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Abstract: Positioning systems providing high-precision real-time measurements over very large spatial
scales are urgently required for large-scale industrial manufacturing applications. While large-scale
positioning systems (LSPSs) employing laser transmitter stations have been employed in engineering
practice, the introduction of an LSPS into an existing industrial manufacturing setting must first
solve the problems of docking with existing control points and external parameter calibration.
However, calibrating the external parameters of a measurement system is very difficult under
extreme and complicated working conditions due to the limited visibility of transmitter stations
and the measurement distances involved. This problem is addressed in this paper by proposing
a single transmitter station calibration method based on a photoelectric scanning multi-angle resection
positioning model that combines photoelectric scanning angle measurements and spatial resection
in conjunction with an external receiver array. Positioning information is obtained by solving
the unknown parameters of the model according to a nonlinear optimization approach using the
Levenberg–Marquardt least-squares fitting algorithm. The feasibility and spatial positioning accuracy
of the proposed method are verified experimentally. The experimental results demonstrate that the
principles of the proposed method are correct, and the method can achieve millimeter measurement
accuracy, which meets the requirements of measurement tasks in engineering applications.

Keywords: positioning system; space resection; calibration; Levenberg–Marquardt algorithm

1. Introduction

Conventional metrology systems employed in industrial engineering applications typically
provide real-time three-dimensional (3D) measurements over a range from millimeters to 10 m with
precisions ranging from microns to sub-millimeters. In contrast, the standard measurement range of
metrology systems employed in the fields of surveying and mapping is at least 100 m with precisions
that are generally on the scale of millimeters or centimeters [1,2]. This discrepancy between the
measurement ranges and precisions of these two metrology systems is acceptable when the scope
of industrial engineering applications is limited in size to the measurement ranges provided by
conventional metrology systems employed in industrial settings. However, the scope of industrial
engineering applications has greatly expanded in recent years to include applications conducted
within large uncontrollable spaces, such as aircraft assembly and large ship manufacturing, which has
provided urgent motivation for the development of relatively high-precision metrology systems
applicable to very large measurement spaces [3]. Meanwhile, the metrology systems employed in
the fields of surveying and mapping have been developing progressively to facilitate automation
and real-time measurements with increased precision. Accordingly, the measurement range and
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precision and other capabilities of these two metrology systems have been increasingly approaching
each other over time based on similar measurement methodologies, resulting in a growing trend
toward integration [4–6].

Recently, large-scale positioning systems (LSPSs), such as indoor global positioning systems
(iGPSs) and workshop measuring and positioning systems (wMPSs), have been developed to provide
3D real-time dynamic industrial measurements based on photoelectric scanning [7,8]. These systems
employ multiple laser transmitter stations distributed in the measurement space and several receivers
located at the target points to be measured. Accordingly, these systems can simultaneously perform
parallel measurements of multiple targets in a manner similar to that of the GPS resection principle.
Moreover, the measurement range can be expanded by simply increasing the number of laser
transmitter stations. Many LSPSs have been used in engineering practice at present. For example,
the iGPS produced by Nikon provides indoor space measurements with an accuracy of 0.2 mm [9,10].
In addition, a concrete realization scheme and calibration method for wMPSs were proposed by Zhu
et al. [11–13]. Meanwhile, the influence of wMPS network layout on location error was investigated
by Zhi et al. [14], and the hardware and measurement algorithm employed in wMPSs have been
optimized by Lao et al. [15,16].

While LSPSs employing laser transmitter stations have been employed in engineering practice,
the introduction of an LSPS into an existing industrial manufacturing setting must first solve the
problems of docking with existing control points and external parameter calibration. At present,
the layout methods include the calibration of reference scale and calibration of control points.
Both methods require two or more launch stations to complete the calibration [17,18]. There are
three key factors to consider in layout; the first is effective measurement distance, the second is
to ensure the rendezvous angles between launch stations, and the last is to ensure that all of the
launch stations are visible to the target. However, in the local complex field measurement tasks,
especially in the construction process, the site environment is complex, and it is difficult to ensure
that multiple launch stations and the target point can be seen, which brings great inconvenience
to the actual measurement. In addition, the layout calibration process of distributed measurement
method is time-consuming and difficult. Therefore, aiming at the above problems, this paper takes
a wMPS system as the research platform and proposes a flexible, single-station method for coordinate
measurement. This method combines photoelectric scanning angle measurement sensing technology
with the principle of spatial resection in photogrammetry in conjunction with an external receiver
array [5,19]. Accordingly, the proposed calibration method avoids the limitations associated with
a multi-station layout. Positioning information is obtained by solving the unknown parameters of the
model according to a nonlinear optimization approach using the Levenberg–Marquardt least-squares
fitting algorithm [20,21].

The remainder of this article is organized as follows. Section 2 presents the working principles
and mathematical model of the wMPS. Section 3 presents a single station calibration model based
on a combination of photoelectric scanning angle measurements and single image space resection in
conjunction with an external receiver array, and the objective function solution process is discussed.
The proposed approach is verified experimentally in Section 4. Finally, a brief overview of the work,
concluding remarks, and a discussion of future research are presented in Section 5.

2. Laser Transmitter Measurement System

2.1. System Composition and Measurement Principles

A laser transmitter measurement system is primarily composed of a rotary-laser transmitter,
a photoelectric receiver, and a terminal computer. As shown in Figure 1, the transmitter consists of
a rotating head and a stationary base, where two laser modules capable of emitting fan-shaped laser
beams are fixed on the rotating head at 90◦ angles, such that the optical axes of the laser modules are
perpendicular to each other, and the tilt angles of the two planar laser beams relative to the rotating
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shaft are designed as +45◦ and −45◦, respectively. The rotating head spins at a predefined rate in the
anticlockwise direction, and the lasers accordingly scan the measurement space around the transmitter.
Meanwhile, a pulsed laser is mounted on the stationary base, and emits a cyclical omnidirectional
laser strobe synchronously as the head rotates to a predefined position each cycle. The photoelectric
receiver is fixed at the target point, where it captures the synchronous laser strobe.
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2.2. Single Transmitter Station Angle Measurement Model

As shown in Figure 2, the coordinate measurement model of the wMPS can be simplified into
two rotary-laser fan-shaped planes 1 and 2, where the rotation axis of the two scanning laser planes
is given as the Z axis, the intersection of plane 1 and the Z axis is defined as the origin O, the X axis
initially lies in laser plane 1 and is perpendicular to the Z axis. The direction of the Y axis then follows
from the standard right-hand rule of a Cartesian coordinate system.
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plane 1 and plane 2 are the two fan-shaped laser planes that rotate about the Z axis at a fixed
rotational frequency.

The internal parameters of the transmitter (i.e., the initial plane parameters) are calibrated after the
instrument is assembled, where the initial normal vectors of plane 1 and plane 2 are given as ni1 = [ai1
bi1 ci1]T and ni2 = [ai2 bi2 ci2]T, respectively, where i (i = 1, 2, . . . , N) is the transmitter number, and
represents the position of the head at the first pulse signal, and di2 is the deviation between the two
laser planes along the Z axis (Figure 2), which is caused by laser module assembly errors. Here, ai1

2 +
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bi1
2 + ci1

2 = ai2
2 + bi2

2 + ci2
2 = 1, such that ni1 and ni2 are both unit vectors. Accordingly, the equations

of plane 1 and plane 2 can be expressed as follows.{
ai1X + bi1Y + ci1Z + di1 = 0
ai2X + bi2Y + ci2Z + di2 = 0

(1)

When any laser plane sweeps across the receiver at position M(X, Y, Z) over time, the relationship

between the current plane parameters
(
a′i j, b′i j, c′i j, d′i j

)
, where j is an integer ranging from 1 to 2, and

represents the times when the receiver at M(X, Y, Z) receives signals from planes 1 and 2, respectively,
and the initial plane parameters can be expressed as follows.

a′i j
b′i j
c′i j
d′i j

 =
 R

(
θ j

)
0

0 1




ai j
bi j
ci j
di j

 (2)

R
(
θ j

)
=


cos

(
θ j

)
− sin

(
θ j

)
0

sin
(
θ j

)
cos

(
θ j

)
0

0 0 1

 (3)

here, θ j is the angle of rotation of the plane from its initial position to the receiver, which is calculated
as follows. When the head returns to its initial position, the receiver receives the pulse signal at a time
recorded as t0. When the head rotates to θ1, the receiver receives the signal from laser plane 1 and
records the time as t1. When the head rotates to θ2, the receiver receives the light signal from laser
plane 2 and records the time as t2. Finally, when the head again rotates to its initial position, the time
is recorded as t′0. As a result, T = t′0 − t0 is the rotational period of the transmitter, which has been
calibrated at the time of manufacture. Assuming that the head rotates with an angular velocity ω,
θ j will be obtained as follows:

θ j = ω(t j − t0) =
2π(t j − t0)

(t′0 − t0)

here, t1 j = t j − t0 is the minimum time interval from the initial position to the receiver. Therefore, θ j can
be expressed according to t1j and T as follows:

θ j =
t1 j

T
× 2π (4)

2.3. Space Resection

The principle of space resection, which is also denoted as single image space resection, is illustrated
in Figure 3. Here, the points a, b, and c in the image coordinate system respectively correspond with
the predetermined ground coordinates of control points A, B, and C on the ground, and the exterior
orientation element of the image at the moment of aerial photography is solved according to the
collinear conditional Equation [22].
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Figure 3. Principle of single image space resection, where A, B, and C are known control points on the
ground, and a, b, and c are corresponding points in the image.

3. Single Transmitter Station Calibration Method

3.1. Photoelectric Scanning Multi-Angle Resection Positioning

The positioning of a single laser transmitter can be calibrated based on a combination of
photoelectric scanning angle measurements and single image space resection using a pre-designed
receiver array, as illustrated in Figure 4. Here, the laser transmitter can be regarded as a fixed position
camera, and the receiver array includes a fixed number of photoelectric receivers mounted at known
positions within a receiver array coordinate system o-xyz with its origin (i.e., the probe point) placed in
constant contact with a known measurement point within the transmitter station coordinate system
O-XYZ. These receivers serve as control points in the array coordinate system with corresponding
points in the transmitter station coordinate system. Then, the photoelectric scanning multi-angle
resection positioning equation can be established according to the scanning angle information measured
by each receiver on the receiver array. a sufficient number of control points on the receiver array
provide for a sufficient number of spatial geometric constraints to solve the rotational and translational
relationships between array coordinate system o-xyz and transmitter station coordinate system O-XYZ
to achieve spatial positioning.
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Figure 4. Schematic illustrating the photoelectric scanning multi-angle resection positioning method
using an external receiver array. The receiver array includes a fixed number of photoelectric receivers
mounted within a known array coordinate system o-xyz with its origin (i.e., the probe point) located at
a known measurement point within the transmitter station coordinate system O-XYZ. These receivers
serve as control points in the o-xyz frame with corresponding points in the O-XYZ frame obtained by
laser scanning.

The array coordinate frame o-xyz can be regarded as a coordinate frame lying intermediate with
the transmitter coordinate frame O-XYZ defined in Figure 2, and the origin of the array frame and
the coordinates of the control points in o-xyz are known structural parameters. The rotation of the
transmitter station head then yields the scanning angle information measured for each receiver on the
receiver array in the O-XYZ coordinate frame based on Equation (1). a similar scanning angle equation
can also be obtained for each receiver mounted on the receiver array. Therefore, the photoelectric
scanning multi-angle resection positioning model of the O-XYZ frame and the o-xyz frame can be
established by combining the above measurement information. The model is then applied to obtain
positioning information based on a least-squares optimization approach.
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3.2. Positioning Optimization Equation

The coordinates of receivers at any point within the O-XYZ frame are denoted as (X, Y, Z),
the corresponding coordinates in the o-xyz frame are denoted as (x, y, z), and R and T are the respective
rotation and translation matrices that relate (x, y, z) to (X, Y, Z) as follows.

X
Y
Z

 = R ·


x
y
z

+ T (5)

R =


r1 r2 r3

r4 r5 r6

r7 r8 r9

 (6)

T =


t1

t2

t3

 (7)

In addition, we note that R in Equation (6) is an orthogonal matrix. Substituting Equation (5) into
Equation (1) yields the following.

[
ai j bi j c i j

]
·


r1x + r2y + r3z + t1

r4x + r5y + r6z + t2

r7x + r8y + r9z + t3

+ di j = 0 (8)

The scanning process of the two fan-shaped lasers on the head provide two plane Equations (8)
for each control point. Therefore, N control points obtain 2N plane equations given by Equation (8).
Accordingly, this includes nine rotation parameters rl, l = 1, 2, . . . , 9, and three translation parameters
t1, t2, and t3, resulting in a total of 9 + 3 = 12 unknown parameters. Obtaining these 12 parameters
would yield the coordinates of the individual receivers mounted on the array in the O-XYZ frame.
This solution process is configured as follows.

Setting the distance between the control point and the two laser planes as ei j, yields the following.

ei j =
ai jX + bi jY + ci jZ + di j√

ai j2 + bi j2 + ci j2
(9)

This can be rewritten according to Equations (5) and (8) as follows.

ei j =
[

ai j bi j c i j

]
·


r1x + r2y + r3z + t1

r4x + r5y + r6z + t2

r7x + r8y + r9z + t3

+ di j (10)

Then, Formula (10) can be expanded for the k-th receiver, k = 1, 2, . . . , N, mounted on the receiver
array as follows.

ei jk = ai jr1xk + ai jr2yk + ai jr3zk + ai jt1 + bi jr4xk + bi jr5yk
+bi jr6zk + bi jt2 + ci jr7xk + ci jr8yk + ci jr9zk + ci jt3 + di j

(11)
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However, in practical applications, determining R by this method does not in general satisfy the
orthogonal constraint condition. Therefore, we adopt a nonlinear method to determine R and T. In this
method, the elements in Equation (11) satisfy the following orthogonal constraint conditions.

f1 = r2
1 + r2

2 + r2
3 − 1 = 0

f2 = r2
4 + r2

5 + r2
6 − 1 = 0

f3 = r2
7 + r2

8 + r2
9 − 1 = 0

f4 = r1r4 + r2r5 + r3r6 = 0
f5 = r1r7 + r2r8 + r3r9 = 0
f6 = r4r7 + r5r8 + r6r9 = 0

(12)

Accordingly, we obtain the unknown elements in R and T by employing (12) as penalty constraints
in the following nonlinear optimization algorithm:

F = min

∑∑
e2

i jk + µ
6∑

m=1

f 2
m

 (13)

where µ is a penalty factor. The solution of Equation (13) yields (X, Y, Z) from Equation (5) based on
the known values of (x, y, z).

3.3. Optimization Solution Method and Initial Value Estimates

Because Equation (13) is nonlinear, the solution to the objective function is considered to be
an unconstrained nonlinear optimization problem. In addition, a least-squares equation of these
12 unknown parameters can be solved when N ≥ 6. The Levenberg–Marquardt algorithm is considered
one of the most effective nonlinear least squares algorithms available owing to its advantages of
rapid convergence and high stability. Therefore, this algorithm is employed in the present work to
solve Equation (13). Because the Levenberg–Marquardt algorithm is a least-squares fitting method,
its calculation process first selects appropriate initial values of the 12 unknown parameters, and then
calculates their values step by step according to established iteration rules until their true values are
approached to within an established tolerance.

Defining the vectors J9 = [r1 r2 r3 r4 r5 r6 r7 r8 r9 t1 t2 t3]T and J3 = [r7 r8 r9]T allows Equation (8) to
be expressed as in the following matrix form:

UJ9 + VJ3 + D = 0 (14)

where U is a 2N × 9 matrix, V is a 2N × 3 matrix, and D is a 2N × 1 matrix, which are defined as follows.

U =



a11xk a11yk a11zk b11xk b11yk b11zk a11 b11 c11

a12xk a12yk a12zk b12xk b12yk b12zk a12 b12 c12
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
aN1xk aN1yk aN1zk bN1xk bN1yk bN1zk aN1 bN1 cN1

aN2xk aN2yk aN2zk bN2xk bN2yk bN2zk aN2 bN2 cN2



V =



c11x1 c1y1 c1z1

c12x1 c2y1 c2z1
...

...
...

...
...

...
cN1xk cN1yk cN1zk
cN2xk cN2yN cN2zk


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D = [di1, di2, . . . di1, di2]
T

Because plane 1 passes through O, we know that di1 = 0. In addition, di2 is relatively small owing
to laser module assembly adjustment. Therefore, the initial values of the elements of D can be set to 0.
This simplifies Equation (14) as

UJ9 + VJ3 = 0 (15)

It is also known from constraints (12) that r7, r8, and r9 satisfy the constraint condition f3 = r2
7 +

r2
8 + r2

9 − 1 = 0, which indicates that
JT

3 J3 − 1 = 0 (16)

Therefore, the initial values of the 12 unknown parameters in Equation (13) can be selected as

F0 = (UJ9 + VJ3)
T(UJ9 + VJ3) + λ

(
JT

3 J3 − 1
)

(17)

where λ is the Lagrange multiplier. Minimization over successive iterations is determined by obtaining
the partial derivatives of F0 with respect to J9 and J3, and setting ∂F0

∂J9
= 0 and ∂F0

∂J3
= 0. This yields the

following set of matrix equations:
(Q− λI)J3 = 0 (18)

where
Q = VT

(
I−U

(
UTU

)−1
UT

)
V (19)

and
J9 = −

(
UTU

)−1
UTVJ3 (20)

It is known from Equation (19) that Q is a positive definite matrix. In addition, it is known from
Equation (18) that λ is the minimum eigenvalue of Q, while it is known from Equations (16) and (18)
that J3 is the eigenvector of Q corresponding to λ. Finally, J9 can be obtained from Equation (20).

4. Verification Experiments

4.1. Experimental Setup

The feasibility and measurement accuracy of the proposed positioning method was validated by
arranging a single laser transmitter station in an outdoor space with dimensions of about 30 m × 30 m.
The structural parameters (internal parameters) of the transmitter station used in the experiments
are listed in Table 1. The multipoint receiver array employed during verification testing is shown in
Figure 5.

Table 1. Parameters of the laser planes of the transmitter station employed for verification testing,
where aj, bj, cj, and dj are the parameters of Equation (1).

Plane NO. 1 2

Parameter a1 b1 c1 d1 a2 b2 c3 d2

Value 0 −0.432757 0.901510 0 −0.757457 0.00227 0.652880 0.166872
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Figure 5. Multipoint (N = 6) receiver array employed for verification testing of the proposed calibration
method, where the probe is docked with the target point to be measured.

The receiver positions (i.e., control points) and probe position of the receiver array must be
calibrated in advance. Considering that a millimeter precision level is sufficient in engineering
applications, the receiver array can be calibrated using the positional parameters obtained from
the wMPS. However, the probe coordinates cannot be measured by directly installing the receiver.
Therefore, the distance constraint method was used to measure the probe coordinates. This can be
conducted with a high degree of precision by keeping the probe in contact with a fixed target point
and changing the posture of the receiver array multiple times to obtain the coordinates of the control
points in different postures. Accordingly, the multiple different coordinates can be used in the least
square method under over-determined conditions to obtain the spatial 3D coordinates of the probe
and control points based on the fact that the distances between the control points and the probe are
constant. The obtained positions of the control points in the o-xyz frame are listed in Table 2 based on
the probe point being defined as the origin, where the direction from the probe to P0 is defined as the z
axis, a line perpendicular to the z axis and passing through P1 is defined as the x axis, and the direction
of the y axis is defined according to the right-hand rule.

Table 2. Calibration results of the receiver array in Figure 5 (unit: mm). Here, the probe point is defined
as the origin of the o-xyz frame. The direction from the probe to P0 is defined as the z axis. a line
perpendicular to the z axis and passing through P1 is defined as the x axis. The direction of the y axis is
defined according to the right-hand rule.

Point ID x y z

P0 0.00 0.00 −943.99
P1 356.30 0.00 −771.45
P2 −221.69 −277.46 −771.68
P3 193.48 −9.92 −442.30
P4 −112.68 −157.93 −441.85
P5 0.41 −0.05 −371.92

Probe 0.00 0.00 0.00

4.2. Estimation and Analysis of the Experimental Data

To verify the feasibility and measurement accuracy of the positioning method, two schemes are
adopted to verify the model. The first method is to self-verify the measurement results under different
attitude of the same target point, and the second is to use total station to verify the measured data.
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4.2.1. Self-verification the Measurement Results

The accuracy of the proposed method was evaluated by acquiring multiple measurements of
a single target point in a known position relative to the transmitter station with the receiver array held
in constant contact under four different postures. Theoretically, the coordinate values in the O-XYZ
frame obtained in this process should be equivalent for all postures because the position of the probe
never changes.

The values of the conversion parameters rl, l = 1, 2, . . . , 9, and t1, t2, and t3 obtained with the
receiver array held in the four different postures are listed in Table 3. As expected, these values
generally vary considerably for the different array postures adopted. The coordinate values of the
target point in the O-XYZ frame obtained with the receiver array held in the four different postures and
their deviations from the true coordinate values are listed in Table 4, where ∆L =

√
∆X2 + ∆Y2 + ∆Z2

is the spatial difference between the true and measured target points. It can be seen from the table
that the single transmitter station system using the external receiver array generally obtains a greater
error in the X-axis direction than in the other directions, and the maximum error obtained was 2.5 mm,
while ∆L was not greater than 2.6 mm.

Table 3. Conversion parameters for transforming between the o-xyz frame and the O-XYZ frame with
the shaped receiver array held in four different postures.

Posture 1 2 3 4

r1 −0.87051125 −0.79116910 −0.77006598 −0.71680738
r2 0.45422411 0.45022282 0.51670999 0.58164049
r3 0.18944815 0.41394549 −0.37417830 −0.38455397
r4 0.32510523 0.53599181 0.61074966 0.68063671
r5 0.81972864 0.83638869 0.76657725 0.70342008
r6 −0.47154174 0.11474707 −0.19835402 −0.20477787
r7 −0.36948175 −0.29455764 0.18434507 0.15139587
r8 −0.34889166 0.31265615 −0.38127457 −0.40852700
r9 −0.86125362 −0.90304030 −0.90589527 −0.90010200
t1 7862.72 7366.73 6177.68 5561.38
t2 −4845.74 −6228.05 −7190.85 −7774.33
t3 3074.98 1337.52 −2220.50 −1858.96

Table 4. Measured X, Y, and Z coordinate values (unit: mm) and their deviations from the true values
with the external receiver array held in four different postures. Here, ∆L =

√
(∆X2 + ∆Y2 + ∆Z2).

Posture X Y Z ∆X ∆Y ∆Z ∆L

1 9556.1 1473.6 −1126.2 −2.5 −0.4 0.3 2.6
2 9560.5 1474.2 −1126.9 1.7 0.3 −0.5 1.8
3 9558.4 1473.7 −1126.3 −0.1 −0.3 0.2 0.4
4 9559.5 1474.4 −1126.6 0.9 0.5 −0.1 1.0

Average 9558.6 1474.0 −1126.5 1.3 0.4 0.3 1.5

Because the positions of each control point were directly obtained using the wMPS, and the
precision is sub-millimeter [18], we can then consider that the error of the single transmitter station
system is mainly caused by calibration error.

4.2.2. Accuracy Verification Experiment

A Leica TCL1201+ electronic total station (with the accuracy of angle measurement of ±1 and
that of distance measurement of ± (1 mm + 1.5 × 10−6 D)) were installed to verify the measured data.
Two sets of data were obtained by measuring 14 control points in the test site with total station (RTS)
and receiver array single station system (RASS). Three points were selected to obtain the transformation
parameters (see Table 5) from the coordinate system of the launching station to that of the total station.
The other 11 points measured by the single transmitting station were changed to the coordinate system
of the total station as the verification points by transforming the parameters.
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Table 5. Conversion parameters from the receiver array single station system (RASS) coordinate system
to the total station (RTS) coordinate system, where ∆X, ∆Y, and ∆Z are translation parameters, and ∆α,
∆β, and ∆γ are rotation parameters; K is a scale factor.

Parameter ∆X ∆Y ∆Z ∆α ∆β ∆γ K

Value 113,526.6 97,152.5 8704.9 −0.0240148 −0.028201 0.889006 0.99880

Comparison results are shown in Table 6, where DX, DY, and DZ are the differences of coordinates,
∆L denotes the location difference, and ∆L =

√
∆X2 + ∆Y2 + ∆Z2 represents the average value of

absolute value of each difference. It can be seen from the Table 6 that the single transmitter station
system using the external receiver array generally obtained a greater error at points 4 and 9, both of
which are farthest from the launch site, and the maximum error obtained was −2.8 mm, while ∆L was
not greater than 3.9 mm. That means, with increasing distance from the target to the launch station,
the accuracy of the receiver array single station system becomes lower. This is consistent with the
measurement error distribution of wMPS.

Table 6. Coordinate differences of verification points from (RTS) and (RASS) (mm), where DX, DY,
and DZ are the differences of coordinates. Here, ∆L =

√
(∆X2 + ∆Y2 + ∆Z2).

Point Name Method X Y Z DX DY DZ ∆L

1
RTS 106,367.8 103,597.0 10,061.9

0.8 1.5 −1.6 2.3RASS 106,367.0 103,595.5 10,063.5

2
RTS 106,166.7 105,443.3 10,060.8

−1.5 1.9 1.6 2.9RASS 106,168.2 105,441.4 10,059.2

3
RTS 106,156.3 106,285.1 10,071.0

−0.7 1.5 −2.1 2.7RASS 106,157.0 106,283.6 10,073.1

4
RTS 108,045.9 108,595.1 10,092.2

2.0 2.5 1.9 3.7RASS 108,043.9 108,592.6 10,090.3

5
RTS 109,667.7 107,222.4 10,097.9

0.9 −2.8 −0.9 3.1RASS 109,666.8 107,225.2 10,098.8

6
RTS 108,026.8 105,480.6 10,086.4

−0.6 1.6 −2.0 2.6RASS 108,027.4 105,479.0 10,088.4

7
RTS 112,321.8 104,221.2 10,079.4

−1.3 1.1 −1.8 2.5RASS 112,323.1 104,220.1 10,081.2

8
RTS 122,829.8 93,402.2 10,026.6

0.0 0.8 1.0 1.3RASS 122,829.8 93,401.4 10,025.6

9
RTS 126,278.7 96,203.8 10,097.0

1.9 2.4 −2.4 3.9RASS 126,276.8 96,201.4 10,099.4

10
RTS 110,704.1 102,478.5 10,061.2

1.7 0.6 1.8 2.5RASS 110,702.4 102,477.9 10,059.4

11
RTS 110,464.1 105,179.0 10,084.5

1.2 −1.7 −1.2 2.5RASS 110,462.9 105,180.7 10,085.7
Average 0.4 0.8 −0.5 2.7

Therefore, the experimental results clearly demonstrate that the single station calibration method
based on the receiver array proposed in this paper is entirely feasible, and the proposed solution
method of the measurement model is correct and effective.

5. Conclusions

While LSPSs employing laser transmitter stations have been employed in engineering
practice, the introduction of an LSPS into an existing industrial manufacturing setting must first
solve the problems of docking with existing control points and external parameter calibration.
However, calibrating the external parameters of a measurement system is very difficult under extreme
and complicated working conditions due to the limited visibility of transmitter stations and the
measurement distances involved. This problem was addressed here by proposing a single transmitter
station calibration method based on a photoelectric scanning multi-angle resection positioning model
that combines photoelectric scanning angle measurements and spatial resection in conjunction with an
external receiver array. Positioning information is then obtained by solving the unknown parameters of
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the model according to a nonlinear optimization approach using the Levenberg–Marquardt least-squares
fitting algorithm. Two approaches were used to verify the feasibility and measurement accuracy of
the positioning method. The experimental results demonstrated that the principles of the proposed
method are correct, and the method can achieve millimeter measurement accuracy, which meets the
requirements of measurement tasks in engineering applications. Compared with existing photoelectric
scanning multi-station calibration methods, the proposed single transmitter station method avoids
the limitations associated with a multi-station layout. The introduction of a local positioning system
into the engineering metrology field proposed in this paper is of great practical significance because it
inherits the characteristics of multi-tasking, high precision, and real-time measurements inherent in
photoelectric scanning technology. Additional research is required in the future, such as developing
a method for improving the measurement precision and reducing the effect of external receiver array
attitude on the measurement accuracy.
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