the former can be reduced to only 194 sec. On the other hand, the maximum elapsed
time of the latter was 260 sec, which was larger than any elapsed time of the experiment with inspection
points placed. This is because the proposed system runs the sing-in procedure while inspection points
are placed in the patrol environment, and the sing-in process took about 5 to 8 sec per inspection point.
In addition, without placing inspection points, the robot can only used the first method and the built-in
obstacle avoidance function to find the patrol path. While the robot was moving to corners of a room
and could not find a way out, this caused time-wasting for backing to patrolling.

Table 1. The patrol time comparison of each experiment.

Inspection Points
Placed

Starting Time
(hh:mm:ss)

Stopping Time
(hh:mm:ss)

Elapsed
Time (s)

Average
Time (s)

Yes

10:53:55 10:57:17 202

206
15:22:02 15:25:48 226
17:40:33 17:43:55 202
18:11:19 18:14:33 194

No

13:41:57 13:44:40 163

205.75
16:38:24 16:41:56 212
16:54:04 16:57:12 188
09:24:43 09:29:03 260
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Several other experiments were conducted to verify the efficacy of the intruder detection function.
Figure 13 presents recorded images of the intruder in one of the experiments. While the robot was
executing its patrol task, an intruder suddenly ran into the FOV of the SVS (at 10 s), whereupon the
SVS detected the skeleton of the intruder (at 13 s). The robot simultaneously ceased its patrol task and
initiated the intruder tracking task. From 19 s to 43 s, the intruder was pacing around, during which
time the robot rotated to keep the intruder within the center region of the image plane. As the intruder
was walking backward (from 43 s to 49 s), the robot followed in order to maintain the depth value of
tracking target dh between the near-threshold value dkn and far threshold value dk f . In this experiment,
the robot proved highly effective in using the proposed algorithm to detect, identify, and track the
intruder. Finally, the recorded images can be queried from a database by the graphic user interface
(GUI) built in the user client.
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5. Conclusions

This paper outlines the architecture of a novel robot designed to patrol in the workspace. The robot
has four functions: independent patrolling, signing in at inspection points, the detection and tracking
of intruders, and remote backup of data to facilitate real-time monitoring and user queries. The robot
receives from an SVS depth information pertaining to the environment for use in the identification
of a suitable path to follow. Inspection point markers encountered along this path cause the robot
to veer off the path to check-in. Upon arrival at the inspection point, the number of the RFID tag at
that point is recorded. After signing in, the robot rotates CCW and continues its patrol task. In the
event that an intruder appears within the FOV of the SVS, the skeleton of the intruder is identified
according to the function of the openNI library. The intruder is subsequently tracked and imaged until
the intruder moves beyond the viewing window. All data recorded during this encounter is uploaded
to the server, to enable monitoring in real-time and facilitate subsequent queries of historical data.
Several experiments verify the efficacy of the proposed algorithm.



Appl. Sci. 2020, 10, 974 14 of 17

For comparison to other guard solutions, e.g., security cameras, as mentioned in the introduction,
sweeping robots have gradually become commonplace in every home or workspace environment.
If there is a simple and low-cost method that can increase the patrol function on traditional sweeping
robots, it will effectively solve the problem of home security. In addition, the prices of the retrofit
devices (SVS and RFID sensors, etc.) on sweeping robots of the proposed system are lower than N.T.D.
5000, but the prices of a security camera is generally higher than that.

Secondary, mobility and randomness are the two key points of the patrol system. For the proposed
system, there are two functions can achieve these objectives, one is path-free autonomous patrol, and
the other is intruder following. The path-free autonomous patrol function creates a random patrol
path which can avoid intruders to find possible flaws for planned paths in advance, and the intruder
following function can avoid blind spots caused by furniture, and then record more image information
of intruders. On the other hand, a security camera is usually installed at a fixed location, and its
rotation degree is limited. Therefore, more cameras need to be installed to cover all monitoring ranges,
and lack of mobility.

Moreover, information security and privacy are issues that everyone values in recent years.
For the proposed system, the user cannot get the image information directly from the patrol robot.
The recorded images are saved in a server at first. Users need to login the server to get access to watch
the records. Generally, a server has a higher level of information security protection. On the other
hand, a security camera has a convenience that users can monitor remotely and directly. However,
now a day, “security camera has been hijacked or hacked” is heard from time to time, and these events
will cause users to concern about the security of the patrol by security camera.

Summarily, the proposed system is not convenient for users to view patrol results, however, it has
a lower price, better path randomness, better mobility, and more information security and privacy.
The comparison results are shown in Table 2.

Table 2. The comparison between the proposed system and other solutions.

Proposed System Other Solutions
(e.g., Security Camera)

Price V X
Path Randomness V X

Mobility V X
Convenient X V

Security and Privacy V X

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/3/974/s1,
Video S1: The recorded color images and the depth information from the SVS during the patrol task.
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Nomenclature

xi, j Distance from the center of SVS on the x-axis (width) at pixel (i, j)
yi, j Distance from the center of SVS on the y-axis (height) at pixel (i, j)
di, j Distance from the center of SVS on the z-axis (depth) at pixel (i, j)
dT Threshold of depth used to determine a possible path.
dn Minimum depth at n-th column of ROI.
D set of dn

Dk kth set of dn which are larger than dT continuously, Dk ∈ D

d
k
m mth element of Dk

wT Threshold of width used to determine a possible path.
wk Width at the range of a selected Dk in the real world.
ic The center of FOV on the horizontal axis of the image coordinate
id The middle of the selected section Dk on the horizontal axis of image coordinate
icc The detected circle center on the horizontal axis of image coordinate
ilT Left edge of the center region on the horizontal axis of image coordinate
irT Right edge of the center region on the horizontal axis of image coordinate
ilh Left hip node on the horizontal axis of image coordinate
irh Right hip node on the horizontal axis of image coordinate
dlh Depth of the left hip node
drh Depth of the right hip node
ich The center between the left and right hip node on the horizontal axis of image coordinate
dch The distance from the center between the left and right hip node to the SVS
dkn Near threshold values of tracking length
dk f Far threshold values of tracking length
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