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Featured Application: This work can be used for lightweight design of drone structures.

Abstract: This paper presents a hybrid topology optimization method for multipatch fused deposition
modeling (FDM) 3D printing to address the process-induced material anisotropy. The ‘multipatch’
concept consists of each printing layer disintegrated into multiple patches with different zigzag-type
filament deposition directions. The level set method was employed to represent and track the layer
shape evolution; discrete material optimization (DMO) model was adopted to realize the material
property interpolation among the patches. With this set-up, a concurrent optimization problem was
formulated to simultaneously optimize the topological structure of the printing layer, the multipatch
distribution, and the corresponding deposition directions. An asynchronous starting strategy is
proposed to prevent the local minimum solutions caused by the concurrent optimization scheme.
Several numerical examples were investigated to verify the effectiveness of the proposed method,
while satisfactory optimization results have been derived.
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1. Introduction

In additive manufacturing (AM) or 3D printing, many of the design complexity constraints in
conventional manufacturing methods can be eliminated due to its layer-by-layer material deposition
nature. Consequently, the creativity of the designers can be greatly released and realized. This is
why AM has attracted so much attention in research and industrial applications in the past decade.
At present, intense research on AM is being carried out regarding geometry design, material design,
computation tools, and manufacturing tools and process development [1,2].

Topology optimization has been treated as the main computational design method for AM [1–3].
Because the shape and topology are concurrently designed, topology optimization makes the greatest
design freedom possible compared with shape-only or size-only optimization. However, there are
new design rules and unique constraints induced by AM, which introduce new challenges such as
support structure design/elimination [4–10], minimum component size constraints [11–16], directional
material properties [17–19], topology design interpretation [20–23], variable-density cellular structure
design [24–28], and many others [29,30]. Detailed reviews on these topics can be found in [2,31].
Despite the efforts, a lack of solutions is still the common issue in the topology optimization for AM as
summarized by the literature. Among these topics, the design constraints imposed by the anisotropic
properties of AM materials are of interest and will be addressed by the hybrid topology optimization
technique proposed in this work.
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The directional material properties are rooted in the layer-by-layer deposition process, which
is a feature of the fused deposition modeling (FDM) technique. Specifically, the tensile modulus
and strength in the raster direction, the transverse direction, and the build direction are all evidently
different [18,32]. To approach the reality, topology optimization for AM should deal with these
directional variations. On the other hand, optimizing the filament deposition paths will provide an
extra possibility to enhance the structural performance. However, the anisotropic material properties
were often ignored by the topology optimization works for FDM printing [33]. Based on this background,
a hybrid topology optimization method of design for multipatch FDM 3D printing is proposed in this
paper, in which a printing layer is disintegrated into multiple patches and each patch has its unique
direction of the zigzag-type filament deposition. In this way, the topology optimization of the targeted
problem evolves from the traditional material/void interface design to a more sophisticated problem
involving multiple levels of design freedom listed as follows:

Design domain: The design domain defines the bounds of the material’s distribution. By topology
optimization, it will be divided into the material domain and the void.

Material domain: Originally, the material domain consists of homogeneous materials. Due to the
different deposition directions, the material domain is further decomposed into several sub-material
domains which are shown as the patches in Figure 1.
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Sub-material domain (patch): Each sub-material domain is characterized by a unique filament
deposition direction which is to be optimized.

Figure 2 illustrates the three levels of design variables. A novel optimization problem is configured
in this paper to simultaneously address all the design variables. Specially, the material domain is defined
by a level set function and then optimized through level set topology optimization. The sub-material
domains are not clearly distinguished from the beginning; instead, the candidate deposition directions
are interpolated under the discrete material optimization (DMO) scheme with density variables.
The sub-material domains will gradually emerge with the penalization of the density variables.
Moreover, the deposition directions of the patches will be simultaneously optimized since the material
constitutive model is deposition direction-dependent. More details will be provided in the next section.

For topology optimization with material anisotropy, the methods are conventionally categorized
into two groups: topology optimization with discrete raster angles [34–36] and topology optimization
with continuous raster angles [37–40]. The former employed the pointwise different raster angles
which provides the largest design space; however, the discrete angle optimization result cannot be
directly used for 3D printing, since it is non-trivial to derive equidistant continuous tool paths from
the disorganized raster angles. The latter provides directly useful continuous deposition paths with
equidistance; however, the design space is severely restricted by the contour-offset path pattern, i.e., all
the deposition paths follow the shape of the structural boundary. Therefore, the motivation of this
paper is to develop a new method that could achieve a balance between the manufacturability (with
continuous deposition paths) and the allowable design space (with multiple patches).
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In the following section, the review of the AM induced directional material properties and their
applications in engineering analysis and optimization are introduced. The multilevel optimization
problem definition which involves the design domain modeling, the material domain modeling, and
the sub-material domain modeling is presented in Section 3. Correspondingly, the solutions to the
problem are revealed in Section 4. The case studies demonstrated in Section 5 prove the proposed
method enhances the structural performance effectively. The conclusion of the contribution and the
prospect of future work are made at the end.

2. Literature Review

Because of the anisotropic properties induced by the layered manufacturing process in AM, a great
number of studies have been dedicated to studying the influence of anisotropic behaviors on design
activities [41–43]. The relevant literature in this field is reviewed in this section.

Ahn et al. [32] investigated the anisotropic material properties of acrylonitrile butadiene styrene
(ABS) parts made by FDM. Compared to the transverse direction, the material’s tensile and compressible
strengths are found to be stronger in the raster direction. Further, the classical lamination theory
and Tsai–Wu failure criterion were applied to predict the failure load of FDM parts based on
the experimental anisotropic material properties, which showed reasonable agreement with the
experiments [44]. Lee et al. [45] conducted the compressive test of the FDM part built in different
directions that observed evidently different compressive strengths. It has also been verified by the
experiments conducted by Hill and Haghi [46] that the tensile modulus and tensile strength of the
FDM polycarbonate are stronger in the raster direction.

Therefore, the build/raster directions should be taken care of to improve the part design due
to the aforementioned anisotropic material properties. A novel cross-sectional structural analysis
approach was introduced by Umetani and Schmidt [47], which emphasized the geometric relationship
between the cross sections and the external load. Thus, the weakest cross section could be identified
and the build direction is designed to be perpendicular to it. Ulu et al. [17] tested the anisotropic
material properties through physical experiments. Then, surrogate modeling was performed based on
finite element simulations of different build directions. Based on the constructed surrogate model,
the optimal build direction was derived, which leads to a significantly improved factor of safety.
It has also been proven that the derived structural performance can be significantly improved by
simultaneously optimizing the build direction during topology optimization [19]. In a recent work,
Mirzendehdel et al. [48] employed the Tsai–Wu failure criterion to constrain the anisotropic strength.
The optimization result showed evidently more strength than the result design with the von Mises
criterion. However, in this work, the build direction is not treated as a design variable.

Given raster direction optimization, topology optimization with discrete angle variables has
attracted the major attention. Hoglund and Smith [34] performed concurrent structural topology
and raster direction optimization, but the raster direction was treated as identical all over the design
domain. Jiang et al. [35] later performed the similar concurrent optimization with pointwise different
raster orientations. Yan et al. [36] developed a hybrid stress-strain method for the current bi-directional
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evolutionary structural optimization method (BESO) type topology optimization and the discrete
raster angles, which addressed repeated global minimum problem. For the above studies, an obvious
limitation is that the discrete angle optimization result cannot be directly used for 3D printing, since
it is nontrivial to derive equidistant continuous tool paths. To overcome this limitation, topology
optimization with continuous tool path planning was recently brought forward [35–37]. Most of the
relevant studies focused on the contour-offset tool path which meant the filament deposition paths
were created by offsetting the structural boundary. This type of tool path planning is made possible by
employing the level set function for structural representation due to the signed distance feature [49].
However, the design space is severely reduced because the raster directions have to follow the shape of
the boundary profile [43]. To avoid this issue, the multipatch tool path planning will be introduced in
this paper. Specifically, the material domain will be divided into different patches and a unidirectional
zigzag deposition path will be defined inside each patch. Then, the material domain representation and
the patch (sub-material domain) representation are separated. As a result, a larger design space could
be explored compared to design with contour-offset tool path, while the equidistance and continuity
requirements can still be satisfied to guarantee the printability.

3. Problem Definition

3.1. Design Domain Modeling

The level set function is applied to the model and optimize the material domain in this work.
In [50], Osher and Sethian introduced the level set function as a natural way to represent a closed
boundary. Specifically, if D is the initial design domain, Ω ∈ Rn (n = 2 or 3) represent the material
domain, and ∂Ω behaves as the material/void interface, then the level set function is defined as:

Φ(X) > 0, X ∈ Ω/∂Ω

Φ(X) = 0, X ∈ ∂Ω

Φ(X) < 0, X ∈ D/Ω

(1)

The Heaviside and Dirac delta functions are commonly applied to model the domain and boundary,
as shown in Equations (2) and (3) respectively:H(Φ) = 1, Φ ≥ 0

H(Φ) = 0, Φ < 0
(2)

δ(Φ) = ∂H(Φ)/∂Φ (3)

Then, the interior and boundary of the material domain can be expressed as:

Ω =
{
X

∣∣∣ H(Φ(X)) = 1
}

(4)

∂Ω =
{
X

∣∣∣ δ(Φ(X)) > 0
}

(5)

In practice, the approximate Heaviside and Dirac delta functions [51,52] are usually employed to
facilitate the numerical domain and boundary integrations.

Level set also supports the multimaterial domain modeling. Multiple level set functions are
available among which there are two generally applied approaches: the “color” level set [53,54] and the
MMLS (Multimaterial level set) [55,56], which can be potentially extended to multimaterial multipatch
FDM 3D printing.
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3.2. Material Domain Modeling

As mentioned above, the material domain is decomposed into sub-domains in which the orientation
of the zigzag-type filament deposition is distinct. In each sub-domain, by treating the material type
and the corresponding raster direction together as an independent material type, multimaterial level
set modeling makes it feasible to model the sub-domains. However, the authors intend to reserve
the multimaterial level set modeling for the potential extension to multimaterial multipatch FDM.
Therefore, another multimaterial modeling method DMO is applied in this work. DMO provides an
effective way to conduct local interpolation between the candidate raster directions and it forces each
local point to approach a specific raster direction at convergence. One benefit of combining the level
set and DMO is that only n level set functions and m density variables are required to model n material
types plus m raster directions.

Initially proposed by [57,58], DMO was utilized to interpolate between the multiple material
selections applied to composite laminate design. Later, it has been actively applied to multilevel
structural optimization problems [59]. The specific interpolation scheme is presented in Equation (6):

D(ρe
1,ρe

2) = (ρe
1)

p[1− (ρe
2)

p]D1 + (ρe
2)

p[1− (ρe
1)

p
]
D2 (6)

in which ρe
1 and ρe

2 are local material volume ratios (i.e., relative densities) of material 1 and 2 which
are distinguished by the different raster directions. D1 and D2 are the elasticity tensors corresponding
to the two material types. p is the penalization term which is usually larger than 3 (i.e., p ≥ 3).
The characteristic of the DMO scheme is that, the local material composition will converge to either
(ρe

1 = 1, ρe
2 = 0) or (ρe

1 = 0, ρe
2 = 1). In summary, ρe

1 and ρe
2 are the density variables to distinguish

the sub-material domains. Once reaching the convergence, (ρe
1 = 1, ρe

2 = 0) corresponds to D1, and
(ρe

1 = 0, ρe
2 = 1) corresponds to D2. D1 and D2 are the material elasticity matrixes for the same

orthotropic material model with different orientations.
In addition, it is trivial to extend the DMO to interpolate multiple candidate material types, as:

D(ρe) =
n∑

i=1

Di(ρe
i)

p
n∏

j=1; j,i

[1−
(
ρe

j
)p
]

 (7)

3.3. Sub-Material Domain Modeling

In each sub-material domain, the material properties will be affected by a raster direction variable
θ. With this variable, the interpolation presented in Equation (6) is changed into:

D(ρe
1,ρe

2,θ1,θ2) = (ρe
1)

p[1− (ρe
2)

p]D1(θ1) + (ρe
2)

p[1− (ρe
1)

p
]
D2(θ2) (8)

in which:
D1(θ1) = T(θ1)D0T(θ1)

T

D2(θ2) = T(θ2)D0T(θ2)
T (9)

and:

T(θ) =

∣∣∣∣∣∣∣∣∣
cos2 θ sin2 θ −2 cosθ sinθ
sin2 θ cos2 θ 2 cosθ sinθ

cosθ sinθ − cosθ sinθ cos2 θ− sin2 θ

∣∣∣∣∣∣∣∣∣ (10)

It should be noted that, D0 is a 2D elasticity tensor in case that the raster direction aligns with
the x-axis and θ is counted in the counter-clockwise direction. Note that, the optimization is similar
to multiscale topology optimization, wherein the second scale is treated as the raster directions.
The constitutive model can be similarly derived from the homogenization theory.



Appl. Sci. 2020, 10, 943 6 of 18

3.4. The Overall Problem Definition

So far, the design freedom in each level has been specified. As presented in Equation (11), the
overall problem is defined, which adopts the compliance minimization as the design objective. This
problem definition is built under the assumption that the material domain is divided into two patches.

Min.J =
∫

D e(u)TD(ρe
1,ρe

2,θ1,θ2)e(u)H(Φ)dΩ
s.t. a(u, v, Φ, D) = l(v, Φ), ∀v ∈ U∫

D H(Φ)dΩ ≤ Vmax

a(u, v, Φ, D) =
∫

D e(u)TD(ρe
1,ρe

2,θ1,θ2)e(v)H(Φ)dΩ
l(v, Φ) =

∫
D pTvH(Φ)dΩ +

∫
D τTvδ(Φ)|∇Φ|dΩ

(11)

in which a(u, v, Φ, D) is the energy bilinear form and l(v, Φ) is the load linear form. u is the

deformation vector, v is the test vector, and e(u) is the strain. U =
{
v ∈ H1(Ω)d

∣∣∣∣v = 0 on ΓD
}

is the
space of kinematically admissible displacement field. p is the body force and τ is the boundary traction
force. Vmax is the upper bound of the material volume.

The solution to this problem will be presented in the next section.

4. Problem Solution

The optimization problem will be solved by the gradient based approach. The sensitivity analysis
will be decomposed into three parts including (i) level set function, (ii) local densities, and (iii)
raster directions.

For the first part (i), the sensitivity analysis of the compliance-minimization problem under the
level set framework is quite mature. Therefore, the result is given directly as shown in Equation (12)
without detailed derivation:

L′ =
∫

D Rδ(Φ)Φ′dΩ =
∫

D Rδ(Φ)Vn|∇Φ|dΩ
R = −e(u)TD(ρe

1,ρe
2,θ1,θ2)e(u) + λ

(12)

where R is called shape gradient density, L is the Lagrangian, and λ is the Lagrange multiplier, which
is updated with the augmented Lagrange multiplier method. Then, by following Equation (13),

Vn = −R (13)

L is forced to change in the descent direction, as indicated by Equation (14):

L′ =
∫

D
−R2δ(Φ)|∇Φ|dΩ ≤ 0 (14)

For part (ii) and (iii), the partial derivative on ρe
i and θi are demonstrated in Equations (15)

and (16), respectively:

∂L/∂ρe
i =

∫
D
−e(u)T ∂D(ρe

1,ρe
2,θ1,θ2)

∂ρei
e(u)H(Φ)dΩ (15)

∂L/∂θi =

∫
D
−e(u)T ∂D(ρe

1,ρe
2,θ1,θ2)

∂θi
e(u)H(Φ)dΩ (16)

Therefore, the sensitivity results would be:

∂ρe
i/∂t = e(u)T ∂D(ρe

1,ρe
2,θ1,θ2)

∂ρei
e(u) (17)
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∂θi/∂t =
∫

D
e(u)T ∂D(ρe

1,ρe
2,θ1,θ2)

∂θi
e(u)H(Φ)dΩ (18)

in which t is the time variable, and,

∂D(ρe
1,ρe

2,θ1,θ2)
∂ρe

1
= p(ρe

1)
p−1[1− (ρe

2)
p]D1(θ1) + (ρe

2)
p[−p(ρe

1)
p−1

]
D2(θ2)

∂D(ρe
1,ρe

2,θ1,θ2)
∂ρe2

= (ρe
1)

p[−p(ρe
2)

p−1]D1(θ1) + p(ρe
2)

p−1[1− (ρe
1)

p
]
D2(θ2)

(19)

Subsequently, the design update can be performed based on the sensitivity results. The level set
function will be updated with the velocities of Equation (13) by solving the Hamilton-Jacobi equation.
This method is well established [51,52]. The density variables and the direction variables can be
updated with the steepest descent method based on the sensitivity information of Equations (17) and
(18), since they are not involved in the constraints. Figure 3 illustrates the flow chart of the solution
process. Note that, the three types of design variables are concurrently optimized in each iteration.
It is also possible to employ the sequential optimization strategy [60], which however requires three
times of finite element analysis of each iteration that lowers the efficiency.
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It is worth noting that, the optimization problem is highly non-convex which easily traps the
optimization result at a local minimum. The evolution of the three types of design variables can
hardly be coordinated due to the different magnitudes of sensitivity results. A common situation is
that, the density variables and the orientation variables evolve and form patches before the structure
fully evolves to have clear-identified load paths. Consequently, misconverged local areas will appear.
Figure 4 shows two examples that the raster directions inside the circles do not align with the
longitudinal directions of the structural members, since the density and orientation variables inside
the local areas converge before the structure reaching a clear load path. To alleviate this issue, an
asynchronous starting strategy is proposed by blocking the sensitivity analysis and design update of
the local densities for the initial N optimization iterations (indicated by the blue-colored dash lines
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in Figure 3). The purpose is to let the structural geometry evolve first to form clear load paths, and
thereafter, to optimize the density variable to classify the patches. In this way, the local optimum issue
as demonstrated in Figure 3 can be avoided.Appl. Sci. 2020, 10, 943 8 of 18 

 

 
(a) Cantilever. (b) Short cantilever 

Figure 4. Misconverged local areas. (a) Cantilever problem; (b) short cantilever problem. 

5. Case Studies 

In this section, a few numerical cases are studied to demonstrate the effectiveness of the 
proposed computational design method. In all the numerical examples, structured mesh with 
elements of unit size (1 by 1) is employed. 

5.1. Cantilever problem 

Firstly, the cantilever problem is investigated to minimize the structural compliance under the 
maximum material volume ratio of 0.5. The design domain has the size of 100mm by 50mm, which 
is discretized into 100 by 50 quadrilateral elements. The boundary conditions applied are shown in 
Figure 5(a). A point force of 1 kN is applied. The solid material with the Young’s Modulus of 1.3GPa 
in the raster direction and 0.8 GPa in the transverse direction is assumed to be used. In addition, the 
Poisson’s ratio is 0.4, and the shear modulus is 0.15 GPa. Figure 5(b) depicts the directions and the 
rotation angle 𝜃  of the raster direction, which is defined positively in the counter-clockwise 
direction. 

 
 

(a) Boundary conditions (b) Axes and the rotation angle 

Figure 5. Schematic of the cantilever problem definition. 
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5. Case Studies

In this section, a few numerical cases are studied to demonstrate the effectiveness of the proposed
computational design method. In all the numerical examples, structured mesh with elements of unit
size (1 by 1) is employed.

5.1. Cantilever Problem

Firstly, the cantilever problem is investigated to minimize the structural compliance under the
maximum material volume ratio of 0.5. The design domain has the size of 100mm by 50mm, which
is discretized into 100 by 50 quadrilateral elements. The boundary conditions applied are shown in
Figure 5a. A point force of 1 kN is applied. The solid material with the Young’s Modulus of 1.3GPa in
the raster direction and 0.8 GPa in the transverse direction is assumed to be used. In addition, the
Poisson’s ratio is 0.4, and the shear modulus is 0.15 GPa. Figure 5b depicts the directions and the
rotation angle θ of the raster direction, which is defined positively in the counter-clockwise direction.
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As mentioned earlier, for a part made by AM, there can be three different levels of design freedom
in total. To fully reveal their influences, two different optimization schemes will be tested with increased
design complexities, which are:

(1) Topology optimization with a fixed uniraster direction of 90◦, 45◦ or 0◦;
(2) Topology optimization with two flexible raster directions starting from ±45◦.

The optimization results are demonstrated in Figure 6 and Table 1.Appl. Sci. 2020, 10, 943 9 of 18 

  
(a) Input material distribution (b) Scheme 1 with 𝜃 = 90°  

  
(c) Scheme 1 with 𝜃 = 45°  (d) Scheme 1 with 𝜃 = 0° 

 
 

(e) Scheme 2 

Figure 6. Cantilever optimization results (the blue color shows the converged 𝝆𝒆𝟏 = 𝟏, the red color 
shows the converged 𝝆𝒆𝟐 = 𝟏, and the green color shows the misconverged or void areas). 

Table 1. Data of The Cantilever Optimization Results. 

 
Scheme 1 

with 𝜃 = 90° 
Scheme 1 

with 𝜃 = 45° 
Scheme 1 

with 𝜃 = 0° Scheme 2 

Structural 
compliance (J) 76.67 69.91 57.94 55.47 

Compliance 
reduction compared 

to the worst case 
0% 8.82% 24.43% 27.65% 

Optimal raster 
directions 90° 45° 0° ±15.44° 

Based on the optimization results, some interesting observations can be concluded as follows. 
(1) The optimization result with the raster direction of 0° outperforms the ones with the raster 

directions of 45° and 90°. This result is reasonable because the principal stresses distribute along the 
horizontal direction of the beam in the presented cantilever bending problem. 

(2) The optimization result with two designable raster directions yields the best structural 
performance. Specifically in Figure 6(e), the area in blue color employs the raster direction of 15.44° 
while the area in red color has the raster direction of −15.44°. 

Figure 6. Cantilever optimization results (the blue color shows the converged ρe
1 = 1, the red color

shows the converged ρe
2 = 1, and the green color shows the misconverged or void areas).

Table 1. Data of The Cantilever Optimization Results.

Scheme 1 with θ = 90◦ Scheme 1 with θ = 45◦ Scheme 1 with θ = 0◦ Scheme 2

Structural compliance (J) 76.67 69.91 57.94 55.47

Compliance reduction
compared to the worst case 0% 8.82% 24.43% 27.65%

Optimal raster directions 90◦ 45◦ 0◦ ±15.44◦

Based on the optimization results, some interesting observations can be concluded as follows.
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(1) The optimization result with the raster direction of 0◦ outperforms the ones with the raster
directions of 45◦ and 90◦. This result is reasonable because the principal stresses distribute along the
horizontal direction of the beam in the presented cantilever bending problem.

(2) The optimization result with two designable raster directions yields the best structural
performance. Specifically in Figure 6e, the area in blue color employs the raster direction of 15.44◦

while the area in red color has the raster direction of −15.44◦.
(3) A clear-cut solid structural design is derived since level set method is employed. Then,

within the solid area, ρe
1 ≥ 0.95 or ρe

2 ≥ 0.95 indicates clearly-formed patches, and 96.83% of the
solid elements have the density variables properly converged, which validates the effectiveness of the
DMO interpolation.

(4) The optimized shape in Figure 6c is non-symmetric about the horizontal axis even though
symmetric boundary and loading conditions are applied. The reason for this non-symmetric
phenomenon is that the material properties involved are not symmetric about the horizontal axis.

(5) Even though the raster directions are different, the results shown in Figure 6b–d share the
identical topology only with some small variations in shape. Theoretically, topology changes occur by
merging the predefined holes in the input topology structure shown in Figure 6a. Because the finite
element discretization is 100 × 50, a dense interior hole distribution is not adopted considering the
numerical stability. Therefore, the possible topology variations are restricted. On the other hand, the
impacts of the different raster directions are reflected in the shape variations.

5.2. Short Cantilever Problem

Next, the optimization of short cantilever problem is conducted. The boundary conditions applied
are presented in Figure 7a. A point force of 1 kN is applied. The problem configuration and the
material properties are defined the same as the previous example, except that the maximum material
volume ratio is 0.25 in this case.
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The two different optimization schemes implemented in the previous example are investigated
again. The corresponding optimization results are demonstrated in Figure 8 and Table 2.
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Table 2. Data of The Cantilever Optimization Results.

Scheme 1 with θ = 90◦ Scheme 1 with θ = 45 Scheme 1 with θ = 0◦ Scheme 2

Structural compliance (J) 11.31 12.02 11.48 8.12

Compliance reduction
compared to the worst case 5.91% 0% 4.49% 32.44%

Optimal raster directions 90◦ 45◦ 0◦ ±44.62◦Appl. Sci. 2020, 10, 943 11 of 18 
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Through the analysis of the optimization results, both similar and exclusive conclusions can be
drawn as compared to the previous example.

(1) The optimization results with the fixed raster directions of 0◦, 45◦, and 90◦ have nearly the
same structural performance.

(2) The optimization result with two designable raster directions has a much better
structural performance.

(3) A clear-cut solid structural design is derived since the level set method is employed. Then,
within the solid area, ρe

1 ≥ 0.95 or ρe
2 ≥ 0.95 indicates clearly-formed patches, and 97.39% of the solid

elements have the density variables properly converged.
(4) As shown in Figure 8c, the optimized shape is still non-symmetric about the horizontal axis

due to the non-symmetric material properties.

5.3. Michell Structure

Then, the Michell structure problem is studied. The boundary conditions applied are shown in
Figure 9. A point force of 1 kN is applied. The problem setup and the material properties are identically
defined as the short cantilever case.Appl. Sci. 2020, 10, 943 13 of 18 

 
Figure 9. Schematic of the Michell structure problem definition. 

Moreover, this example will highlight a new scheme of topology optimization with three 
designable raster directions (starting from 0° and ±45°). Scheme 2 defined in the previous two 
examples will also be studied for comparison. Correspondingly, the optimization results are 
presented in Figure 10.  

 

 
 

(a) Two raster directions 

 

 

 
(b) Three raster directions 

Figure 10. Structure optimization results (the blue color shows the converged 𝝆𝒆𝟏 = 𝟏, the red color 
shows the converged 𝝆𝒆𝟐 = 𝟏, the yellow color shows the converged 𝝆𝒆𝟑 = 𝟏, and the green color 
shows the misconverged or void areas). 

In comparison, the optimization with three designable raster directions depicted in Figure 10(b) 
has the structural compliance 7.38% smaller than the one with two designable raster directions. To 
be specific, the optimized raster directions of the design in Figure 10(a) are ±56.91°, while the 
optimized raster directions of the design in Figure 10(b) are ±57.18° and 0°. 

5.4. Messerschmidt-Bölkow-Blohm (MBB) structure 

At last, the MBB structure problem is studied. The boundary conditions applied are shown in 
Figure 11. A point force of 1 kN is applied. The problem setup and the material properties are 

Figure 9. Schematic of the Michell structure problem definition.



Appl. Sci. 2020, 10, 943 13 of 18

Moreover, this example will highlight a new scheme of topology optimization with three designable
raster directions (starting from 0◦ and ±45◦). Scheme 2 defined in the previous two examples will also
be studied for comparison. Correspondingly, the optimization results are presented in Figure 10.
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the misconverged or void areas).

In comparison, the optimization with three designable raster directions depicted in Figure 10b
has the structural compliance 7.38% smaller than the one with two designable raster directions. To be
specific, the optimized raster directions of the design in Figure 10a are ±56.91◦, while the optimized
raster directions of the design in Figure 10b are ±57.18◦ and 0◦.

5.4. Messerschmidt-Bölkow-Blohm (MBB) Structure

At last, the MBB structure problem is studied. The boundary conditions applied are shown
in Figure 11. A point force of 1 kN is applied. The problem setup and the material properties are
identically defined as the previous examples, except that the maximum material volume ratio is 0.4 in
this case.

Similar to the Michell case, this example will explore the topology optimization with three
designable raster directions (starting from 0◦ and ±45◦). Figure 2 defined in the first two examples will
also be studied for comparison. Correspondingly, the optimization results are presented in Figure 12.
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In comparison, the optimization with three designable raster directions depicted in Figure 12b
has the structural compliance 5.92% smaller than the one with two designable raster directions. To be
specific, the optimized raster directions of the design in Figure 12a are 39.99◦ for the blue colored area
and −5.03◦ for the red colored area, while the optimized raster directions of the design in Figure 12b
are 39.99◦ for the blue colored area, −48.12◦ for the red colored area, and 1.23◦ for the yellow colored
area. Moreover, the computing time of the case with two designable raster directions is 221s while the
case with three raster directions consumes 585s. A major reason of the longer time of the latter case is
that, it takes more iterations to make the density variables converge since three set of densities are
involved. A desktop computer with an Intel Core I5-7400 CPU and 8GB RAM is used.
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At the end, we would add a discussion about the initial-guess dependency issue. A finer mesh of
150 by 75 elements is used to perform the same topology optimization study with two designable raster
directions. Initial setups of the level set function, density variables and raster directions all remain the
same. Then, the optimization results are demonstrated in Figure 13. The optimized raster directions are
40.02◦ for the blue colored area and −4.84◦ for the red colored area. By comparing Figures 12a and 13,
we can see that both the structural geometry and the raster directions are very close. The reason is that,
the same initial guess of hole distribution is adopted for the two optimization schemes, while for the
level set method, the design result is more sensitive to the initial artificial hole distribution instead of
the mesh scale. Even so, the optimization with a finer mesh takes 165 iterations to converge which
consumes 10 more iterations than the case with a coarse mesh; and the structural compliance of the
finer mesh optimization is 1.51% smaller. The computing time of the finer mesh optimization is 675s.
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6. Conclusions

A hybrid topology optimization technique is presented in this paper in which the level set
and DMO approaches are simultaneously applied to design and optimize the multipatch FDM
parts. With the proposed technique, the concurrent material domain optimization, material domain
decomposition with distinguished raster directions, and multiraster angle optimization have been
realized. The effectiveness has been proven by a few case studies. In particular, aided by the
proposed asynchronous starting strategy, the local misconvergence phenomenon of material domain
decomposition has been successfully eliminated. It has also been observed that, the more patches
simultaneously involved, the better the design performance will be.

In the future, the optimally designed parts are expected to be printed out so that their structural
performance can be validated through experimental tests. In addition, the potential extension
to multi-material, multipatch additive manufacturing will be explored. In the current study,
a unidirectional zigzag deposition path is defined inside each patch for the sake of simplicity. In fact,
the deposition path pattern of each patch can be extended to more complex patterns other than the
zig-zag to achieve an even better design performance. Therefore, this aspect will be explored in our
future work as well.
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