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Abstract: Feature pyramids of convolutional neural networks (ConvNets)—from bottom to
top—are used by most recent researchers for the improvement of object detection accuracy,
but they seldom aim to address the correlation of each feature channel and the fusion of low-level
features and high-level features. In this paper, an Attention Pyramid Network (APN) is proposed,
which mainly contains the adaptive transformation module and feature attention block. The adaptive
transformation module utilizes the multiscale feature fusion, and makes full use of the accurate
target location information of low-level features and the semantic information of high-level features.
Then, the feature attention block strengthens the features of important channels and weakens the
features of unimportant channels through learning. By implementing the APN in a basic Mask
R-CNN system, our method achieves state-of-the-art results on the MS COCO dataset and 2018
WAD database without bells and whistles. In addition, the structure of the APN makes the network
parameters lighter, and runs at 4 ms on average, which is ignorable when compared to the inference
time of the backbone of ConvNet.

Keywords: APN; adaptive transformation; channel-wise attention; object detection; instance
segmentation

1. Introduction

Along with the popularization of the artificial intelligence systems [1,2], IOT [3] and the
accumulation of image data [4], automatic object detection is increasingly being widely used in video
surveillance and robot vision. Compared with manual inspections, computer vision technology can
effectively improve the inspection efficiency and avoid the influence of subjectivity on accuracy. Object
detection is a fundamental computer-vision task [5], and the existence of multiple scales and ratios is the
most challenging problem in object detection. More and more attention is being paid to this problem,
and various detection methods have emerged. In the image pyramid methods [6,7], as shown in
Figure 1a, images are generally resized to multiple scales and then resized to the same ratio for training
and inference. Because of the large number of images, the methods are computationally expensive.

By using pyramids of reference boxes (which are called anchors), the multiple scales and ratios
within the same feature map size are addressed and do not cause extra computational complexity for
the multiple feature map sizes [8]. As shown in Figure 1b, a trade-off between the anchors is made.
The anchor described above is adopted by methods such as Faster R-CNN [8], strengthened RPN [9],
and region-based fully convolutional networks [10]. The anchors with different scales and ratios are
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created in order to predict candidate bounding boxes for multi-scale objects. However, the topmost
feature map has a limitation on its fixed receptive field size—this method struggles to detect too large
or too small objects.

(a)Featurized image pyramid (b)Single feature map (c)Pyramidal feature hierachy

(d)Deep supervision (e)Feature Pyramid Network (f)Attention Pyramid Network

Figure 1. Different architectures for addressing multiple scales and sizes where feature maps are
indicated by yellow outlines.

Recent object detection methods, such as single shot multibox detector (SSD) [11] and multi-scale
deep convolutional neural network (MS-CNN) [12] are used for solving the object detection of multiple
scales and ratios. As shown in Figure 1c, the feature pyramid from bottom to top is adopted;
a well-directed classifier and bounding box regressor [13] with multiple scales/sizes are trained
to handle the object detection of different scales and ratios. However, owing to the multiple types
of bounding box regressors, we should fit each with specific training data. This method would
necessitate dividing the original training data into multiple types, and each filter would then be fed
much less training data, so the division cannot guarantee adequate training data for each filter. Besides,
each filter requires different proposal sizes, resulting in implementational complexity and the burden
of network training.

As shown in Figure 1d, using sideways predictions with deep supervision is another decent
method to use feature maps from different stages. Such a method generates the final prediction by
fusing all of the sideways predictions [14,15]. A top-down structure, such as that in Figure 1e, has
recently become popular. This structure has been proven to work well in feature pyramid networks
(FPN) [16], deconvolutional single shot detector (DSSD) [17], and Mask R-CNN [18]. Fusing feature
maps layer by layer is not efficient or effective enough when there are many layers to be combined
together. FPN developed a top-down pathway with lateral connections to build high-level semantic
feature maps at all scales. This architecture shows significant improvements as a generic feature
extractor in several applications such as object detection and instance object segmentation. However,
the FPN module only takes neighboring feature maps into consideration. Adding the feature maps
from top to bottom, level by level, weakens the influence from the top feature map to the bottom
feature map.

However, these methods seldom both use the relationship of each feature channel and the fusion
of low-level features and high-level features [19]. In this paper, we propose an upgraded method,
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the Attention Pyramid Network (APN), which can utilize both multiscale feature fusion and the
channel-wise attention mechanism to generate new feature pyramids. Instead of only fusing the
neighboring feature maps, we designed a new sufficient module that takes all levels of the feature
maps into consideration by using adaptive transformation, which shortens the information propagation
path of multiple feature maps to generate a new feature pyramid. Then, our network focuses on
feature attention [20], which reweights different channels of the feature maps. Different from the
traditional adaptive transformation and feature attention block, the proposed APN can utilize both
multiscale feature fusion and channel-wise attention mechanisms to generate new feature pyramids.
Moreover, the proposed APN is a lightweight network. The modification is independent of the
backbone convolutional architecture, and, in this paper, we present our result based on ResNets [21].
We evaluated our method on the 2018 CVPR WAD dataset and MS COCO dataset [22]. Without
any bells and whistles, we achieve a better result than the baseline methods. Moreover, our module
achieves the above improvement in a very short detection time, and our code and models will be made
publicly available. The contributions of this paper are summarized as follows:

• The adaptive transformation module can increase the information interaction between multiscale
features and improve the performance of feature pyramids.

• The feature attention block adopt a channel-wise attention mechanism to generate new feature
pyramids, and make full use of the relationship between channels. In addition, it can strengthen
the important channel information and weaken the unimportant channel information.

• A novel APN is proposed, and it is lightweight. The performance of the proposed APN was
evaluated via extensive simulations using the MS COCO and the WAD datasets; the results show
the effectiveness of our approach.

2. Related Work

Feature fusion is often used for image classification, visual tracking, object detection, etc. A single
classifier usually cannot handle some complex data classification; the technology of feature fusion
is used to fuse different visual features to solve the problem of image classification [23]. In the
problem of visual tracking, lighting, occlusion, and other factors often affect the recognition effect.
Some association models based on sparse representation [24,25] have been proposed for feature
fusion and have a certain robustness in visual tracking. In recent years, some algorithms based on
deep learning have adopted the idea of feature fusion. Song et al. proposed a deep feature fusion
network for the classification of hyperspectral images [26]. Using residual learning to optimize the
convolutional layer, and the model to fuse the features of different layers, the method achieved better
results than other classifiers. To solve the complex situation such as the small size of the object in the
aerial image, a feature fusion deep network was proposed [27], and the spatial relationship between
objects was increased by the fusion of network layer features, thus accurate detection results were
obtained. Facial expressions are very important information in human behavior research. To recognize
three-dimensional faces, Tian et al. proposed a deep feature fusion convolutional neural networks
(CNN) [28], which combines different two-dimensional face information to fine-tune the network
model, and achieves effective detection results. In addition, Starzacher et al. combined artificial
neural networks and support vector machines to achieve feature fusion and applied it to embedded
devices [29]. It can be used for vehicle classification and tracking in traffic monitoring, and has achieved
good execution time and classification rate on embedded platforms.

Attention was first introduced in the NLP area. Generally, attention is intended to choose
significant feature representations at some specific locations. Luong et al. [30] proposed global and
local attention approaches for neural machine translation. The global approach pays attention to all
source words while the local one only focuses on the subset of source words at a time. Vaswani et al. [31]
proposed a self-attention method for machine translation; the encoder and decoder can be connected
via an attention mechanism. However, it then gains great popularity in the computer vision area.
Wang et al. [32] proposed residual attention network where attention modules are stacked to generate
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attention-aware features. Moreover, attention residual learning is proposed to train very deep networks.
Fan et al. [33] developed a few-shot object detection model with an attention module on RPN and a
detector. Thus, the irrelevant background boxes can be filtered out. Wang et al. [34] proposed a novel
domain-attention mechanism for a universal object detection model. A domain-attention module is
leveraged and enables adapters to specialize on some individual domains. Zhang et al. [35] proposed
a backward attention filter to help the region proposal network generate reasonable regions of interest
(ROIs). The informative features are emphasized and, by utilizing the semantic features from the deep
layers, it can suppress the distractive features. Li et al. [36] sequentially integrated different kinds
of soft attention into CNNs for single-stage object detection. Huang et al. [37] designed Inverted
Attention to improve object detection. It inverts attention to feature maps and assigns more attention
to complementary object parts.

3. Materials and Methods

3.1. The Framework

As bottom-up feature maps are characterized with lower-level semantics, their activations are
accurately localized since they are subsampled fewer times. Contrarily, top-down feature maps are
enriched with abundant semantic information because of the multiple levels of the processing [16].
Besides, we aim to address the correlation of each feature channel to improve the accuracy of object
recognition. In this paper, we propose the APN based on the feature maps fusion paradigm and
channel-wise attention mechanism. The feature fusion module takes advantage of different scales of
feature maps to generate new pyramidal feature maps. This can help the following detectors to utilize
the contextual information. In our feature attention block, we strengthen the features of important
channels and weaken the features of unimportant channels. We focus on Mask R-CNN [18] to enhance
a greater understanding of the general-purpose generated APN. In Figure 2, the architecture of our
proposed APN is shown. The feature attention fusion block contains the adaptive transformation
module, feature attention block, and the fusion block.

Figure 2. The architecture of our proposed Attention Pyramid Network (APN). A building block
illustrates the feature attention fusion block, which takes the P5 generation process as an example.

First, we select an arbitrary size single-scale image as an input. Then, we generate proportionally
sized feature maps using backbone of the convolutional architectures. We use ResNets [21] as the
backbone to compute a feature hierarchy that consists of feature maps at several scales with a scaling
stride step of 2 pixels. In the feedforward computation of ConvNet, many layers producing output
maps of the same size are available, in which these layers are in the same network stage. As shown
in Figure 2, we use the feature activations output using each stage of the last residual block, denoted
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as {C2, C3, C4, C5} for the outputs of conv2, conv3, conv4, and conv5 with the corresponding strides
of {4, 8, 16, 32} pixels with respect to the input images, respectively. However, we do not integrate
conv1 into the pyramid because of its large memory consumption. As shown in Figure 2, we define
the relative concept of the bottom feature maps and the top feature maps.

3.2. Adaptive Transformation Module

Improvement in object detection accuracy requires building high-level semantic feature maps
at all scales for improved bottom-up and top-down pathways. To solve the problems associated
with different resolutions of the feature maps in different network stages, we adopt an adaptive
transformation to the feature maps separately. Specifically, we take C5 as an example. As discussed
in the previous section, all the other levels of the feature maps are considered as bottom feature
maps to C5. To resize all the bottom feature maps to the same C5 size, all bottom feature maps are
downsampled using nearest neighbor downsampling for the simplicity of different factors. We define
the downsampling as resolution downsampling, in which the spatial resolution is C4 by a stride
factor of 2 pixels. Moreover, we downsample the spatial resolution of C3 by a factor of 4, and so
on. Specifically, the downsampling factor should be adjusted according to the feature maps strides
corresponding to the input image. Contrarily, when we adjust the resolution of the top feature maps to
the bottom feature maps, we upsample the top feature maps, using nearest neighbor downsampling.
For example, when we take all the feature maps to generate the feature maps of the same size (C4),
we upsample the C5 spatial resolution by the factor of 2.

Because all levels of the pyramid use shared classifiers/regressors as in FPN, we fix the numbers
of channels (denoted as d) in all feature maps. We set d = 256, and all extra convolutional layers have
256-channel outputs. To fulfill this design, we apply a 1 × 1 convolutional layer to all the transformed
feature maps to fix the numbers of the channels. Then, we concatenate all the feature maps into
the same size. We also develop the method to fuse the selected feature maps—feature attention
block—to generate pyramid features.

3.3. Feature Attention Block

The feature attention block reweights the concatenated feature maps using a channel-wise
interaction. As described above, each channel of the concatenated feature map is obtained from
the separate convolutional filter. Each convolutional filter will compute over the previous feature map
to generate one channel of the concatenated feature map. It indicates that the convolutional filters will
not interact with each other. The convolutional filters are irrelevant to each other, which means that
the channels of the concatenated feature map are irrelative to each other. Therefore, the concatenated
feature map is the lack of channel correlation. We design the channel-based attention fusion module to
generate the final feature map. Figure 3 shows how we develop the channel-wise interaction on the
concatenated feature maps.

We squeeze all spatial information into one pixel, in which each channel is treated as the
representation of the whole channel’s information. We adopt a global average pooling as a simple
method to implement this idea. Therefore, the original shape of the concatenated feature map is
squeezed to the shape of N × 1 × 1 × 1024 (batch size × height × width × channel). Here, we fix the
channel amount of the concatenated feature map to 1024, which is denoted as Fsq.

We parameterize a gating mechanism by forming a bottleneck [38] with two 1 × 1 convolutional
layers to limit the module computation complexity. We apply the non-linearity after each 1 × 1
convolutional layer. We set the bottleneck ratio r to 16 to reduce the numbers of channels, and the
first 1 × 1 convolutional layer is applied to the bottleneck ratio to decrease the dimensions of the
channel-wise static that arises from Fsq after processing. To train the reweighted channel-wise statistics
capable of learning nonlinear interaction between channels, we apply the statistics with a nonlinear
activation ReLU. Then, we adopt a 1 × 1 convolutional layer with the same bottleneck ratio to increase
the dimensions. Since we already concatenate all the feature maps to process such channel-wise



Appl. Sci. 2020, 10, 883 6 of 16

interaction, we allow multiple channels to be emphasized rather than a one-hot activation. To fulfill the
learning of a non-mutually-exclusive relationship, we apply a nonlinear activation sigmoid. We make
the output tensor and input as vector s the same shape. This process is denoted as Fex.

Figure 3. Illustration of our feature attention block. Note that we display our feature map without the
dimension of batch size for easier understanding.

In this paper, we use the 1× 1 convolutional layer to replace the fully-connected layers—instead of
using the complex SENet [39] structure—to implement the channel-wise interaction. Our implemented
structure has a lighter module that proved effective in the experiment presented in Section 4.
After obtaining the vector s, we apply a rescaling to the concatenated feature maps, implemented by
adopting channel-wise multiplication between the concatenated feature maps and the vector. In this
way, we obtain the channel-wise attention feature maps.

3.4. Fusion Block

Here, we propose two different ways to fuse the reweighted feature map. One method is the
convolutional fusion, and we choose to implement the fusion block by applying a 3 × 3 convolutions
to each feature map. This convolution layer will fuse the 1024 channels feature map to the 256 channel
feature map, and reduce the complexity of the parameters. The other method we came up with was the
fusion block with a simple channel-wise addition fusion. This method works by dividing the feature
maps into four separate maps according to our fixed channel number based on 256 different stages
of the feature maps. After the processing, four reweighted feature maps from different stages of the
backbone are obtained. We adapt the fusion operation to the four reweighted feature maps to generate
one feature map, implementing this operation by channel-wise addition. According to the result of the
experiment presented in Section 4, we chose the first method as our final model design.

Finally, we append a 3 × 3 convolutions on each merged map to generate the final feature
maps and to reduce the aliasing effect of upsampling and downsampling. This final set of feature
maps is called {P2, P3, P4, P5}, corresponding to {C2, C3, C4, C5} of the same spatial sizes. Specifically,
each feature map in our final set is generated from all source feature maps with a better channel-wise
reweighted fusion.
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3.5. Loss Function

During the training of the RPN [8], each anchor was assigned a binary class label and five
parametric coordinates. To train the RPN, we needed to find positive and negative samples from all
anchors. The positive samples anchors were needed to satisfy the following conditions: the Intersection
over Union (IoU) [8] overlap between an anchor and the ground-truth is greater than 0.7, or an anchor
has the highest IoU overlaps with a ground-truth. Negative samples were defined as: IoU overlap less
than 0.3 to all ground truth boxes. Anchors that are neither positive nor negative were discarded. We
use the multi-task loss to minimize the objective function, which is defined as follows:

L(pk, bk) =
1

Ngtbox
∑
k
(Lclas(pk, p∗k ) +

λ

Nanchor
∑
k

p∗k Lreg(bk, b∗k ) (1)

where k represents the index of an anchor in the mini-batch. Ngtbox denotes the number of ground
truth boxes and Nanchor denotes the number of anchors. pk is the predicted possibility that anchor k is
the target object. p∗k is a binary value asserting whether the anchor is positive. bk is a vector that is
used to represent the predicted bounding box while b∗k denotes the ground-truth bounding box.

In the multi-task loss, we have two parts of the loss function. The first one is the classification loss.
Here, we use a cross-entropy function, which is defined as:

Lclas(pk, p∗k ) = p∗k log(pk) (Cross Entropy) (2)

The second part is the regression loss. We need to force the distance between the predicted
bounding box and the ground truth to be as close as possible. Here, we measure the distance by
smooth L1-norm, which is

Lreg(bk, b∗k ) =

{
|bk − b∗k |, i f |bk − b∗k | < 1
(bk − b∗k )

2, otherwize
(smooth L1) (3)

The term p∗k Lreg(bk, b∗k ) means only when the anchors are positive should the regression loss
function be activated, i.e., p∗k = 1. The outputs of the classification and regression layers include pk
and tk, respectively. Then, they need to be normalized with Nclas and Nreg, and balanced by weight λ.

For regression, the parameterizations of the four coordinates (top left corner, width, and height)
are defined as: 

bx = x−xa
wa

by = y−ya
ha

bw = log( w
wa
)

bh = log( h
ha
)


b∗x = x∗−xa

wa

b∗y = y∗−ya
ha

b∗w = log(w∗
wa

)

b∗h = log( h∗
ha
)

(4)

Here, x, y, w, h denote the four coordinates of the predict box; xa, ya, wa, ha denote those of the
anchor box; and x∗, y∗, w∗, h∗ denote those of the ground truth box.

3.6. Implementation Details

We re-implemented Mask R-CNN [18] and FPN [16] based on TensorFlow [40]. All pre-trained
models used in the experiments are publicly available. We trained our model using image centric
training [41]. For each training image, we sampled 200 Rois [8] with a positive-to-negative ratio of 1:3.
All pre-trained models that we used in experiments are publicly available. We replaced the FPN with
the APN during training, and the corresponding models were pre-trained from ImageNet.

We adopted the same end-to-end training as in the Mask R-CNN; however, we chose slightly
different hyperparameters. Following Mask R-CNN, proposals were generated from an independently
trained RPN [8,18] to allow convenient ablation and fair comparison. We took two images in one
image batch for training and used two NVidia TitanX GPUs (one image per GPU).
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4. Results and Discussion

We comprehensively evaluated the APN using the MS COCO dataset and the 2018 WAD dataset,
and our results outperform the baseline, i.e., the original FPN. In addition, The parameters and running
time of the APN are presented to prove how lightweight the network is, and we use the legend to
show the actual effect of object detection and segmentation. To prove the validity of the adaptive
transformation and feature attention block, we conducted comparative experiments on them separately.
We present our results following the standard evaluation metrics [18], denoted as Intersection over
Union (IoU) and Average Precision (AP), respectively, as well as using the instance segmentation
average precision, denoted as APM.

4.1. Dataset and Metrics

The MS COCO dataset is one of the most challenging datasets for object detection task due to
data complexity. It consists of 115 k images for training and 5 k images for validation (new split of
2017). In total, 20 k images were used in the test-dev and 20 k images were used as a test-challenge.
Ground-truth labels of both test-challenge and test-dev are not publicly available. The MS COCO
dataset has 80 classes with bounding box annotation. We trained our models on the train-2017 subset
and report results on the val-2017 subset for ablation study. We also report results for the test-dev for
comparison with the single model result.

In addition, the 2018 WAD dataset comes from the 2018 CVPR workshop on autonomous driving,
which was sponsored by Baidu Inc. This dataset consists of approximately 35 K images for training and
5 K images for validation. In total, 2 K test images were used in the test challenge. The dataset includes
seven classes with pixel-wise instance mask annotation. Ground-truth labels of the test challenge are
not publicly available. We trained our models on the training dataset and report our results for the
test-dev for comparison.

We followed the standard evaluation metrics, i.e., IoU,AP, AP@0.5, AP@0.75, APS, APM, and
APL. The last three measure performance corresponding to objects with different scales. Since our
framework is general to both object detection and instance segmentation, we also report the result for
instance segmentation.

Below is the definition of IoU:

IoU =
area(Bp ∩ BGT)

area(Bp ∪ BGT)
, (5)

where Bp is the prediction region from the detection/segmentation network and BGT is the
ground-truth body region. We used the mean IoU calculated from all test images.

The AP is defined as follows:

AP =
1
N

all

∑
tp

(tp + f p)
, (6)

where tp means the true positive, f p means the false positive, and N means the number of the
detection/segmentation results. AP in Equation (6) represents the averaged value of all categories.
Traditionally, this is called “mean average precision” (mAP). In the MS COCO dataset, it makes
no distinction between AP and mAP. Specifically, the MS COCO dataset uses 10 IoU thresholds
of 0.50:0.05:0.95. This is a break from tradition, where AP is computed at a single IoU of 0.5
(which corresponds to our metric AP.50).

4.2. Experiment on the MS COCO Dataset

We experimented on the Mask R-CNN [18] baselines, re-implemented based on the Tensorflow.
All pre-trained models that we used in experiments are publicly available. We replaced FPN with APN
during training, where the corresponding models were pre-trained from ImageNet. We adopted the
same end-to-end training as in the Mask R-CNN; however, we chose slightly different hyperparameters.
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We took two images in one image batch for training and used two NVidia TitanX GPUs (one image
per GPU). The shorter and longer edges of the images were 800 and 1333, if not otherwise noted.
For object detection, we trained our model with a learning rate that starts from 0.01, which decreased by
a factor of 0.1 after 960 k and 1280 k iterations and finally terminated at 1440 k iterations. This training
schedule resulted in 12.17 epochs over the 118,287 images in the MS COCO 2017 training dataset.
The rest of the hyperparameters remained the same as the Mask R-CNN.

We evaluated the performance of the proposed APN on the MS COCO dataset and compared
the test-dev results with the recent state-of-art models with different feature map fusion methods.
The results of our proposed ResNet-50 based APN are presented in Table 1. As shown in Table 1,
our model, trained and tested on single-scale images, outperforms the baselines by a large margin over
all of the compared evaluation metrics. Especially, it represents an improvement of 1.8 points for the
AP when compared to the original module.

Table 1. Comparisons of single model results on the MS COCO object detection benchmark.

AP AP@0.5 AP@0.75 APS APM APL Backbone

YOLOv3 [42] + FPN 33.0 57.9 34.4 18.3 35.4 41.9 DarkNet-53 [43]
RentinaNet [44] + FPN 39.1 59.1 42.3 21.8 42.7 50.2 ResNet-101
Faster R-CNN + FPN 36.2 59.1 39.0 18.2 39.0 48.2 ResNet-101

Faster R-CNN + G-RMI [45] 34.7 55.5 36.7 13.5 38.1 52.0 Inception-ResNet-v2 [46]
Faster R-CNN + TDM [47] 36.8 57.7 39.2 16.2 39.8 52.1 Inception-ResNet-v2

Mask R-CNN + FPN 38.2 60.3 41.7 20.1 41.1 50.2 ResNet-101
Mask R-CNN + FPN 39.8 62.3 43.4 22.1 43.2 51.2 ResNeXt-101 [48]

Mask R-CNN + APN 41.0 63.6 44.3 22.8 44.1 52.7 ResNet-50

In Table 1, when the FPN is applied to the Mask R-CNN, the best effect is achieved in the related
baseline methods. The ResNet-100 is used by the network as the backbone network, and ResNet-100
can usually achieve better recognition than ResNet-50 [21]. The backbone network of Our APN is
ResNet-50, but it still achieved a better effect than the FPN applied to the Mask R-CNN, which uses
ResNet-100 as the backbone network. Therefore, our APN network is more effective than FPN in
object recognition. In addition, we plotted the performance comparison curves for the APN and
baseline methods. In Figure 4, the abscissa is the threshold of IoU, and the ordinate is the AP value
of the APN and baseline methods. We use different color polylines to distinguish different methods.
Obviously, we can see that the APN proposed by us has higher AP values than any other methods in
any threshold range.

Figure 4. Mean Average Precision of the proposed APN-based model and FPN-based models in
different threshold.
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Figure 5 shows the comparison of the methods based on our model and the FPN. According to
the results, we can see that our improvement model detects more qualitative objects, which means our
model can detect those objects that highly overlap, but that belong to different individuals. The design
of our models takes advantage of the contextual information from the whole feature pyramid to fulfill
the object detection.

Mask R-CNN APN Mask R-CNN FPN YOLOv3 FPN RetinaNet FPN

Figure 5. Selected examples from the MS COCO 2017 test dataset using our method and other
methods using the FPN model.

Then, we performed the instance segmentation experiments on the COCO dataset. We report
the performance of the proposed APN on the COCO dataset for comparison. As shown in Table 2,
the APN applied to Mask R-CNN trained and tested on single-scale images already outperforms the
FPN applied to Mask R-CNN, and both use ResNet-50 as their backbone network. All instantiations of
our proposed model outperform the base variants of the latter model by nearly 2.0 points on average.

Table 2. The value of instance segmentation results for the COCO dataset. All entries are
single-model results.

APM APM
@0.5 APM

@0.75 APM
S APM

M APM
L

Mask R-CNN + FPN 46.5 72.4 51.0 29.2 50.6 59.7
Mask R-CNN + APN 48.3 74.7 53.1 31.2 52.4 61.4

+1.8 +2.3 +2.1 +2.0 +2.4 1.7
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Moreover, Figure 6 shows the partial examples of the segmentation results using the APN.
In Figure 6, we can see that different classes of objects can be accurately segmented.

Figure 6. Selected examples of the test results on the COCO test-dev images, using the proposed
APN and running at 5 fps.

In Table 3, we compare two different designs of our fusion block. Our simple channel-wise
addition fusion design results in a severe decrease in bounding box loss AP (2.4 points). Compared
with the simple channel-wise addition fusion strategy, the convolutional fusion strategy takes all pixels
from the feature maps into the calculation. This suggests that the more the spatial information is
considered in the fusion block, the better are the results the fusion block gains. The result was tested on
the MS COCO val-2017 set, and the backbone network was ResNet-50. Thus, adding a convolutional
layer to fuse the reweighted feature map obtains greater gains over simple channel-wise fusion.

Table 3. The test results of the APN when the channel-wise addition fusion and convolutional fusion
are used.

AP AP@0.5 AP@0.75 APS APM APL

Mask R-CNN + APN(channel-wise addition fusion) 53.0 76.2 59.9 35.9 58.0 64.1
Mask R-CNN + APN(convolutional fusion) 55.4 78.5 63.2 38.7 60.6 66.4

+2.4 +2.3 +3.3 +2.8 +1.4 +2.3

We further tested the efficiency of the APN for the task of object detection on the COCO set
test-dev. The comparison in Table 4 reveals that, with much fewer parameters, the APN compared
with the FPN when the backbone is ResNet-101 can still achieve better performance. Based on the
same backbone of ResNet-50, the proposed APN can achieve much better detection results. As shown
in Table 4, the APN based on the ResNet-50 is 2.8 points better than the FPN based on the ResNet-101
with nearly 20 million fewer parameters and the smaller backbone of ResNet-50. As the performance
of ResNeXt-101 is better than ResNet-50, and with a larger backbone model, the performance of the
APN can achieve better results. To test the efficiency of our design, we carried out more ablation
studies of the individual module of the APN. Figure 2 shows that the feature attention fusion block
we proposed is composed of the adaptive transformation module and feature attention block and
fusion block. Next, we tested the detection performance of the small module in the feature attention
fusion block when it is assembled separately and multiplied. In Table 4, we can see that the third row
is the case where the APN only contains the adaptive transformation module, and the fourth row the
simultaneous existence of the adaptive transformation module and the feature attention block. The
fusion block used in these two cases is channel-wise addition fusion. The fusion block used by the
APN in the last row of the table is convolutional fusion, which means that this APN used a complete
feature attention fusion block structure.
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Table 4. Ablation experiments: We trained on trainval35k, tested on val-2017 or test-dev, and
report the value of the AP.

AP Million Parameters Backbone

Mask R-CNN + FPN 37.9 84.3 ResNet-50
Mask R-CNN + FPN 38.2 184.7 ResNet-101

Mask R-CNN + APN(only adaptive transformation) 38.0(+0.1) 90.1(+5.8) ResNet-50
Mask R-CNN + APN(adaptive transformation+attention block) 40.3(+2.4) 136.7(+52.4) ResNet-50

Mask R-CNN + APN 41.0(+3.1) 158.9(+74.6) ResNet-50

As shown in Table 4, when the APN only contains the adaptive transformation module, the AP
value of APN is 0.1 higher than that of the FPN using Resnet-50 as the backbone network. Thus, the
adaptive transformation of feature maps from all stages marginally improves performance. However,
from the channel-wise addition fusion strategy and the conv fusion on the last two rows of Table 4,
we can see that the AP value of the APN on the last row of the table using the conv fusion strategy is
0.7 more than the APN of the fourth row of the table using the channel-wise addition fusion. Therefore,
the conv fusion strategy gains greater benefits from fusing feature maps than the channel-wise addition
fusion strategy. In addition, from the third and fourth rows in Table 4, we can see that, when the
APN uses the feature attention block, the AP value is 2.3 more than when the APN only contains the
adaptive transformation module. Rather than simply giving all the channels of the feature map the
same weight as the FPN, our feature attention block learns to reweight different channels from all
network stages. Such a reweight-strategy helps the network learn, through the training dataset, to take
advantage of feature maps from different network stages to construct a better fusion feature map.

The APN utilizes both the multiscale feature fusion and the channel-wise attention mechanism to
generate new feature pyramids. It can be proven that the FPN is a special case of the APN. We look
forward to seeing more application to replace our proposed APN with the FPN and yield better
performance. In addition, we also carried out an experiment to analyze the inference time of the
proposed module. The proposed APN ran in 4 ms on average during the inference time, which was
ignorable compared with the inference time of the backbone ConvNet. The experiment was performed
with the ResNet-50 model on a single P40 where the input size of the image was 512 × 512.

4.3. Experiment on the 2018 WAD Dataset

We followed the standard evaluation metrics: the mAP, i.e., AP, AP@0.5, AP@0.75, APS, APM, and
APL. Specifically, our average precision was calculated based on the top 100 proposals. We also
used two images in one image batch for the training. Because the dataset is full of images with high
resolutions, we chose the minimum and maximum resolutions of the resized images to be 800 and
1024. We adopted stochastic gradient descent training on two NVidia TitanX GPUs with a batch size of
one. The initial learning rate was set to 0.001, and it was decreased by a factor of 0.1 after 100 k and
120 k iterations and finally terminated at 140 k iterations. We did not adopt any augmentation for the
training, which we found made it harder to converge.

Owing to the small size of the mini-batch, we chose to freeze the batch normalization layer.
The learning rate was different from the Mask R-CNN and the FPN because of the different platforms.
Other implementation details were the same as He et al. [18], and models were trained on the training
subset and used ResNet-101 [21]. Moreover, Figure 7 shows part of the results of object detection.

Table 5b shows the object detection results for the comparison of our model to the baseline FPN.
We present the results with ResNet-50 pre-trained on the COCO dataset, which was also trained and
tested on single-scale images. According to the results, our model outperforms the baseline by a large
margin over all of the compared evaluation metrics. This represents an improvement of 1.7 points
for AP compared with the original module. To specify the effectiveness of our module, we divided
the test-dev into separate classes. Table 5a presents the results for different separated classes in the
test-dev dataset. Note that the results of the APN show better results across the detection results of
all sizes, and achieves nearly two points over all classes and all sizes on average. The performance of
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the separated classes also improves significantly, which indicates the benefit of using a fusion module
with contextual information. Therefore, the APN proposed by us is better than the FPN in target
recognition of different categories or the whole.

Figure 7. Images in each row are the object detection and instance segmentation results.

Table 5. Object detection results using Mask R-CNN [18] evaluated on the 2018 WAD test-dev set:
(a) object detection results on separate class of 2018 WAD test-dev; and (b) object detection results of
2018 WAD test-dev.

(a)

AP AP@0.5 AP@0.75 APS APM APL

FPNcar 35.7 59.8 36.8 11.7 48.1 77.5
APNcar 39.8 61.3 42.4 15.7 53.5 79.2

FPNmoto 23.5 46.8 20.3 7.1 26.2 47.1
APNmoto 28.1 51.6 27.9 10.0 31.3 52.0

FPNbike 12.6 30.5 8.2 1.6 14.5 31.1
APNbike 15.7 34.0 11.1 3.5 17.5 36.2

FPNperson 16.4 36.2 12.1 4.9 31.6 58.2
APNperson 18.3 38.3 14.7 6.3 35.3 57.0

FPNtruck 44.7 69.3 50.6 17.0 50.1 65.4
APNtruck 48.8 73.4 58.1 21.9 54.9 66.0

FPNbus 41.0 66.7 44.3 10.7 47.4 67.2
APNbus 46.0 71.7 51.3 17.3 56.4 68.8

FPNtricycle 34.7 61.6 36.4 29.2 36.2 47.7
APNtricycle 37.3 65.3 40.1 31.9 37.8 50.9

(b)

AP AP@0.5 AP@0.75 APS APM APL

FPNall 30.7 49.7 29.2 12.8 34.4 55.7
APNall 32.4 54.7 33.8 15.4 39.4 59.2

+1.7 +5.0 +4.6 +2.6 +5.0 +3.5

Similar to the object detection results on the Mask R-CNN, we also report the instance
segmentation performance of our proposed module on the WAD test-dev for comparison. As shown in
Table 6, compared with the baseline, our APN consistently improves the performance across different
evaluation metrics.

The result of the segmentation on the evaluation metrics shows a significant improvement
of 1.3 points for AP compared with the original FPN. In Figure 7, we can see the results of
instance segmentation.
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Table 6. Instance segmentation proposals evaluated on the first 1 k 2018 WAD test-dev images,
denoted as APM. All models were trained on the train set.

APM APM
@0.5 APM

@0.75 APM
S APM

M APM
L

FPNall 38.2 46.9 28.1 11.7 32.8 53.7
APNall 39.5 51.7 30.0 12.7 36.3 55.1

+1.3 +4.8 +1.9 +1.0 +3.5 +1.4

5. Conclusions

In this paper, we propose the APN, which utilizes both the multiscale feature fusion and the
multiscale-aware channel-wise attention mechanism to generate new feature pyramids for the task of
object detection. We reshape the features from all feature levels and shorten the distance between the
lower and topmost feature levels to enable reliable information propagation. The APN is a lightweight
network and the efficient feature attention block can enhance important feature channels. In addition,
the APN adopts the feature fusion strategy of conv and channel-wise addition, which will help to
improve the recognition performance of the whole network.The running time of APN is 4 ms, which
can be ignored compared with backbone network. Experiments on the MS COCO and the 2018 WAD
datasets proved that the APN significantly improves the performance compared with the contrast
methods, and without any bells and whistles. In the future, we will consider the utilization of video
and RGB-D data for the task of object detection and extend our method to support more general
detection models.
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