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Abstract: An in-plane radial sensitivity interferometer that uses the divergent illumination for
displacement measurement in the radial direction is presented. A description and mathematical
model for calculating the sensitivity vector are also presented. The interferometer has two polarizing
filters: a circular one and a linear one to implement the phase stepping technique. A measurement
of the radial deformation by thermal expansion is performed over an aluminium plate in order to
test the interferometer. The results indicate that the maximum contribution of the out-of-plane with
respect to the radial-in-plane sensitivity vector is less than 3% and decreases by less than 1% when
measurements are performed near the optical axis. The measurement is compared with the results
obtained by a finite element analysis on a virtual specimen model.
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1. Introduction

Many studies employ Electronic Speckle Pattern Interferometry (ESPI) for the measurement of
displacements, deformations, and surface shape. The optical system used in ESPI can be configured
to favour displacement measurements in a certain direction. Usually, measurements are made by
observing perpendicular or parallel displacements to an observer plane. Therefore, the technique is
typically divided into two types of interferometers according to the main sensitivity vector direction
of the optical system: in-plane and out-of-plane sensitivity interferometers. Robert Jones et al.
show several techniques based on ESPI and holographic interferometry ESPI, as well as an optical
configuration for several interferometric systems [1].

ESPI is an instrumental technique for full-field displacement and surface topography measuring
when it is not possible to make contact with the object. This technique is highly accurate in recording
measurements, and its resolution can be adjusted in a wide range, from nanometres to micrometres [2].
ESPI is widely used as a non-destructive test in mechanical elements [3], vibration analysis [4],
dynamic deformation analysis [5,6], and surface topometric measurement [7]. Unfortunately, optical
configurations in ESPI can only record displacement in one direction, making it necessary to employ
an optical system for each direction of the displacement—preferably orthogonal and simultaneous
ones. To measure the mechanical stresses around a crack, it is necessary to determine the deformation
in the radial direction on the edge of the crack tip [8]. Since determining the direction in which
displacement occurs is essential to the study of deformations, several methods have been proposed
to overcome this limitation. Hua Fan et al. [9], A.J. Moore et al. [10], Guillaume Richoz et al. [11],
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and David-Ignacio Serrano-Garcia et al. [12] show distinct approaches to simultaneous orthogonal
deformation measurements based on ESPI, and using different elements, such as polarizers, alternating
measurements between optical systems, and simultaneous illumination with different wavelengths
and interferometers.

On the other hand, Matías R. Viotti et al. and A. Albertazzi et al. introduced a device based on
two conic mirrors and collimated illumination to measure residual stresses by interferometry with
radial-in-plane sensitivity [13–15]. The conic mirrors are interconnected with piezoelectric actuators,
which are needed to implement the phase shift technique to find the deformation-associated optical
phase. To diminish the measurement mistakes due to the wavefront of illumination, it is necessary
to keep the radial direction of the sensitivity vector consistent by using collimated illumination over
the full conic mirror surface. This becomes increasingly expensive if the outer diameter of the conic
mirror is large because it requires a collimating lens with the same diameter. In this work, we reduce
costs by introducing a radial interferometer with divergent illumination that uses a linear polarizer
and a one-quarter wave retarder to perform the phase shift technique by polarization [16]. With this
method, we present a proposal for a solution to the problem of collimated illumination of an extended
beam diameter through a simplification of the typical optical system used in radial interferometry.
To verify the functionality of the radial interferometer with divergent illumination, without the need
of a collimated illumination, we performed deformation measurements in a thin aluminium plate
when it was heated from the rear by a point heat source. Results are compared to a finite element
analysis simulation.

2. Theoretical Background

Figure 1 shows a diagram of the optical arrangement used for ESPI interferometry with
radial-in-plane sensitivity. A laser illumination beam strikes an optical fibre at one end, emerging
from the other end in such a way that it can be considered as a point source (spherical wavefront),
which generates divergent illumination, SiL.
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Figure 1. (a) The proposed optical arrangement for ESPI interferometry with radial-in-plane sensitivity
and divergent illumination. (b) The scheme of optical arrangement, where SiL is the source of the
illumination laser; fc, one-quarter wave retarder film; fl, linear polarizer; Of, opaque filter; Mf, flat
mirror; Mc, conical mirror; Spc, surface specimen;

→
e is the sensitivity vector; and n̂A and n̂B are unitary

vectors related to the illumination beams.

There is an extensive literature explaining the polarization phase shifting method; e.g., E. M.
Frins et al. [17] show in detail the mathematical formulation, theory, and implementation of this
technique. To implement our polarization phase shifting system, the illumination beam passes through
a quarter-wave retarding plate ( f c). With its fast axis tilted in a 0 rad angle, the linearly polarized
filter ( f l) is set in a π/4 rad angle in front the first polarizer filter. A ring-shaped film with linear
polarization is used to polarize only the illumination beam bc reflected in the upper half of the conic
mirror, while the illumination beam ac remains with the illumination passed through the one-quarter
wave retarder film. An opaque body, O f , blocks the illumination that would otherwise strike on the
observation surface. A flat mirror, M f , placed in front the opaque body allows for observation of
the specimen surface through a charge-coupled device (CCD) camera. The two illumination beams,
ac and bc, converge at point c (Figure 1b), where a Speckle pattern can be observed. The conic mirror is
made from polished stainless steel and provides a way of magnifying the image of an object on an
opaque screen so that it can be viewed from directly in front of the screen, with a short projecting
distance necessary to produce the magnification. The central part of the specimen surface has been
excluded due to the convergence of the illumination reflected by the conic mirror. The unitary vector
of illumination, n̂A, keeps a circular polarization, while the unitary vector, n̂B, is linearly polarized.
The difference between the illumination unitary vectors is related to the sensitivity vector,

→
e , by the

following equation [18]:
→
e =

2π
λ
(n̂A − n̂B) (1)

where λ is the illumination beam’s wavelength.
The illumination unitary vectors n̂A and n̂B are obtained by considering: the polar coordinates

from the illumination source, SiL(rs, 0, zs); the cutting surface of the conical mirror at points a and b,
where the coordinates are Mc(rma,θ, zma) and Mc(rmb,θ+ π, zmb), respectively; and, finally, a point in
the plane of the specimen surface c with the coordinate Spc

(
rp,θ, zp

)
.

The quantities rs, zs, rp, zp, rma, zma, rmb, and zmb represent radial coordinates and the z-direction of
the source, the specimen, and the conic mirror at points a and b, respectively, while θ is the angular
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coordinate. In applying the reflection geometry in the mirror, as observed in Figure 2, we can describe
the relationship for the reflection of the illumination on the conic mirror on the plane (r, z) as [19]:

→

Ri =
→

I i − 2
(
→

I i·N̂i

)
N̂i, i = A, B (2)

where
→

Ri is the illumination vector reflected by the conic mirror to the specimen surface;
→

I i is the
illumination vector from the illumination source to the conic mirror; and N̂i is the normal unitary
vector to the surface of the conic mirror, with the feature that it is a vector with a constant direction on
the full surface, of which the component in cylindrical coordinates is N̂(r,θ, z) = [cos(δ),θ, sin(δ)].
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Considering the coordinates of each element, the illumination vectors reflected,
→

Ri, can be
expressed as shown in the following equation:

→

RA =


rp − rma

θ+ π
zp − zma

 =


rma − rs

θ+ π
zma − zs

− 2




rma − rs

θ+ π
zma − zs

 ·


cos(δa)

θ+ π
sin(δa)





cos(δa)

θ+ π
sin(δa)


→

RB =


rp − rmb
θ
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rmb − rs

θ
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rmb − rs

θ
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 ·


cos(δb)

θ
sin(δb)





cos(δb)

θ
sin(δb)


(3)

in such a way that the unitary vectors n̂A and n̂B can be calculated by means of the definition of the
unitary vector.

n̂A =

→

RA

|
→

RA|

, n̂B =

→

RB

|
→

RB|

(4)

The optical phase ∆φ associated with the displacements
→

d = [ur, uθ, uz] from all of the points that
confirm the specimen surface is related to the vector sensitivity

→
e (Equation (1)) by the expression [20]:

∆φ =
→
e ·
→

d . (5)

By analyzing the previous equations, we can simplify the optical phase into two components,
since the sensitivity vector always coincides with the rz plane. The optical phase will be composed by
in-plane and out-of-plane radial sensitivity depending on the displacement vector,

→
e (r, z) = erρ̂+ ezk̂,

where ρ̂ and k̂ are the unitary vectors in the radial and z axis directions for the components ex and ez,
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respectively. Simplifying Equation (5) by disregarding the associated quantity to ez and assuming that
the contribution to sensitivity is small, we can rewrite it as:

ur(r,θ) ≈
λ∆φ(r,θ)

2π(n̂A − n̂B)
. (6)

A numerical analysis can be done by taking into account the dimensions shown in Table 1 for the
optical arrangement of ESPI interferometry with in-plane radial sensitivity and divergent illumination.
Considering the Equations (1), (3), and (4), we can calculate the in-plane and out-of-plane radial
component of the sensitivity vector. As observed in Figure 3a, maximum sensitivity in the radial plane
is obtained in the centre of the cone and decreases towards the ends; it is unlikely that the sensitivity
component out-of-plane is minimal at the centre and increases towards the ends (see Figure 3b).

Table 1. Data for the numerical analysis.

Laser Illumination Data Wavelength, λ = 552 nm
Laser Power: 1 W

Digital camera CCD data Resolution: 804 × 556 pixels

Divergent illumination source coordinates, SiL(rs, 0, zs)
rs = 0

zs = 265 mm

Conic mirror dimensions

Outer radius: 37.5 mm
Inner radius: 25.0 mm

High: 20 mm
Conic mirror angle: δ = 32◦

Illuminated surface radius Radius: 25.0 mm
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As observed, the maximum in-plane radial sensitivity is obtained from the cone’s centre and
decreases towards the ends. In contrast, the sensitivity component out of the plane is minimal at the
centre and increases towards the ends. However, the contribution of the out-of-plane sensitivity is
much smaller (less than 3%) than the in-plane radial sensitivity. Figure 4 shows the calculation of the
total sensitivity of the system using the data in Table 1.
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As shown here, the out-of-plane component of the sensitivity vector on the outer side of the
observed area only represents less than 3% of the total sensitivity of the system, and this decreases to
zero as the observer moves towards the centre.

3. Experimental Results and Discussion

A convex cone mirror was manufactured by the machining and high-quality polishing of a
stainless-steel block, as shown in Figure 5. Micro-roughness measurement of the optical surface was
0.05 µm RMS (Root Mean Square). An aluminium plate mounted in a rigid frame was used as a
specimen. Deformations by dilatation in the plate were induced by heating it to 80 ◦C with an electric
resistance set in a small cylinder of 6 mm in diameter and 4 mm in thickness in contact with the rear.
This heating temperature was low enough to minimize out-of-plane displacements due to buckling
deformations. In consequence, deformations by heat convection effects were neglected.
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Figure 5. The conic mirror manufactured in stainless steel.

A 552 nm laser was used as a divergent illumination source set to zs = 265 mm in front of the
specimen, as shown in Figure 1. This position was required with respect to the vertex of the conical
mirror to avoid convergence and ensure full field analysis due to the geometrical design of the mirror.
The retarder-polarized system ( f c− f l) generated circular and linear polarizing states for both the
beam that crossed the polarizing ring and the beam that propagated freely. When the linear polarizer
rotated, linear polarizing states were generated, which allowed for the interference of the two beams
with different curvature radiuses, and this generated the observed patterns with radial symmetry.

The generated interferograms were captured by a CCD camera. The images were a monochromatic
640 × 480 pixels resolution of 8 bits. To obtain the optical phase, ∆φ, we used the polarizing [21]
shifting phase technique [22]. For this, a deformation in the sample was generated by heating in such a
way that temporal variations were longer than the capture time of the five interferograms. Each phase
shift was produced by changing the angle of the linear polarized filter (fl) so that five interferograms
with a relative shift of 2π

5 rad were obtained. The acquired images were filtered to normalize the
contrast of the interference fringes with digital image processing.

The result is shown in Figure 6. The optical unwrapping phase ∆φwas obtained by the algorithm
of the unwrapping phase proposed by Quiroga [23]. This algorithm had the advantage of no error
propagation during the unwrapping phase by means of adaptation of the evaluation trajectory during
the progression of the algorithm.
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Considering the system sensitivity shown in Figure 4 and using Equation (6), Figure 7 shows the
radial deformation of the surface. As mentioned above, it was not possible to take measurements in
the centre due to the convergence of the illumination at this point from the other directions.
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The measurement achieved for the maximum radial deformation was 0.8 µm when the plate was
heated to 80 ◦C by the rear in the centre point. The deformation decreased according to the increasing
radial distance. The contribution of the out-of-plane component of the sensitivity vector represented
less than 3% towards the outer edges. In maximum deformations, its contribution was estimated at
less than 1%, and that is why it was neglected.

Numerical simulations were performed using ANSYS software for finite element analysis applied
only to a three-dimensional (3D) geometrical model of the specimen plate. The finite elements were
created using a rotational sweeping method around the centre of the specimen plate according to the
spectated radial deformation. There were 144 angular and 72 radial divisions, which obtained 21,850
nodes and 21,582 elements. The thickness of each element was 2 mm. A heating point was applied
near the specimen plate located at the centre with the purpose of inducing a deformation by dilatation.
The maximum temperature applied to the simulation was 80 ◦C. The perimetral contour of the 3D
geometrical model was fixed without an assigned displacement. The setting of the plate and the result
of the simulation are shown in Figure 8.
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Figure 9 illustrates the comparison between the result of the simulation by finite element analysis
and ESPI with in-plane radial sensitivity.
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Figure 9. The comparison between ESPI radial-in-plane sensitivity measurement and the calculation of
the deformation by finite element analysis.

In the simulations, we can observe that the maximum radial deformation is 0.95 µm for a radius of
4 mm and that it approaches the position of the circular plate used to induce deformation by dilatation.
However, in the measurements of radius higher than 8 mm, we can see a strong correlation between the
ESPI measurements and the finite element analysis. In the geometrical model, near to the centre (radius
[−5, 5]), we can see an inconsistent measurement related to the meshing size of the finite elements.
These data were not considered for analysis.

4. Discussion, Advantages, and Disadvantages

The setup of this new radial-in-plane sensitivity interferometer that uses the divergent illumination
is very simple and provides accurate measurements in radial directions. However, it does not allow
for adjustments to the sensitivity vectors without losses in convergence in the illumination on the
test surface. The measurements obtained by the proposed interferometer successfully support the
presented mathematical model. It is shown that the radial-in-plane component contribution of the
sensitivity vector is higher in comparison with the out-of-plane component; however, we can expect an
error (less than 3%) near the centre of the observed area. Given the illumination convergence at the
centre of the observed surface, it is difficult to obtain accurate measurements around the optical axis,
so an alternative analysis is required.

5. Conclusions

We showed a new configuration for the polarized interferometer with in-plane radial sensitivity
using divergent illumination. We performed measurements of deformations due to the dilatation
of an aluminium plate that was heated by the rear by contact with a small cylindrical element
connected to electric resistance. The implemented system allowed us to measure deformations mainly
in the radial direction. The results were compared to a simulation by the finite element analysis
technique, which had comparable results. According to the mathematical model, the contribution
of the out-of-plane sensitivity vector is less than 1% near the centre of the measurement, and this
increases in function of the radius of less than 3%. We can conclude that the contribution of the
out-of-plane sensitivity vector increases proportionally to the radius; this represents a disadvantage in
determining the in-plane deformation at these points. On the other hand, it is not possible to obtain
reliable measurements at the centre of the conic mirror due to the convergence of the illumination beam.
As a perspective, we propose to carry out further research to determine the error of the measurement
in this condition.
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