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Abstract: Data imbalance during the training of deep networks can cause the network to skip
directly to learning minority classes. This paper presents a novel framework by which to train
segmentation networks using imbalanced point cloud data. PointNet, an early deep network used
for the segmentation of point cloud data, proved effective in the point-wise classification of balanced
data; however, performance degraded when imbalanced data was used. The proposed approach
involves removing between-class data point imbalances and guiding the network to pay more
attention to majority classes. Data imbalance is alleviated using a hybrid-sampling method involving
oversampling, as well as undersampling, respectively, to decrease the amount of data in majority
classes and increase the amount of data in minority classes. A balanced focus loss function is also
used to emphasize the minority classes through the automated assignment of costs to the various
classes based on their density in the point cloud. Experiments demonstrate the effectiveness of
the proposed training framework when provided a point cloud dataset pertaining to six objects.
The mean intersection over union (mIoU) test accuracy results obtained using PointNet training were
as follows: XYZRGB data (91%) and XYZ data (86%). The mIoU test accuracy results obtained using
the proposed scheme were as follows: XYZRGB data (98%) and XYZ data (93%).

Keywords: deep learning; imbalanced data; hybrid-sampling; balanced focus loss function

1. Introduction and Motivation

The data imbalance commonly encountered in deep network training can have a profound effect
on the training process and detection capability of the network [1]. Data imbalance refers to situations
where the classes are not represented equally [2]. Specifically, the imbalance can be found in the number
of data points pertaining to separate objects in a given point cloud. Furthermore, the number of data
points pertaining to the objects differs significantly from the number of data points pertaining to
the background. Under these conditions, the network often learns to detect only the background and
large surface objects; i.e., it tends to skip smaller objects.

Growing interest in deep learning has brought the problem of data imbalance to the foreground,
particularly in the field of data mining [3], medical diagnosis [4], the detection of fraudulent calls [3],
risk management [5–7], text classification [8], fault diagnosis [9,10], anomaly detection [11,12], and face
recognition [13]. Conventional machine learning models, i.e., non-deep learning, have been extensively
applied in the study of class imbalance; however, there has been relatively little work using deep
learning models, despite recent advances in this field [3,14]. For the imbalanced data problem,
there were three main methods: data-based, algorithm-based, and ensemble methods.
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1.1. Data-Based Methods

Data-based methods use sampling methods to rebalance the distribution of classes during
pre-processing. This involves either oversampling instances of the minority class or undersampling
instances of the majority class. Oversampling involves the random duplication of instances from
minority classes [15–17]. Undersampling involves the random removal of instances from majority
classes. Schemes that use oversampling in conjunction with undersampling are referred to as
hybrid-sampling. These techniques are meant to produce a balanced dataset in which classifiers
would tend not to be biased toward one class or another. However, in practical situations, this is
not always the case. Oversampling minority classes can lead to overfitting through the duplication
of instances drawn from an already small pool. Undersampling majority classes often leads to
the exclusion of important instances required to differentiate between two classes. This has led
researchers to develop more complex methods referred to as synthetic minority oversampling
techniques (SMOTE) [18,19]. This approach can reduce the risk of data loss and overfitting; however, it
is still prone to over-generalization or variance [20,21].

1.2. Algorithm-Based Methods

Algorithm-based methods emphasize minority classes. One popular strategy is cost-sensitive
learning [22–25], in which a cost of variable value is assigned to different classes. In regular learning,
the equal treatment of all misclassifications can lead to the problem of imbalanced classification,
due to the lack of an additional reward for identifying a minority class over a majority class.
Cost function-based methods overcome this issue using a function C(p, t) that specifies the cost
of misclassifying an instance of class t as class p. This makes it possible to penalize misclassifications
of a minority class more heavily than those of the majority class with the aim of increasing the true
positive rate. One common scheme involves assigning a cost equal to the inverse of the dataset
proportion attributable to a given class. This leads to an increased degree of penalization with a
decrease in class size.

Another strategy is the threshold-moving technique in which the decision threshold is shifted
in a manner that reduces bias towards the negative class [15–17,26]. It applies to classifiers that,
given an input tuple, return a continuous output value. Rather than manipulating the training tuples,
this method returns a classification decision based on output values. In the simplest form, in tuples for
which f (X) > t, and t is considered positive, all other tuples are considered negative.

1.3. Ensemble Methods

Ensemble methods involve the combination of data- and algorithm-based methods to overcome
the problem of class imbalance [27–30]. One strategy involves data sampling to reduce class noise and
imbalance, followed by cost-sensitive learning or thresholding, to enable a further reduction in bias
towards the majority group. Several techniques presented in Reference [22] combine ensemble methods
with sampling and cost-sensitive learning. Liu et al. [23] proposed two algorithms, EasyEnsemble
and BalanceCascade, which learn multiple classifiers by combining subsets of the majority group
with those of the minority group, to create pseudo-balanced training sets for each individual classifier.
SMOTEBoost [24] introduced synthetic instances using SMOTE data preprocessing algorithms.
The weights of the new instances in a dataset are proportional to the number of instances. RUSBoost [25]
performs similarly to SMOTEBoost, but it removes instances from majority classes by random
undersampling datasets in each iteration. Thus, it does not need to assign new weights to new instances.
DataBoost-IM [31] and JOUS-Boost [32] are both examples of combining sampling with ensembles.
DataBoost-IM combines AdaBoost.M1 algorithm with a data generation strategy. It identifies hard
examples and then carries out a re-balanced process.

Sun et al. [33] introduced three cost-sensitive boosting methods (AdaC1, AdaC2, and AdaC3),
which introduce cost functions to update the weights of the AdaBoost algorithm to increase the impact
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of the minority group. Sun showed that the ensembles boosted in a cost-sensitive manner outperformed
conventional boosting methods in most cases. The drawback of this method is the complexity of
the cost function, which leads to a low computation speed in implementations. Bagging-based
ensemble methods are developed to deal with the imbalanced problem because of its simplicity and
good generalization. The concept is to obtain a useful classifier in each iteration by memorizing
the importance of the diversity. In addition, some prominent methods are proposed, such as
OverBagging [34], UnderBagging [35], and IIVotes [36]. Galar et al. [37] reviewed the performance and
complexity of some ensemble methods for the imbalanced problem. The RUSBoost and UnderBagging
methods seem to be more robust than others. However, considering the computational complexity,
RUSBoost is the most appropriated ensemble method. In addition, bagging techniques are commonly
used because they are not only easy to develop, but also powerful when dealing with imbalanced
classes. In the above-mentioned methods, models trained using an imbalanced dataset presented
a pronounced inclination toward classes as the accuracy was refined using conventional learning
algorithms. Thus, some researchers developed inductive classifiers to decrease the number of
training-based faults by overlooking classes with a limited number of instances [38].

Inspired by ensemble methods, we developed a two-stage scheme to deal with the data
imbalanced problem in the segmentation task using the PointNet network [39]. We used the PointNet
deep network as the learning model because it recently became a popular method by dealing with
point cloud data directly, which decreased a lot of time-consuming and efforts of data pre-processing.
The novelty of our approach is to propose a framework to integrate the novel hybrid-sampling
method that eases the imbalanced problem in the training of the deep segmentation network using
point cloud and a novel loss function automatically assigning varying costs according to instance
probabilities of classes in the batch sample. Within this framework, smaller objects with fewer data
points would be assigned a higher cost-factor, whereas larger objects with a greater number of data
points would be assigned a lower cost-factor. The easily implemented hybrid-sampling scheme
can improve performance without enlarging the network or using additional weight parameters.
Furthermore, our use of a simple training process is more efficient than baseline training schemes.

The proposed scheme simultaneously applies oversampling to minority classes and
undersampling to majority classes in order to correct for imbalances in the number of instances
associated with the various classes. Training is conducted in three rounds. The first round involves
training the network using sampled data with a large ratio of oversampling. The second round uses
sampled data with a small ratio of oversampling. The third and final round uses normal data without
oversampling or undersampling. The proposed cost-sensitive algorithm also includes a novel loss
function (referred to as a balanced focus loss function), which automates the assignment of costs in
accordance with the probability that a given class will occur in the batch sample.

We employed the PointNet deep network as our learning model for its ability to deal with
point cloud data directly, thereby enhancing computational efficiency by eliminating the need for
pre-processing. The mean intersection over union (mIoU) test accuracy results obtained using PointNet
training were as follows: XYZRGB data (91%) and XYZ data (86%). The mIoU test accuracy results
obtained using the proposed scheme were as follows: XYZRGB data (98%) and XYZ data (93%). Our
prediction results are clearly more accurate and stainless than the baseline results.

The goal of this paper is to improve the segmentation deep network using imbalanced point cloud
data. Our main contributions are as follows.

• A novel two-stage scheme is proposed, which combines the hybrid-sampling method and
the balanced focus loss function to improve object segmentation using imbalanced point
cloud data.

• A novel two-stage scheme outperforms either sampling or loss function technique for
the imbalanced problem.

• The mIoU test accuracy results obtained using the proposed method outperforms the baseline
method (PointNet) by 6%.
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The remaining sections are organized as follows. Section 2 describes in detail the proposed
framework using hybrid-sampling and balanced focus loss function. Section 3 outlines experiment
results. Concluding remarks and future research are presented in Section 4.

2. Framework of Training Network for an Imbalanced Point Cloud

As long as there is no significant difference in the amount of data for each class, deep networks
for point clouds (e.g., PointNet) are very effective. However, the number of points in the various
classes is not necessarily equal, and the disparity between the background and specific small objects
can be enormous. This makes it impossible for the network to learn effectively. Furthermore, the fact
that minority-class point clouds are disregarded makes it impossible to segment the point clouds of
the small objects out of the scene.

We sought to overcome this matter using two methods: (1) hybrid-sampling to reduce imbalances
in the data, and (2) a balanced focus loss function to direct the network. In the following section,
we present the proposed data sampling method and our underlying motivation. We then describe
the proposed loss function and its weaknesses. Finally, we outline the proposed two-stage scheme
combining the two methods.

2.1. Hybrid-Sampling

The proposed hybrid-sampling method undersamples points associated with the background
and oversamples points associated with objects. The concepts of oversampling, undersampling,
and hybrid-sampling are illustrated in Figure 1.

Figure 1. Sampling methods: (a) Undersampling: The majority class (green) is downsampled to make
it equal in size to the minority class (red), and the resulting set is downsampled to fit the network;
(b) oversampling: The minority class (red) is upsampled to make it equal in size to the majority class
(green), and the resulting set is downsampled to fit the network; (c) hybrid-sampling: The minority class
(red) is upsampled slightly, whereupon the resulting dataset undergoes random mixing of the majority
and minority classes, followed by truncation to ensure that the result is compatible with the size of
the network.
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2.1.1. Undersampling

We first differentiate the minority and majority classes from an unbalanced set of data. Some of
the instances of the majority classes are removed to ensure that the final instance number is equal to
the instance number of minority classes. Note that the instance number of minority classes remains
unchanged. Despite the fact that this results in a balanced set of data, the size of the dataset is not
necessarily compatible with the network input. It is, therefore, necessary to implement an additional
step involving the duplication or removal of data (evenly balanced between minority and majority
classes) to fit the network.

2.1.2. Oversampling

As with the undersampling method, we first differentiate the minority and majority classes.
However, we duplicate the instances of the minority classes (instead of undersampling the instances
of the majority classes to ensure that there is an equal amount of data associated with both classes.
Despite the fact that this results in a balanced set of data, the size of the dataset may be too large for
the network input. Remedying this situation requires down sampling.

2.1.3. Conventional Hybrid-Sampling

The duplication of minority classes follows guidelines derived for a given situation by an expert
in the field. The resulting mixed dataset is down sampled to make it compatible with the size of
the network input. The data then undergoes shuffling and random downsampling to ensure that
the training data is highly variable, thereby moderating the effects of data loss due to undersampling
and overfitting due to upsampling.

2.1.4. Proposed Hybrid-Sampling

The experiments using Naive Bayes and C5.0 in Reference [40] demonstrated that oversampling
and undersampling had equivalent effects on performance. In Reference [41], it was reported that
oversampling was more robust than undersampling. In contrast, experiments conducted using C4.5
decision trees by Drummond [42] and other research [43,44] indicated that undersampling had a more
pronounced effect than oversampling. In general, undersampling is preferred instead of oversampling
when dealing with large amounts of data [45].

Shelke et al. [46] demonstrated that combining oversampling of the minority class with
undersampling of the majority class could improve classifier performance (in ROC) to a greater
degree than could be achieved by only undersampling the majority class. In intensive experiments,
Seiffert et al. [47] demonstrated that hybrid-sampling can often outperform single sampling methods.
They reported that oversampling, followed by undersampling was slightly more effective than
the inverse. Table 1 presents a comparison of the methods described in Reference [46,47].

Table 1. Rank of sampling methods according to performance. Random Over-Sampling (ROS) is
oversampling method, Random Under-Sampling (RUS) is under sampling method, RUS-ROS is
method of undersampling then oversampling, and ROS-RUS is method of oversampling and then
undersampling.

Method Rank of Performance

ROS IV
RUS III

RUS-ROS II
ROS-RUS I

The proposed hybrid-sampling method involved oversampling, followed by undersampling.
The proposed scheme differs from previous hybrid-sampling methods by the way that majority data
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is mixed with minority data and shuffled to create a new representative dataset. After upsampling,
the minority data undergoes shuffling with the majority data, all of which is then downsampled to
make it compatible with the network input. Unlike previous methods, the ratio of minority to majority
data after balancing is not a fixed value, but rather oscillates slightly in accordance with the shuffling
process to make it more varied.

The pseudocode of the proposed algorithm is presented as Algorithm 1. The point cloud of
the background is isolated from the lists of point sets and labels. The point cloud of the background
is assigned a label value of 1, whereas the point clouds of objects are assigned labels values of >1.
The indices of objects and that of the background are derived separately. The indices of objects are then
duplicated according to a sampling ratio input by an expert in the field, where the sampling ratio is
determined by the degree of data imbalance of datasets; to be less dependent on the ratio, we propose
the balanced focus loss function in the next subsection. The new set of object indices is concatenated to
the indices of the background and then shuffled. Finally, the shuffled set is separated from the last
part, and the first part is kept as the selected part. From this selected index, we obtain a set of points
with a set of corresponding labels as training data for the network.

Algorithm 1 Algorithm for hybrid-sampling algorithm to sample point clouds.

Input: A list of points Points, a list of labels Labels that are imbalanced, and an integer value of
sampling factor n_sampling, and an integer value of number of points n_points.

Output: New list of points Points and new list of labels Labels that are already sampled.

Initialization :
1: ObjIndices← argwhere(labels > 1)
2: BgrIndices← argwhere(labels = 1)
3: Choices← []

LOOP Process
4: for i← 2→ n_sampling do

5: Stack(Choices, ObjIndices)
6: end for
7: Stack(Choices, BgrIndices)
8: Shu f f le(Choices)
9: Choices← Choices[: n_points]

10: Points← Points[: n_points]
11: Labels← Labels[: n_points]
12: return Points, Labels

2.2. Balanced Focus Loss Function

In this study, we considered three loss functions: the normal categorical cross-entropy loss
function, a weighted loss function, and a focus loss function. The normal categorical cross-entropy
loss function treats all classes and all misclassifications equally, and there is no additional reward for
identifying the minority class over the majority class. This can lead to the misclassification of the point
clouds of minority classes. The categorical cross entropy loss function is defined as follows:

CE(θ) = −
n

∑
i=1

yi log(ŷi(xi, θ)), (1)

where ŷ(x, θ) is the posterior probability obtained by applying the softmax function to the network
output layer, and θ denotes the trainable parameters of the network; x is the input sample, and y is
the ground truth.
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One common strategy that helps to increase the true positive rate is to penalize misclassifications
of the minority class more heavily than those of the majority class. Thus, a weighted loss function is
used to assign each class a ratio that is smaller for the background than for small objects. Unfortunately,
the highly sensitive process of assigning an appropriate ratio set can be time-consuming. Any given
set of ratios with a fixed value cannot be effective for all cases. Furthermore, the ratio of class instances
varies according to the situation. The weighted loss function is formulated as follows:

WCE(θ) = −
n

∑
i=1

αiyi log(ŷi(xi, θ)), (2)

where α is the penalization weight for false negative errors, which is usually selected manually and
based on the experience of experts.

The balanced focus loss function presented in this study to integrate categorical cross-entropy
and weighted loss functions is defined as follows:

EBL(θ) = −
n

∑
i=1

(1− ŷ(x, θ))γαiyi log(ŷi(xi, θ)), (3)

where (1− ŷ(x, θ))γ is the penalization weight for the class, γ > 0 is a tunable focusing parameter,
and α is the factor emphasizing the minority classes according to the ratio of each the classes in that
particular, formulated as follows:

α(c) =
1

dist_prob(c)
, (4)

where dist_prob(c) is the distribution probability of class c in training batch, calculated as

dist_prob(c) =
1

length(y) ∑(y == c). (5)

2.3. Two-Stage Framework

Either sampling or loss function technique has not been shown not to have a significant effect on
training performance. Furthermore, any misuse of those methods can lead to instability in the training
process. Thus, we developed a two-stage framework combining hybrid-sampling with a balanced
focus loss function to leverage the benefits of both methods. The network is trained through a number
of epochs using balanced focus loss with a descending sampling ratio, as shown in Figure 2.

Figure 2. Descending sampling ratio.
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At the beginning of training, a large sampling ratio is first used to lead the network to learn
more about the minority classes. Note that the sampling ratio should not be so high that it causes
excessive fluctuations in the training metric curve. The influence of the balanced focus loss function is
not particularly pronounced; therefore, the sampling ratio is decreased gradually to shift the attention
to the background. Eventually, when the sampling process halts, the network is trained using only
the original dataset with the balanced focus loss function.

3. Experimental Validation

Experiments were conducted to compare the efficacy of the proposed two-stage framework with
that of baseline methods when applied to imbalanced data. Figure 3 illustrates the system setup.
The system table included two pipes and three wrenches, above which, at a distance of 67 cm, was an
RGB-D camera (Orbbec Astra S) with resolution of 480 × 640 pixels. The experiments were validated
using Python on the Tensorflow-Keras framework. The network was trained on a NVIDIA Geforce
1050-4Gb graphical card. In the following example, the point numbers of the background, pipe,
wrench, yellow cube, and cyan cube were 25655 (82.02%), 1653 (5.28%), 1859 (5.94%), 518 (1.66%),
and 1596 (5.10%), respectively.

Figure 3. Hardware system.

3.1. Evaluation Metric

When dealing with imbalanced data, it is essential to find a metric that can be used to generate a
generalized model for the segmentation of point cloud data. Our metric in this study was the median
of intersection over unit (mIoU), which is calculated as follows:

mIoU =
1
C

C

∑
c=1

IoU(c) (6)

and

IoU(c) =
TP

TP + FN + FP
, (7)

where IoU(c) is the intersection over a unit of class c, TP is a true positive, FN is a false negative, FP is
a false positive, and C is the total number of classes.
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3.2. Baseline Methods

The deep network used in this study was the full version of PointNet [39]. Four training methods
were included in the performance comparison.

1. PointNet without hybrid-sampling and a balanced focus loss function.
2. PointNet with a balanced focus loss function.
3. PointNet with hybrid-sampling.
4. PointNet with both hybrid-sampling and a balanced focus loss function.

The PointNet architecture included a feature-extraction module, a feature aggregation module,
and a point-wise classification module. Note that each feature-extraction module had a feature
transformation block and a multi-layer perceptron block. Each feature transformation block included
six hidden layers. The first feature transformation block included the following number of nodes:
[64, 128, 1024, 512, 256, n], where n indicates the number of input channels of the point cloud.
The second feature transformation block included the following number of nodes: [128, 256, 1024, 512,
256, 128]. The first multi-layer perceptron included the following number of hidden nodes: [64, 128,
128]. The second multi-layer perceptron included the following number of hidden nodes: [512, 2048].
The point-wise classification module included the following number of hidden nodes: [512, 256, 128, c],
where c indicates the number of categories.

3.3. Comparison Results

This comparison was conducted using two types of point cloud data: XYZRGB and XYZ.

3.3.1. XYZRGB Point Cloud Data

There were 16,384 XYZRGB points in the cloud data, such that the dimensions of the input data
were [16384; 6]. The number of points in each image varied between 30,000 and 40,000. The number of
points of objects in each scene varied between 400 and 4000. The alpha value for the balanced focus
loss function was calculated automatically in each training batch.

Figure 4 illustrates the mIoU curves obtained using the four methods with 100 epochs. The blue
validation curve (baseline training method) reached a maximum value of 91.74% at epoch 37. Note that
it reached saturation quickly and fluctuated around 80%. The green curve obtained using the balanced
focus loss function reached 96.35% at epoch 62, i.e., 5% higher than the baseline method with
less fluctuation. The red curve obtained using hybrid-sampling fluctuated considerably; however,
it reached 97.55% accuracy at epoch 60, i.e., 1.2% higher than the balanced focus loss method, and 5.81%
higher than the baseline method. Finally, the pink curve obtained using the two-stage framework
combining hybrid-sampling with balanced focus loss reached 98.26% accuracy at epoch 97, i.e., 1.91%
higher than balanced focus loss, 0.71% higher than hybrid-sampling, and 6.52% higher than the baseline
training method.
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Figure 4. Comparison of mean intersection over union (mIoU) curves obtained using the four methods
to process XYZRGB point cloud data.

Figure 5a–c present the ground truth of a point cloud, the prediction results using the baseline
PointNet method, and the prediction results using the proposed two-stage framework when using
XYZRGB data. The pink points indicate a single small cuboid. Clearly, the prediction result using
the baseline method was incorrect, as the small cuboid was recognized as a pipe, as indicated by the red
points. The proposed framework correctly recognized the small cuboid, as indicated by the pink points.
This is a clear indication that the proposed two-stage framework outperformed the baseline PointNet
training method when using XYZRGB data.

(a) (b) (c)

Figure 5. Comparison of ground truth and prediction results obtained when XYZRGB point cloud data
was applied to the baseline or proposed training methods. The prediction results from the baseline
training method were clearly erroneous: (a) ground truth; (b) point cloud predicted using conventional
training method, showing erroneous prediction where the small cube is predicted as the pipe; (c) point
cloud predicted using the proposed hybrid training method.

A further experiment was conducted to evaluate the network in the case of multiple objects. Figure
6a–c compare the ground truth, the baseline training method, and the two-stage framework. In this
experiment, the results of the baseline method and the proposed framework were both reasonably
good, i.e., most of the point clouds of the objects were detected correctly. Nonetheless, the prediction
results obtained using the baseline method in Figure 6b revealed a number of pink points on the point
cloud predicted for the wrench. The prediction results obtained using the proposed framework in
Figure 6c do not include any points due to noise at the border of the predicted point cloud.
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(a) (b) (c)

Figure 6. Comparison of ground truth and prediction results obtained when XYZRGB point cloud
data was applied to the baseline or proposed training methods. The prediction results obtained
using the baseline training method were affected more by noise than were the results obtained using
the proposed method: (a) ground truth; (b) point cloud predicted using conventional training method,
showing erroneous prediction on the wrench; (c) point cloud predicted using the proposed hybrid
training method.

3.3.2. XYZ Point Cloud Data

Experiments were conducted to assess the efficacy of the four methods when applied to XYZ
point cloud data. The number of input points was 4096; therefore, the dimensions of the input
data were [4096; 3]. Figure 7 presents the mIoU curves of the four training methods. The curves
obtained from XYZ data presented more pronounced fluctuations than did the training curves obtained
using XYZRGB data. This can be attributed to the fact that the XYZ dataset did not include color
elements, and there were only 25% as many data point. As shown in Figure 7, the blue curve obtained
using the baseline training method achieved accuracy of 86.23% (at epoch 78), which is 5% below
the accuracy obtained using XYZRGB data. The green curve obtained using the balanced focus loss
function achieved accuracy of 88.20% accuracy (at epoch 48), which is 2% better than baseline method.
The red curve obtained using the hybrid-sampling method achieved accuracy of 90.08%, which is 4%
higher than the baseline method and slightly better than the balanced focus loss function. The pink
curve obtained using the hybrid-sampling method with the balanced focus loss function achieved
accuracy of 92.62%, which is 6.39% higher than the baseline method, 2% higher than hybrid-sampling,
and 4% higher than the balanced focus loss function.

Figure 7. Comparison of mIoU curves obtained using the four methods to process XYZ point cloud data.
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Figure 8a–c compare the ground truth of the point cloud with the prediction results obtained
using the baseline PointNet method, and the prediction results obtained using the proposed two-stage
framework when applied to XYZ point cloud data. As shown in Figure 8b, the pipe (red points) was
erroneously segmented as blue points by the baseline method. As shown in Figure 8c, the proposed
framework succeeded in segmenting the pipe as red points.

(a) (b) (c)

Figure 8. Comparison of ground truth and prediction results obtained when XYZ point cloud data
was applied to the baseline or proposed training methods. The prediction results from the baseline
training method were clearly erroneous: (a) ground truth; (b) point cloud predicted using conventional
training method, showing erroneous prediction where the pipe merges into the wrench; (c) point cloud
predicted using the proposed hybrid training method.

Figure 9a–c present another comparison of the ground truth with the baseline training method
and the proposed two-stage framework when applied to XYZ point cloud data in the case of multiple
objects. As shown in Figure 9b, the baseline model was unable to predict the wrench completely.
As shown in Figure 9c, the proposed two-stage framework succeeded in predicting the point clouds of
both the pipe and the wrench. Again, the two-stage framework outperformed the baseline training
method when applied to XYZ point cloud data.

(a) (b) (c)

Figure 9. Comparison of ground truth and prediction results obtained when XYZ point cloud data
was applied to the baseline or proposed training methods. The results obtained using the baseline
training method were clearly less accurate than those obtained using the proposed method: (a) ground
truth point cloud; (b) point cloud predicted using conventional training method, showing that most of
the points associated with the wrench were not detected; (c) point cloud predicted using the proposed
hybrid training method.

3.4. Other Examples

To validate the proposed method, we tested more examples for semantic segmentation. Figure 10
shows the objects tested in the experiment. Figure 11a shows that many of point data of the wrench
were misclassified into another class. However, Figure 11b shows that the proposed method segmented
most of the point clouds correctly. The reason is that the imbalanced problem makes the baseline
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method insufficiently trained, causing inaccurate predictions. This impact makes the segmentation
quality low and fail robotic grasps. Figure 11c,d show that the point data of the eraser were also
misclassified into another class by the baseline method but not by the proposed method. Figure 11e,f
show that many points of the eraser were misclassified into the wrench.

(a) (b) (c)

Figure 10. Tested objects: (a) cube; (b) eraser; (c) wrench.

(a) (b)

(c) (d)

(e) (f)

Figure 11. Comparison of the baseline deep network and the proposed method: (a,c,e) are the results
of the baseline method; (b,d,f) are the results of the proposed method.
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4. Conclusions and Future Research

This paper presents a two-stage framework aimed at resolving the problem of using imbalanced
point data for deep network segmentation. The use of hybrid-sampling while balancing the focus of
the loss function was shown to boost the effectiveness of object segmentation. Intensive experiments
were conducted using five objects under a variety of environmental conditions. The separate use
of hybrid-sampling or the balanced focus loss function improved segmentation performance by
approximately 2.5%. The two-stage framework improved performance by 6∼7%. When applied to
validation sets, the mIoU values were as follows: XYZRGB point cloud data (98%) and XYZ point
cloud data (93%). In addition, the computational effort of the proposed method was also low. Table 2
shows the average prediction time of the proposed method using the number of test data points from
100 trials. Since the number of points in each image varied between 30,000 and 40,000, the average
prediction time based on the first-order linear regression on Table 2 varied between 78.39 and 103.54 ms,
which was sufficiently fast in a real situation.

Table 2. Average prediction time.

Size (Points) Prediction Time (ms)

1024 4.82
2048 7.34
4096 12.8
8192 25.7

16384 44.4
32768 84.8

Even though we demonstrated that the proposed method can reduce the number of false
positives associated with object segmentation, there are still a number of issues that may influence
the performance.

• Even when there is relative balance between the number of background instances and object
instances, there can still be a significant difference between the number of instances associated
with large and small objects. This can make it difficult for the network to detect small objects.

• The overfitting problem exists. When there is a high ratio of oversampling and a large number
of epochs, the network tends to remember trained object point clouds, which undermines
the generalization of the model and hinders segmentation. Thus, experiments must be conducted
on that specific dataset to enable the selection of a suitable ratio for sampling.

• Oversampling magnifies noise. Training datasets inevitably contain noise, with the result being
that a small proportion of the data points are labeled erroneously. To avoid magnifying the noise,
the oversampling ratio should not be set too high. Setting a lower ratio can help to ensure that
the network does not learn an excessive number of wrong instances, which would otherwise
compromise detection performance.

In future research, the validation of the proposed two-stage scheme will be conducted on other
datasets and segmentation deep networks, such as PointNet++, DGCNN (Dynamic Graph CNN), and
GCN (Graph Attention Convolution), using point cloud data. In addition, the relationship between
the success of robotic grasps and the mIoU accuracy of object segmentation will be studied.
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