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Featured Application: Natural language processing (NLP) is a crossing domain of computer
science, artificial intelligence, and linguistics that focuses on the interaction between computers
and human (natural) languages. NLP faces many challenges, including sentence representation.
Appropriate sentence representation significantly improves the efficiency of NLP tasks such as
text comprehension, text classification, machine translation, and information extraction.

Abstract: The efficiency of natural language processing (NLP) tasks, such as text classification and
information retrieval, can be significantly improved with proper sentence representations. Neural
networks such as convolutional neural network (CNN) and recurrent neural network (RNN) are
gradually applied to learn the representations of sentences and are suitable for processing sequences.
Recently, bidirectional encoder representations from transformers (BERT) has attracted much attention
because it achieves state-of-the-art performance on various NLP tasks. However, these standard
models do not adequately address a general linguistic fact, that is, different sentence components serve
diverse roles in the meaning of a sentence. In general, the subject, predicate, and object serve the most
crucial roles as they represent the primary meaning of a sentence. Additionally, words in a sentence
are also related to each other by syntactic relations. To emphasize on these issues, we propose a
sentence representation model, a modification of the pre-trained bidirectional encoder representations
from transformers (BERT) network via component focusing (CF-BERT). The sentence representation
consists of a basic part which refers to the complete sentence, and a component-enhanced part, which
focuses on subject, predicate, object, and their relations. For the best performance, a weight factor is
introduced to adjust the ratio of both parts. We evaluate CF-BERT on two different tasks: semantic
textual similarity and entailment classification. Results show that CF-BERT yields a significant
performance gain compared to other sentence representation methods.

Keywords: natural language processing; sentence representation; sentence embedding; component
focusing; semantic textual similarity

1. Introduction

Much progress has been made in learning semantically meaningful distributed representations of
individual words, such as Word2Vec [1], GloVe [2], and ELMo [3]. On the other hand, much remains
to be done to obtain satisfying representations of sentences, also known as sentence embeddings.
The main idea of sentence embedding is to encode sentences into fixed-sized vectors. The sentence
representations are usually used as features for subsequent machine learning tasks or pre-training in
the context of deep learning. The applications of sentence representations are many, including text
classification [4], sentence similarity [5], question-answering [6], and information retrieval [7], to name
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a few. Appropriate sentence representations can significantly improve the performance of natural
language processing (NLP) tasks.

Among all sentence representations methods, the vector average method [8] is the easiest and most
popular. Although more complex sequential networks such as LSTMs (Long Short-Term Memory) [9]
or convolutional [10] networks may yield better performance, the improvement is not as significant
as expected. Sometimes, the trade-off between efficiency and performance tips the balance in favor
of simpler models like vector averaging. Transformer [11] is a new network structure to replace the
recurrent neural network (RNN) and convolutional neural network (CNN). It directly obtains global
information unlike the RNN, which requires gradual recursion to obtain global information, and unlike
the CNN, which only obtains local information. Transformer outperforms RNN and CNN in NLP tasks
such as machine translation and can also run in parallel, many times faster than RNN. Bidirectional
encoder representations from transformers (BERT) [12] has attained much attention nowadays because
it utilizes the transformer network to obtain state-of-the-art results in a wide array of NLP tasks. A large
disadvantage of BERT network structure is that no independent sentence embeddings are computed,
which makes it difficult to derive sentence embeddings from BERT.

The standard sentence methods do not adequately address some linguistic properties, which are
important factors for producing appropriate sentence representations. A sentence is composed
of different components, such as the subject, predicate, object, attributive, adverbial phrase, and
complements. In the process of constructing a sentence, each sentence component does not function
exactly the same. Of all the components, the subject, predicate, and object serve the most crucial roles
because they represent the primary meaning of a sentence, while the others are seen as noisy components
because they are less informative. Thenmozhi et al. [13] analyzed the text similarity between the search
term and the subject-predicate-object information of the retrieved text sentence, which can improve
the precision of a semantic search. Additionally, words within a sentence are also related to each other,
not only just by their positions but also syntactic relations. In a prior work, Levy et al. [14] generalized
that changing a skip-gram model from a linear context to a dependency-based syntactic relations
context can lead to better performance in word similarity. Ma et al. [15] proposed a dependency-based
convolution approach, making use of tree-based n-grams rather than sequential ones, thus utilizing
nonlocal interactions between words to improve sentence modeling baselines on four sentiment and
question classification tasks.

Therefore, we developed component focusing BERT (CF-BERT), a modification of the pre-trained
BERT network that uses a Siamese network structure to derive semantically meaningful sentence
embeddings via component focusing. The CF-BERT divides a sentence representation into two parts: a
basic sentence part refers to the complete sentence, and the component-enhanced part, which contains
the crucial sentence information (primarily from the subject, predicate, and object of a sentence) and
the subject-predicate-object syntactic relations. The basic part contains over-sufficient information of a
sentence, the same as the traditional method. While the component-enhanced part takes advantage of
the relevant information and reduces the impact of noisy words on the sentence meaning.

To be specific, we adopt syntactic dependency parsing to acquire the component-enhanced part of
a sentence. According to the dependency parsing of a sentence, shown in Figure 1, we can directly
obtain the dependency relations between words and derive components such as subject, predicate,
and object secondhand.

The CF-BERT reads sentences with different lengths to generate fixed-length representations of
both parts. While generating the sentence embeddings, the basic component occupies the dominant
position and the component-enhanced part plays a supplement role. Hence, a weight factor is
introduced to adjust the ratio of the embeddings of two parts to generate the complete sentence
representation. The grid search method is used to get a weight factor to achieve optimal sentence
representation. This sentence representation then implements a pooling strategy, and then gets the
final vector for similarity calculation and entailment classification, with significant results to other
sentence representation methods.
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Figure 1. An example of dependency parsing. The dependency relation between two words is
represented by a directed arc. Meanwhile, the part-of-speech (POS) of each word is also obtained.

The key contribution of this paper is to propose a novel sentence representation model
focused on the crucial components of a sentence with their syntactic relations. The addition of
a component-enhanced part in the basic representation can enhance the useful information of the
sentence representation and alleviate the noisy words, with significant and consistent improvement in
the downstream NLP tasks.

In the next section, we present a summary of related studies on sentence representations. Our paper
focuses on the similarity task (Sentences Involving Compositional Knowledge Semantic Relatedness
(SICK-R) and Semantic Texture Similarity Benchmark (STS-B)), and then the sentence representations
obtained by training the similarity task SICK-R are directly used for the text classification task (Sentences
Involving Compositional Knowledge Entailment (SICK-E)). The design of the method and training
details are described in Section 3 and only focus on textual similarity. Then, we explain the data sources,
experimental details, experimental results, evaluation, and discussion of the experiment in Sections 4
and 5. Particularly in Section 4.4, we evaluate the broader utility of our sentence representations on
entailment classification.

2. Related Work

Learning representations of sentences, also called sentence embeddings, are a well-studied area
with dozens of proposed methods.

The most popular and easiest way to generate a sentence embedding is simply by averaging word
embeddings [8] in spite of their apparent disregard for syntactic structure. An improved method uses
a weighted average of word vectors. Arora et al. constructed a sentence embedding called SIF (smooth
inverse frequency) [16] as a sum of pre-trained word embeddings, weighted by reverse document
frequency, and subtracted a vector based on principal components from the sentence vectors.

In terms of neural networks, convolutional neural network (CNN) [17–19] was recently applied
efficiently for semantic composition. This technique uses convolutional filters to capture local
dependencies in terms of context windows and applies a pooling layer to extract global features. Many
other works apply a recurrent neural network (RNN) and its powerful variants, such as LSTMs, to learn
better sentence representations, and they have achieved substantial success in text categorization [20],
machine translation [21], etc. Sent2Vec [22] learns n-gram features in a sentence to predict the center
word from the surrounding context. A sequential neural sentence encoder, like Skip-thought [23], trains
an encoder-decoder architecture that can predict the surrounding sentences. The sequential neural
sentence encoder InferSent [24] uses labeled data from the Stanford Natural Language Inference dataset
(SNLI) [25] and Multi-Genre NLI dataset [26] to train a Siamese BiLSTM (Bi-directional Long Short-Term
Memory) network with max-pooling over the output to generate the sentence encoder. Conneau et al.
showed that InferSent consistently outperforms unsupervised methods like Skip-thought. Universal
Sentence Encoder [27] trains a transformer network and augments unsupervised learning. The model
is first trained on a large scale of unsupervised data from Wikipedia and forums and then trained on
the SNLI dataset.

Recent works highlight the strength of Transformer [11] architecture on sequence tasks. BERT [12]
is a pre-trained transformer network, which breaks 11 NLP tasks with state-of-the-art results, including
machine reading comprehension, sentence classification, and sentence-pair similarity. One big
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drawback of BERT network structure is that independent sentence embeddings cannot be computed
directly, which makes it challenging to derive sentence embeddings from BERT. To overcome this
restriction, researchers feed single sentences through BERT and then derive a fixed-sized vector by
either averaging the outputs (similar with average word embeddings) or by using the output of the
first token (the [CLS (classification)] token) [28,29]. The above two methods are also provided by the
popular service called bert-as-a-service-repository. However, it produces out-of-the-box rather bad
sentence embeddings.

An account of previous works [30] found that the NLI (including SNLI and Multi-Genre NLI)
datasets are suitable for training sentence embeddings. Sentence-BERT (SBERT) [31] uses a Siamese
network structure to fine-tune the pre-trained BERT network first by NLI and then by specific NLP
tasks to derive semantically meaningful sentence embeddings. Using a similarity measure like
cosine-similarity or Manhattan/Euclidean distance, semantic textual similarity between two sentence
embeddings are calculated.

Additional works have also exploited linguistic structures such as parse and dependence trees to
improve sentence representations. Chen et al. [32] used a neural network to develop a transition-based
greedy model that remarkably improves the accuracy and speed of dependency parsers. Tai et al. [33]
designed a dependency tree-structured LSTM for modeling sentences. This model outperforms
the linear chain LSTM in semantic textual similarity tasks. Subsequently, researchers have applied
dependency to CNNs and RNNs in the tasks, including relation classification [34], Chinese word
segmentation [35], translation [36], etc. DisSent [37] shows that dependency parsing and rule-based
rubrics can curate a high-quality sentence relation task by leveraging explicit discourse relations. All
these models can potentially encode richer semantic and syntactic features from sentence structures
with dependency parsing.

3. Methods

3.1. Model Architecture

Our model CF-BERT aims to focus on crucial components and syntactic relations of a sentence to
get a more powerful sentence representation that yields better performance in downstream NLP tasks.
As mentioned before, the sentence representation consists of two parts, and to make it easy to describe a
sentence representation that consists of two parts, we give the raw sentence text of the two parts names:
Sbasic and Sc f . The basic sentence part Sbasic, contains the complete sentence information, and the
component-enhanced sentence part Sc f , contains the crucial (primarily from the subject, predicate, and
object of a sentence) sentence information. Sbasic essentially equals to the raw text of a sentence in NLP
datasets which cover the global information of a sentence, while Sc f enhances semantic information by
keeping only crucial information and removing meaningless or noisy words. The example sentence
results of basic component Sbasic and component-enhanced Sc f are listed in Table 1.

Table 1. Examples of basic part Sbasic and component-enhanced part Scf.

Sbasic Scf

An Asian woman in a crowd is not carrying a black bag woman not carrying bag

A man attacks a woman man attacks woman

Based on this idea, the overall architecture of the CF-BERT is shown in Figure 2. A similar network
structure as that in SBERT [32] is used to design the CF-BERT model.

According to Figure 2, the two sentences A and B are passed to the CF-BERT model to generate
fixed-sized sentence embeddings emb_SAbasic and emb_SBbasic as the basic components of A and B,
respectively (described in Section 3.2). Subsequently, the CF-BERT performs the dependency parsing of
sentences A and B to obtain the component-enhanced part with their relations (described in Section 3.3).
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By the same way as the basic components, sentence embeddings emb_SAc f and emb_SBc f for the
component-enhanced parts of A and B are also generated. Next, the weight factor Wc f is introduced to
adjust the ratio of the component-enhanced part embeddings emb_Sc f to the basic part embeddings
emb_Sbasic to generate the complete sentence representation. A complete sentence representation emb_ S
(fixed-sized vector) is finally expressed as follows:

emb_S = emb_Sc f ∗Wc f + emb_Sbasic (1)

when Wc f = 0, CF-BERT equals SBERT.
The best weight factor Wc f is obtained through a grid search method in the experiment (described

in Section 5). Finally, we use the complete sentence representations from the previous step as the input
of the last output layer. The output layer of the model can be changed according to the specific NLP
tasks. This study investigates semantic textual similarity. We focus on textual similarity tasks only
in this section and then evaluate the broader utility of our sentence representations on entailment
classification in the next section.
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3.2. Details of the CF-BERT Model with Similarity Tasks

BERT sets new state-of-the-art performance on semantic textual similarity. Before a sentence pair
is entered into the BERT [12] network, a [CLS] token is added to the header, and a [SEP] token is added
to separate the two sentences. Then taking the output of BERT, the [CLS] token embedding C performs
the similarity task (sigmoid (CWT)), where W represents the layer weight. However, C represents the
embedding of this sentence pair, and the embedding of each sentence cannot be calculated separately.
SBERT [31] fine-tunes BERT in the manner of a Siamese network structure. The last layer makes
cosine/Manhattan/Euclidean discrimination, which enables BERT to learn a proper sentence embedding
suitable for similarity tasks. We introduce the CF-BERT model based on SBERT via component focusing
in detail.

3.2.1. Training Process of CF-BERT

As shown in Figure 2, there are two networks, BERTA and BERTB, which each process one of
the sentences in a given pair; we solely focus on Siamese architectures with tied weights such that
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BERTA = BERTB in this work. First, we use the BERT model to map tokens in a sentence to the output
embeddings from BERT (word_embedding_model). The next layer in our model is a pooling_model.
We experiment with three pooling strategies: using the output of the [CLS] token, computing the
mean of all output vectors (MEAN-strategy), and computing a max-over-time of the output vectors
(MAX-strategy). When trained with different tasks, we observe that the pooling strategy has a large
impact. There, the MEAN strategy performs better than MAX or [CLS] token strategy. Therefore,
the default configuration is MEAN.

We performed dependency parsing to obtain the component-enhanced parts of A and B, namely,
SAc f and SBc f . The basic part SAbasic and the component-enhanced part SAc f of sentence A are
now passed first through the word embedding model, using the BERTA model to map tokens in a
sentence to the output embeddings from BERTA, namely, emb_SAbasic and emb_SAc f . The final sentence
representation emb_SA of sentence A is calculated using Equation (1). emb_SA is then passed through
the pooling_model to obtain fixed-sized sentence vectors U. Using the same process, sentence B is
finally expressed as sentence vectors V. We used a batch-size of 16 and 4 epochs, an Adam optimizer
with a learning rate 2e−5, and a linear learning rate warm-up over 10% of the training data.

Given a sentence pair and a gold similarity score (either between –1 and 1 or between 0 and 1),
computes the cosine similarity between the sentence embeddings U and V and minimizes the mean
squared error (mse) loss. The cosine-similarity is embedded in the loss layer, and then back-propagated.
The previous step returns the propagation loss to calculate the gradient. The weights of the Siamese
network are then updated by using the optimizer. We ran our experiments also with negative
Manhattan and negative Euclidean distances as similarity measures, but the results for all approaches
remained roughly the same.

When training is complete, the cosine similarity between all sentence pairs is computed and
correlation to the gold scores is computed. The experiment automatically saves a model to embed
sentences for the task. By loading the model, we can obtain the semantically meaningful embeddings
of each sentence corresponding to the task.

3.2.2. Appropriate Choice of BERTA and BERTB

The official Google artificial intelligence (AI) team provides a variety of pre-trained BERT models,
for different languages and different model sizes. SBERT experiments with two setups: only training on
specific NLP tasks, or first training on NLI, then on specific NLP tasks. SBERT observes that the latter
strategy leads to the improvement of several points. Therefore, BERTA and BERTB are instantiated
from "bert-base-nli-mean-tokens", which represents the BERT-base model fine-tuned with mean-tokens
pooling on NLI, and "bert-large-nli-mean-tokens", which represents BERT-large with mean-tokens
pooling. " BERT-large" has more parameters, deeper network layers, and a larger hidden size than
"BERT-base", and can achieve better performance.

3.3. Component-Enhanced Part

In addition to the basic component, the component-enhanced component contains supplement
information in the sentence representation in this paper. Compared with words, sentences have more
complex structures, and a variety of relations is observed among words in the same sentence. From the
knowledge of linguistics [38], every sentence is composed of crucial components (subject, predicate,
object, etc.) and modifiers (attribute, adverbial, complement, etc.). The crucial components play a
major role in the sentence, and the modifiers play a secondary role. Therefore, the subject, predicate,
and object of a sentence are extracted for the component-enhanced part in this paper.

To learn the component-enhanced part of the sentence, the Stanford Parser, which is a natural
language parser that determines the grammatical structure of sentences, is used. The Stanford Parser
can find dependency relations information between words in sentences and output it in Stanford
dependency format, including a directed graph shown in Figure 1. There are approximately 50
dependency relations such as noun subject (nsubj), direct object (dobj), and indirect object (iobj).
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To extract the subject, predict, and object, we label the words that have the dependency relations
including “subj”, which identifies the subject of a sentence, and dependency relations including “obj”,
which identifies the predicate and object of a sentence. Details are shown in Table 2.

After traversing all dependency relations of a sentence, if “subj” and “obj” do not exist (this
is relatively rare), we cannot obtain the subject-predicate-object in the above manner. We assume
that all nouns are subject and object, and verbs are predicates for this sentence. To prevent the Sc f
part from being empty, we consider traversing all the words with the part of speech “NN” as the
subject and object, and the words with the part of speech "VB" as the predicate, details shown in
Table 2. In text tasks, sentences containing words like “no” or “not” can have a huge impact on
the results of the experiment. So as long as words (like “not”, “no”) appear in the sentence, we
also consider it in Sc f . The parsed words are arranged according to the dependency relations of the
subject, predicate, and object. Therefore, the subject-predicate-object relations are also contained in
Sc f . The component-enhanced part is regarded as a sentence which to feed into the sentence model,
and the embedding of this part is obtained.

Table 2. All the dependency relation including subj and obj, parts of speech including VB (verb) and
NN (noun) defined by Standford Parser and what they stand for.

subj obj VB NN

csubj: clausal subject dobj: direct object VB: verb, base form NN: noun, singular or mass
csubjpass: clausal passive subject iobj: indirect object VBD: verb, past tense NNs: noun, plural

nsubj: nominal subject pobj: object of a preposition VBG: verb, gerund/present NNP: noun, proper noun,
singular

nsubjpass: passive nominal subject VBN: verb, past participle NNPS: proper noun, plural
xsubj: controlling subject VBP: verb, non-3rd ps. sing. present

VBZ: verb, 3rd ps. sing. present

The results produced by the Stanford Parser are listed in Table 3 (Bold represents what needs to
be addressed in the dependency parsing.). In one triple “(‘carrying’, ‘VBG’), ‘nsubj’, (‘woman’, ‘NN’)”,
terms ‘VBG’ and ‘NN’ mean the parts of speech of the corresponding words; while ‘nsubj’ denotes the
dependency relationship between ‘carrying’ and ‘woman’, in which ‘woman’ is the noun subject of
‘carrying’, ‘man’ is the noun subject of ’attacks’.

Table 3. Results produced by the Stanford Parser.

An Asian Woman in a Crowd Is Not Carrying a Black Bag A Man Attacks a Woman

((‘carrying’, ‘VBG’), ‘nsubj’, (‘woman’, ‘NN’)) ((‘man’, ‘NN’), ‘det’, (‘A’, ‘DT’))
((‘woman’, ‘NN’), ‘det’, (‘An’, ‘DT’)) ((‘man’, ‘NN’), ‘dep’, (‘attacks’, ‘NNS’))
((‘woman’, ‘NN’), ‘amod’, (‘Asian’, ‘JJ’)) ((‘man’, ‘NN’), ‘dep’, (‘woman’, ‘NN’))
((‘woman’, ‘NN’), ‘nmod’, (‘crowd’, ‘NN’)) ((‘woman’, ‘NN’), ‘det’, (‘a’, ‘DT’))
((‘crowd’, ‘NN’), ‘case’, (‘in’, ‘IN’)) ((‘man’, ‘NN’), ‘det’, (‘A’, ‘DT’))
((‘crowd’, ‘NN’), ‘det’, (‘a’, ‘DT’))
((‘carrying’, ‘VBG’), ‘aux’, (‘is’, ‘VBZ’))
((‘carrying’, ‘VBG’), ‘neg’, (‘not’, ‘RB’))
((‘carrying’, ‘VBG’), ‘dobj’, (‘bag’, ‘NN’))
((‘bag’, ‘NN’), ‘det’, (‘a’, ‘DT’))
((‘bag’, ‘NN’), ‘amod’, (‘black’, ‘JJ’))

4. Experiment

4.1. Datasets and Tasks

Two widely used datasets are employed in the experiment: Sentences Involving Compositional
Knowledge (SICK) dataset and the Semantic Textual Similarity Benchmark (STS-B) dataset.

The SICK dataset was published in SemEval-2014 [39] Task 1 and is composed of two tasks:
the Entailment Classification task SICK-E (entailment) and Semantic Textual Similarity task SICK-R
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(relatedness). The dataset contains 9927 (4500 for train set/4927 for test set/500 for development set)
pairs of sentences. Each sentence pair is annotated with a relatedness label ∈ [1,5] corresponding to the
average relatedness judged by ten different individuals; each of the SICK sentence pairs has also been
labeled as one of three classes: entailment, contradiction, or neutral, which are to be predicted for the
test examples.

The STS brings together the English data from the SemEval Semantic Textual Similarity tasks
between 2012 and 2017. It was published to provide a standard benchmark to evaluate various semantic
representation models. The dataset includes 8628 sentences pairs that are divided into train (5749),
development (1500), and test (1379). STS aims to measure the degree of equivalence in meaning or
semantics between a pair of sentences. The evaluation consists of human annotated English sentence
pairs, scored on a scale of 0 to 5 to quantify the similarity of meaning, with 0 being the least, and 5 the
most similar.

We provide a description and sample instances of these datasets and tasks in Table 4.

Table 4. Downstream tasks description and samples.

Dataset Task Sentence A Sentence B Output

Sentences Involving
Compositional

Knowledge Semantic
Relatedness

(SICK-R)

To measure the degree of
semantic relatedness
between sentences from 0
(not related) to 5 (related)

A woman with a
ponytail is climbing a
wall of rock.

The climbing
equipment to rescue a
man is hanging from
a white, vertical rock.

1.8

Sentences Involving
Compositional

Knowledge
Entailment
(SICK-E)

To measure semantic in
terms of entailment,
contradiction, or neutral

The dog is snapping
at some droplets of
water.

The dog is not
snapping at some
droplets of water.

Contradiction

Semantic Textual
Similarity

Benchmark
(STS-B)

To measure the degree of
semantic similarity
between two sentences
from 0 (not similar) to 5
(very similar)

A woman picks up
and holds a baby
kangaroo.

A woman picks up
and holds a baby
kangaroo in her arms.

4.6

4.2. Evaluation Metrics

In the Semantic Textual Similarity task, there are two evaluation metrics: Pearson correlation
and Spearman correlation. Although Pearson correlation is the official ranking basis for the semantic
textual similarity tasks, we use Spearman correlation as an auxiliary verification at the same time.
The goal of the task is to obtain the largest possible value of both for the test set.

In the Entailment Classification, the models are evaluated in terms of classification accuracy.
The goal of the task is to obtain a higher accuracy for the test set.

4.3. Evaluation—Semantic Textual Similarity (STS)

State-of-the-art methods often learn a complex similarity function that maps sentence embeddings
to a similarity score. However, these similarity functions work pair-wise and due to the combinatorial
explosion, are often not scalable if the collection of sentences reaches a certain size. Instead, we use
cosine similarity to compare the similarity between two sentence embeddings.

We evaluated the performance of Universal Sentence Encoder (USE), USE with component
focusing, SBERT (first training on NLI, then training on the specific dataset), and CF-BERT (first
training on NLI, then training on specific dataset via component focusing) on common STS tasks.
We implemented two kinds of CF-BERT based on two pre-trained BERT models, namely, CF-BERTBASE

and CF-BERTLARGE. The weight factor Wc f sets the value to 0.2 in the two tasks (described in the
next section).

We ran our experiments both with Pearson correlation and Spearman correlation as similarity
correlation measures. The results are depicted in Table 5. Pearson correlation (r) and Spearman
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correlation (ρ) between the cosine similarity of sentence representations are for two Semantic Textual
Similarity (STS) tasks. Performance is reported by convention as r × 100 and ρ × 100. The first group
of results are the top four SemEval-2014 submissions [40] for SICK-R, the second are more recently
proposed methods (including average methods), and the third contains BERT-based methods. The
results in black bold represent the best of all methods.

Table 5. Test set Pearson correlations (r) and Spearman correlations (ρ) for STS task.

Models
SICK-R STS-B

r ρ r ρ

Top Four
SemEval-2014

submissions for
SICK-R [40]

ECNU_run1 82.8 76.89

—StanfordNLP_run5 82.72 75.59
The_Meaning_Factory_run1 82.68 77.22
UNAL-NLP_run1 80.43 74.58

Recently
proposed
methods

(2015–2018)

Avg. GloVe embeddings [2] 69.43 53.76 61.23 58.02
Avg. BERT embeddings [28,29] 71.4 58.4 51.17 46.35
Universal Sentence Encoder (USE) [27] 82.65 76.69 75.53 74.92
USE (with CF Wcf = 0.2) (our) 83.51 77.38 76.22 75.54
Skip-thought [23] 85.84 79.16 77.1 76.7
Infersent [24] 88.4 83.1 75.8 75.5

BERT-based
methods

BERTBASE [12] 87.9 83.3 87.1 85.8
SBERTBASE [31] 87.81 83.26 87.04 85.76
CF-BERTBASE (with CF Wcf = 0.2) (our) 88.39 83.77 87.58 86.29

BERTLARGE [12] 88.9 84.2 87.6 86.5
SBERTLARGE [31] 88.78 83.93 87.41 86.35
CF-BERTLARGE (with CF Wcf = 0.2) (our) 89.29 84.35 87.83 86.82

Table 5 shows that directly using the output of BERT embeddings leads to rather poor performance
even worse than computing average word embeddings (GloVe) sometimes. Using the SBERT (described
Siamese network structure and fine-tuning mechanism substantially) improves the correlation,
outperforming both Skip-thought and Universal Sentence Encoder. SBERT is slightly weaker than
BERT in general. Maybe because by comparing CF-BERT to BERT, there is less interaction of the
sentence pairs.

The results from Table 5 indicate that all methods with the addition of component focus have
improved performance compared to methods without component focusing. USE with component
focusing leads to an improvement of 0.7–0.9 points of two tasks. For SICK-R test set, the Pearson
correlations of CF-BERTBASE and CF-BERTLARGE are improved by approximately 0.58 and 0.51
points compared to SBERTBASE and SBERTLARGE. The Spearman correlations of CF-BERTBASE and
CF-BERTLARGE are improved by approximately 0.51 and 0.42 points compared to SBERTBASE and
SBERTLARGE. The results for STS-B test set remained roughly the same. The Pearson correlations
lead to an improvement of 0.54 and 0.42 points to CF-BERTBASE and CF-BERTLARGE. The Spearman
correlations lead to an improvement of 0.53 and 0.47 points to CF-BERTBASE and CF-BERTLARGE. Our
methods easily exceed the first four results. Moreover, the performance of CF-BERT is slightly better
than that of BERT; CF-BERTLARGE is able to outperform the other sentence models.

4.4. Evaluation—Entailment Classification

To evaluate the broader utility of our sentence representations, we leverage them for a different
application: the SemEval-2014 textual entailment task (SICK-E). For this task, we solely rely on the
same representations learned for predicting semantic textual similarity (SICK-R), and simply apply
standard learning methods to do the entailment classification. From the sentence representations
emb_SA, emb_SB of each pair of sentences, we first pass the pooling_model to get sentence embeddings
U, V of sentence A and B, we then compute the following simple feature: element-wise (absolute)
differences |U − V|. Using only this feature label, we train a logistic regression to classify the entailment
labels. The logistic regression classifier is trained on various tasks in a 10-fold cross-validation setup
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and the prediction accuracy is computed for the test-fold. The results are depicted in Table 6. Accuracy
(*100) is reported for the results. The first group of results are the top four SemEval-2014 submissions
for SICK-E, the second are more recently proposed methods (including average methods), and the
third is BERT-based methods. The results in black bold represent the best of all methods.

Table 6. Test set accuracy for the SICK semantic entailment classification.

Models SICK-E

Top Four SemEval-2014 submissions for SICK-E [40]

Illinois-LH_run1 84.6
ECNU_run1 83.6
UNAL-NLP_run1 83.1
SemantiKLUE_run1 82.3

Recently proposed methods
(2015–2018)

Avg. GloVe embeddings [2] 74.3
Avg. BERT embeddings [28,29] 78.5
Universal Sentence Encoder (USE) [26] 83.5
USE (with CF Wcf = 0.2) (our) 84.3
Skip-thought [23] 82.3
Infersent [24] 86.3

BERT-based methods

BERTBASE [12] 85.8
SBERTBASE [31] 85.8
CF-BERTBASE (with CF Wcf = 0.2) (our) 86.3

BERTLARGE [12] 87.2
SBERTLARGE [32] 87.1
CF-BERTLARGE (with CF Wcf = 0.2) (our) 87.5

Table 6 shows that all methods with the addition of component focus have improved performance
compared to methods without component focusing. USE improves performance with around 0.8 points,
CF-BERTBASE improves performance with about 0.5 points, and CF-BERTLARGE improves performance
with about 0.4 points. The performance of CF-BERT is slightly better than that of BERT; CF-BERTLARGE

outperforms all other textual-entailment systems.

4.5. Overall Evaluation

It appears that the sentence embeddings from SBERT capture sentence information well: we
observe significant improvements for all tasks (STS and entailment classification) in comparison to
Skip-thought and Universal Sentence Encoder (USE). Dependency parser is a pre-processing process
in CF-BERT and only runs once. In addition, the training process of CF-BERT is roughly equivalent to
SBERT. The downstream NLP task datasets we take are small datasets, so we do not discuss time and
memory in detail here. The experiential results demonstrate the universality of component focusing,
all models with component focusing achieve a higher score in NLP tasks than those without. Therefore,
the addition of component focus plays a role in optimizing sentence representation, and our model can
learn more meaningful sentence representations.

However, with the same component focus method, the performance growth from USE and
CF-BERTBASE to CF-BERTLARGE is diminishing. We speculate that this may be because the performance
of the USE model is intrinsically inferior to the CF-BERT model. In other words, the CF-BERT
models are powerful enough because CF-BERT has fine-tuned for specific tasks and can capture
more semantic information than USE. Therefore, the increase in results obtained by enhancing the
component focus part may also be limited. Similarly, CF-BERTLARGE is closer to the performance ceiling
than CF-BERTBASE, so even if other useful information of representation is added, the performance
improvement of CF-BERTLARGE may be smaller.

5. Discussion: The Impact of Weight Factor Wcf on Model Performance

As mentioned before, weight factor Wc f is used to adjust the weight of the component-enhanced
part so that the best sentence representation is obtained by Equation (1). This section selects a grid
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search to study the impact of different weight factors on model performance and describes how to find
the Wc f corresponding to the best performance.

Grid search is used for hyperparametric optimization to improve model performance by optimizing
the optimal combination of hyperparameters. We only need to determine one hyperparameter Wc f in
this paper. Firstly, a list of values is set for the hyperparameter of Wc f , and then the computer goes
through each to evaluate the performance and select the best one.

We first chose Wc f ∈ {2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0} to study the influence of the weight factor on
model performance, then Wc f is limited to the range of 0 (without component focusing) to 1.0, with the
increasing rate of 0.1 (Wc f ∈ {0, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}). We changed Wc f and performed
SICK-R, SICK-E, and STS-B on CF-BERTBASE and CF-BERTLARGE. We did not observe a significant
difference between CF-BERTBASE and CF-BERTLARGE. Experimental results of CF-BERTLARGE on
SICK-R and STS-B are displayed in Figure 3 and Table 7 (only Pearson correlation (*100) is displayed).

We find that the first experiment brings terrible results. Performance is much worse than the
models without component focusing. When Wc f > 6.0, all the performance degradation exceeds six
points (we did not show Wc f ∈{7.0, 8.0,9.0,10.0}). This demonstrates that component focus can be used
as a means of feature supplement rather than dominance. As shown in Figure 3, when the weight factor
Wc f is in the range of 0.1 to 0.5, the score first increases and then decreases, but all of the performance is
improved compared to the case of Wc f = 0. Further increasing the value of Wc f would bring negative
feedback. When Wc f exceeds 0.5, the performance decreases as Wc f increases, and the performance is
even lower than the model without component focusing (Wc f = 0). Experiments always get the best
results when Wc f reaches around 0.2. The results shown in Table 7 in black bold represent the best of
all models and those underlined represent the second-best results.
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Table 7. Pearson correlations of different weight factors for CF-BERTLARGE.

Wcf 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0

SICK-R 88.78 89.05 89.29 89.17 89.05 88.83 88.68 88.33 88.01 87.63 87.31 86.22 85.23 84.34 83.12 82.01

STS-B 87.41 87.69 87.83 87.66 87.54 87.51 87.19 86.72 86.33 86.11 85.81 85.18 84.26 83.38 82.17 81.10
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6. Conclusions

In this paper, we introduce a component focus sentence representation method based on modifying
BERT with a Siamese network (CF-BERT). Due to focusing on crucial components (mainly from subject,
predicate, and object) with their dependency relations, there is a way to interpret the sentence
embedding in depth in our model. Experimental results over two different tasks show that the model
outperforms other sentence models. To implement this idea, CF-BERT divides a sentence representation
into two parts: a basic part (the complete sentence) and a component-enhanced part, which contains
the crucial components of a sentence with their relations acquired by dependency parsing. Both
parts can be mapped into fixed-sized sentence vector embeddings by using CF-BERT. Additionally,
the weight factor is introduced to adjust the ratio of the two parts to obtain the complete semantically
meaningful sentence representation. The results indicate that the addition of a component-enhanced
part within a certain range improves the sentence representation. This confirms that the method using
component focus improves the representation of sentences, reduces the impact of noisy words on
sentence meanings, and then performs effective NLP tasks.

In future work, we will specifically analyze different downstream tasks and leverage other lexical
and syntactic information, such as the part-of-speech (POS). Words with different POS are of varying
importance in a sentence (for example, adverbs are much more crucial in sentiment analysis tasks).
We can assign the same weight to words with the same POS in a sentence. Each POS corresponds to a
different weight that can be automatically trained by the model.
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