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Featured Application: The dual adaptive filter proposed in this paper can identify sudden change
in structural systems under dynamic excitations. The proposed filter method including the tuning
process can be applied to a variety of engineering areas in which near-real-time tracking of system
parameter is needed.

Abstract: This paper proposes a dual adaptive Kalman filter to identify parameters of a dynamic
system that may experience sudden damage by a dynamic excitation such as earthquake ground
motion. While various filter techniques have been utilized to estimate system’s states, parameters,
input (force), or their combinations, the filter proposed in this paper focuses on tracking parameters
that may change suddenly using sparse measurements. First, an advanced state-space model of
parameter estimation employing a regularization technique is developed to overcome the lack of
information in sparse measurements. To avoid inaccurate or biased estimation by conventional filters
that use covariance matrices representing time-invariant artificial noises, this paper proposes a dual
adaptive filtering, whose slave filter corrects the covariance of the artificial measurement noises in
the master filter at every time-step. Since it is generally impossible to tune the proposed dual filter
due to sensitivity with respect to parameters selected to describe artificial noises, particle swarm
optimization (PSO) is adopted to facilitate optimal performance. Numerical investigations confirm
the validity of the proposed method through comparison with other filters and emphasize the need
for a thorough tuning process.

Keywords: system identification; sudden damage; unscented Kalman filter; dual adaptive filtering;
regularization; particle swarm optimization; sparse measurements

1. Introduction

In various engineering fields, identifying the uncertain status of structural systems is a critical
task to avoid severe malfunctions due to degradation of system parameters caused by deterioration
or sudden damage by natural or man-made disasters. Among various approaches to such system
identification (SI), there have been notable research efforts for probabilistic SI to handle uncertainties in
the problem. For instance, Tarantola (1987) formulated SI as a Bayesian inverse problem, in which a
joint probability density function (PDF) was introduced for parameters of systems under static loads [1].
Gaussian assumption was used for both prior and posterior distributions. Recently, such approach
was extended by several probabilistic SI methods utilizing Bayesian Network, Markov Chain Monte
Carlo, and Branch-and-Bound method [2–6]. Although these methods can handle general distribution
models for prior and posterior, they are still subject to fundamental limitations for dynamic systems,
i.e., systems under dynamic loads.
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For precise updates of knowledge of a dynamic system based on the given measurements,
sequential Bayesian filters including Kalman filter have been utilized [7–10]. The main strength of
Bayesian filters comes from their two complementary updates: time-update and measurement-update.
In this approach, by employing models that are respectively describing time- and measurement-updates
using common random variables, a given dynamic system does not need to be expressed as one highly
complicated joint PDF. To apply a filter method to dynamic system identification, it is vital to build an
accurate state-space model that represents the dynamic system by two numerical models respectively
describing the time- and measurement-updates. Then, a suitable filter method should be selected
especially when the state-space model is nonlinear or time-variant.

To track the status of nonlinear dynamic systems, the extended Kalman filter (EKF) has been
utilized [7,11]. EKF uses first-order linearization to approximate underlying statistics of the state-space
model, but this filter may suffer from some limitations including the requirement of sufficient
differentiability of the dynamic model. To overcome this inherent problem, the unscented Kalman
filter (UKF) was developed using so-called unscented transformation [10,12]. This transformation
linearizes nonlinear dynamic model by using “sigma points” instead of the derivatives. Using the UKF
as the basic filter method, this paper develops a near-real-time SI method for dynamic systems that
may experience time-varying changes in system parameters caused by damage. To handle this target
problem with sparsely measured accelerations, the state-space model of this study, which is generally
used in parameter estimation only [13], utilizes the Newmark model to update modal-displacement,
velocity, and acceleration with current system parameters for just one time-update. Then, regularization
techniques with an assumed prior information about system are introduced to the state-space model to
avoid divergence in estimations caused by sparse measurements.

Even if a proper state-space model is constructed for time-varying systems, conventional filters
such as EKF and UKF using time-invariant artificial noises may not be able to achieve accurate
estimations. This is because the covariance matrices of artificial noises, which are arbitrarily chosen
to satisfy the optimality condition of filter during a certain time interval, may not be optimal as
the statistical characteristics of measurements change over the excitation period. To address this
issue, the UKF should be able to determine new artificial noises at every time step to satisfy the
optimality condition. The authors thus explored several adaptive filtering techniques, which can adapt
to time-varying statistical characteristics of measurements [11,13–17]. Through these investigations,
the dual adaptive filtering for artificial measurement noise estimation is finally selected and used along
with the state-space model.

It is also noted that the dual adaptive filtering, which adopts a slave filter to update
artificial-measurement-noise of the master filter, requires additional selection of artificial noise
covariance matrices for the slave filter. The increased number of covariance matrices of artificial noises
makes it challenging to tune dual adaptive filter for various choices of those covariance matrices. It
is difficult to select proper artificial noises of slave filter empirically due to the absence of accurate
knowledge [13,15,18]. Therefore, it is important to construct a general framework for tuning process of
dual adaptive filtering. For this purpose, particle swam optimization (PSO), which was utilized in a
recent study to tune Kalman filter for mobile robot attitude estimation [14], is adopted for dual filtering
with appropriate assumptions to decrease the number of tuning parameters. However, this tuning
process should be performed thoroughly because of randomness in the PSO algorithm. This study
thus aims to improve estimation of dual filtering by performing PSO again with different boundary
conditions. In numerical investigations, the estimation results by the proposed approach will be
presented along with several considerations including the use of iterative tuning process.

This paper first introduces the algorithm of UKF with its general formulation for dynamic
state-space model in Section 2. Various applications of filter methods will be also mentioned together
with practical issues. Then, Section 3 introduces the problem statement of dynamic system, which
can be damaged during seismic excitations. A proper state-space model is proposed and explored
to choose appropriate adaptive filtering techniques. In Section 4, for an actual earthquake excitation,
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several damage scenarios are assumed based on the calculated time histories of relative displacement
between adjacent stories. For these scenarios, accuracy and robustness of the proposed method are
tested and demonstrated in comparisons with normal UKF and other adaptive filtering techniques.
Lastly, this paper concludes with several insights and future research topics.

2. Background: Identification of Dynamic Systems by Unscented Kalman Filter

2.1. A Brief Review of Unscented Kalman Filter

To overcome the aforementioned challenges in using EKF for estimation of nonlinear state-space
models, Julier and Uhlmann (2004) developed Unscented Kalman Filter (UKF) [12], also known as
Sigma-Point Kalman Filter (SPKF). The unscented transformation of UKF is based on a statistical
technique using sigma points (SPs), which provides derivative-free state estimation for a nonlinear
state-space model. UKF is known to achieve the second-order accuracy with the same computational
complexity as that of EKF.

For details of UKF, let us consider a dynamic state-space model governed by a set of discrete-time
nonlinear equations [19]

xk+1 = f (xk) + wk
zk+1 = h(xk+1, uk+1) + vk+1

(1)

where k is the time index; xk ∈ Rnx×1 is the state vector representing displacement, velocity, or
system parameters such as elasticity and damping coefficient at time tk; f (·) and h(·) respectively
denote nonlinear system-process model and measurement-output model; wk ∈ Rnx×1 represents
the artificial process noise modeled by a Gaussian random vector with zero means and covariance
matrix Qk ∈ Rnx×nx , i.e., wk ∼ N(0, Qk); zk ∈ Rnz×1 is the vector of the measured quantities such as
acceleration; uk is the vector of inputs; and vk ∈ Rnz×1 denotes artificial measurement noise modelled
as vk ∼ N(0, Rk). The noises wk and vk are assumed to be uncorrelated with each other.

Figure 1 illustrates the general algorithm of UKF [20]. In the figure, x̂k|k and Pxx
k|k respectively

denote the mean (column) vector and covariance matrix of the states at the k-th time step (k = 0, 1, . . .)
before the updates are performed. At each time step, sigma points (SPs) χ[i]k|k, i = 0, . . . , 2nx, are first
generated based on x̂k|k and Pxx

k|k as

χ[0]k|k = x̂k|k

χ[i]k|k = x̂k|k +
(√

(nX + κ)Pxx
k|k

)i
, i = 1, . . . , nX

χ[i]k|k = x̂k|k −

(√
(nX + κ)Pxx

k|k

)i−nX

, i = nX + 1, . . . , 2nX

(2)

where the square-root symbol denotes the “matrix square root”, which can be computed by Cholesky
factorization [20], and ( )i indicates the i-th column vector of the matrix. The tuning parameter κ is
often used to consider high order moments in the approximation and assumed to be zero in this paper.
Next, using the system-process model f (·), x̂k|k and Pxx

k|k are updated to x̂k+1|k and Pxx
k+1|k, respectively,

via the sigma points in Equation (2). In detail, this “time-update” is performed as

χ[i]k+1|k = f
(
χ[i]k|k

)
x̂k+1|k =

2nX∑
i=0

Wi
mχ

[i]
k+1|k

Pxx
k+1|k =

2nX∑
i=0

Wi
c

[
χ[i]k+1|k − x̂k+1|k

][
χ[i]k+1|k − x̂k+1|k

]T
+ Qk

(3)

where Wi
m and Wi

C are the weighting coefficients of SPs for which W0
m = W0

C = κ/(nX + κ) and
Wi

m = Wi
C = 1/2(nX + κ) are used [19]. x̂k+1|k and Pxx

k+1|k in Equation (3) are considered prior estimates
of the states at the k-th time step.
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For the “measurement-update” of the prior estimates in Figure 1, SPs are first generated as

χ[0]k+1|k = x̂k+1|k

χ[i]k+1|k = x̂k+1|k +
(√

Pxx
k+1|k

)i
, i = 1, . . . , nX

χ[i]k+1|k = x̂k+1|k −

(√
Pxx

k+1|k

)i−nX
, i = nX + 1, . . . , 2nX

(4)

Then, the measurement-updates are performed to obtain the following sequentially:

ζ[i]k+1|k = h
(
χ[i]k+1|k

)
, i = 0, . . . , 2nX

ẑk+1|k =
2nX∑
i=0

Wi
mζ

[i]
k+1|k

vk+1 = zk+1 − ẑk+1|k

Pzz
k+1|k =

2nX∑
i=0

Wi
C

[
ζ
[i]
k+1|k − ẑk+1|k

][
ζ
[i]
k+1|k − ẑk+1|k

]T
+ Rk+1

Pxz
k+1|k =

2nX∑
i=0

Wi
C

[
χ[i]k+1|k − x̂k+1|k

][
ζ
[i]
k+1|k − ẑk+1|k

]T

K = Pxz
k+1|k

(
Pzz

k+1|k

)−1

(5)

where ζ[i]k+1|k is an SP calculated by substituting χ[i]k+1|k to the function h(·); vk is an innovation vector,
i.e., theoretical residuals; Pzz

k+1|k and Pxz
k+1|k are covariance of the measurements and cross covariance of

state and measurements; and K is the calculated Kalman gain.
Finally, the results of the two updates are used to obtain the posterior estimates of the states and

covariance matrix by the “state-update” step, i.e.,

x̂k+1|k+1 = x̂k+1|k + Kvk+1
Pxx

k+1|k+1 = Pxx
k+1|k −KPzz

k+1|kKT (6)

These time-, measurement- and state-updates are performed at each time step k using the results
of the previous step as illustrated in Figure 1.Appl. Sci. 2020, 10, 850 5 of 22 
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2.2. Applications of Filter Methods and Practical Issues

In applications of filter methods to structural systems, it is generally assumed that the accelerations
can be measured. For the purpose of state estimation, parameter estimation, or input estimation, the
corresponding state vector is respectively defined in terms of the dynamic responses (e.g., displacement
and velocity), system parameters (e.g., Young’s modulus, damping coefficient, and parameters of
Bouc-Wen hysteretic models), or input forces. If system parameters are estimated concurrently with
dynamic responses, the filter is termed as joint state-parameter estimation. In the so-called joint input-state
estimation, input forces are estimated together with the responses.

For example, as a joint state-parameter estimation, Yang et al. (2006) proposed an adaptive
EKF-based tracking technique to detect sudden damage in a five-story linear structure [11]. Wu and
Smyth (2007) applied UKF to a nonlinear system having 2 degrees of freedom (DOFs) for the purpose
of SI to find that the UKF provided better estimation than EKF for highly nonlinear systems [21].
Chatzi and Smyth (2009) also utilized UKF for SI of nonlinear 3-DOF structural system assuming
non-collocated heterogeneous sensing [22]. Most previous studies on joint state-parameter estimation
have focused on improving performance of filters in tracking parameters of highly nonlinear structural
system. These studies employed the system equation of motion under the assumption that either
acceleration or displacement is measured at every DOF to avoid rank-deficiency. However, measuring
dynamic responses at all DOFs is infeasible especially for structures consisting of many components.
This may limit the applicability of joint state-parameter estimation to SI in practice.

Recently, many research efforts have been made regarding the joint input-state estimation to track
the input force whose exact information is not available in many situations. Gillijns and De Moor
(2007) proposed the recursive-three-step filter (RTSF), which updates responses and input force at the
different step, for unbiased minimum-variance estimation of input and state [23]. Since RTSF suffered
from rank-deficiency caused by a limited number of measured acceleration or reduced-order model
from modal analysis, Lourens et al. (2012) proposed an advanced version of RTSF by using truncated
covariance matrices through singular value decomposition [24]. Azam et al. (2015) developed a
dual Kalman filter consisting of two stages to prevent numerical issues such as un-observability and
rank-deficiency of RTSF when using sparse acceleration measurements [25]. Aucejo et al. (2019)
proposed an augmented Kalman filter, whose state vector consists of responses and input together,
with the state-space model developed based on the generalized-αmethod [18]. This was to address the
issue that the dual Kalman filter is sensitive to selection of covariance matrices of artificial noises. These
studies focused on joint input-state estimation of linear structural systems with time-invariant system
parameters. Although full-measurements are not required because of the linear model assumption,
rank-deficiency and divergence are still critical issues when SI relies on sparse measurements or a
reduced-order model is used.

Meanwhile, as a parameter estimation example, Astroza et al. (2019) applied UKF to Finite-Element
(FE) updating with adaptive techniques to consider uncertainty of nonlinear FE models [13]. The
state-space model based on Newmark method was able to utilize sparse measurements whereas the
use of equilibrium equations in state-space models of previous joint state-parameter estimations needs
full measurements. Then, dual adaptive filtering was performed based on the proposed state-space
model to consider uncertainty in FE model. The applications using three different approaches, i.e.,
joint state-parameter estimation, input-state estimation, and parameter estimation confirmed that the
state-space model must be developed appropriately based on target estimations, and it is essential to
use a proper filtering method to obtain optimal estimations.

It is also noted that, in all filter-related research, it is critical to tune the filter by selecting
covariance matrices Qk and Rk which describe uncertainties of the artificial noises in system-process
and measurement-output model respectively. Although the tuning process of those covariance matrices
is vital for good filter performance, there is no general technique available. In efforts to handle this,
many studies assumed that the artificial measurement noise can be prescribed using the available
specifications of the sensors. Then, the artificial process noise is determined by minimizing the root
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mean square (RMS) of time-history “innovations,” which are defined as follows, to quantify the
differences between measurements and responses corresponding to the system parameters predicted
during the time-update part [13,16]:

fI(Qk) =

√√√
1

nT

 T∑
k=0

‖vk(Qk)‖
2

 (7)

where vk(Qk) is an innovation vector defined for the time duration k = 0, . . . , T; and nT = T + 1.
In several references [25,26], it has been shown that fI(Qk) in Equation (7) tends to decrease following an
L-shaped curve as Qk increases. Generally, the inflection point of the L-shaped curve is recommended
as a near-optimal solution in terms of the filter performance. The opposite case, in which the artificial
process noise is known, and the corresponding artificial measurement noise is to be determined, can
be solved in a similar manner. If both types of artificial noises are unknown, the objective function
can feature both Qk and Rk. To address this, for instance, Odry et al. (2018) utilized particle swarm
optimization (PSO) [14]. In this paper, PSO is used to obtain the best tuning parameters of the proposed
dual adaptive filtering.

3. Proposed Method: Adaptive Unscented Kalman Filter Using Sparse Measurements of
Accelerations

3.1. Regularization-Based State-Space Model

This paper aims to develop a near-real-time system identification method for structures under
disastrous dynamic loads such as earthquake excitations. In particular, the method focuses on detecting
sudden changes in the system parameters such as Young’s modulus caused by structural damage
during excitations. It is assumed that input data such as an earthquake (EQ) ground motion has been
acquired accurately. Conventional filter methods such as EKF and UKF show limitations in tracking
the status-history having discontinuity points because those methods using constant artificial noises
cannot adapt to time-varying statistics in the measurements. To address this issue, Yang et al. (2006)
proposed an adaptive joint state-parameter estimation method requiring full measurement condition,
which is however not available in general practice [11]. The adaptive rule was tested with simple
events where just one component experiences sudden damage. On the other hand, state-space models
in joint input-state estimations do not accord with the objective of this paper because those models are
constructed based on modal analysis for which the system parameters are assumed to be time-invariant.

To facilitate SI under practical measurement conditions, we aim to develop a filter that performs
well even with sparse measurements. To this end, let us first consider the following state-space model
proposed by Astroza et al. (2019) for the purpose of parameter estimation [13]:

xk+1 = xk + wk (8)

zk+1 = h
(
xk+1, u0,

.
u0, p1:k+1

)
+ vk+1 (9)

where xk is the state vector representing parameters to estimate, e.g., Young’s moduli at time tk; u0 and
.
u0 are the initial displacement and velocity respectively (hereafter, the dot means time-derivative);
and p1:k+1 denotes the time-history of excitation up to tk+1, e.g., seismic loads. The function h(·)
represents a response function from an FE model, e.g., the Newmark method (γ = 1/2, β = 1/4). The
system-process model in Equation (8) is linear, thus Equation (3) can be simplified into x̂k+1|k = f

(
x̂k|k

)
and Pxx

k+1|k = Pxx
k|k +Qk in this case, i.e., without deriving SPs as in Equation (2). The measurement-output

model in Equation (9) predicts responses, which will be compared with the measured response. In this
state-space model, full-measurement is not required because the measurement-output model adopts
the response function rather than the equilibrium equation.
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It is noted that the measurement-output model in Equation (9) was originally designed for
time-invariant system parameters. Consequently, a transient period can appear as the estimations of
conventional filter converge into the changed status of damaged components. If that transient period
is considerably long, it may hamper accurate estimations. To address this limitation of the state-space
model of Equations (8) and (9) in SI of time-variant systems, Equation (9) is modified as follows to
track sudden changes:

~
qk+1 = h

(
xk+1,

~
qk, pk+1

)
(10)

zk+1 = SΦ(xk+1)
~
q

T
k+1 + vk+1 (11)

where
~
qk is the matrix consisting of modal displacement, velocity, and acceleration, i.e.,

~
qk =

[
qk

.
qk

..
qk

]
;

~
q0 = Φ(x0)

−1
[
u0

.
u0

..
u0

]
; Φ ∈ RnDOF×nDOF is the matrix of the mode shapes consisting of the eigenvectors

Φ j, j = 1, . . . , nDOF (calculated from undamped eigenvalue problem KΦ = MΦΩ2, where K, M, and
Ω are stiffness, dumped mass matrix, and a diagonal matrix of the eigen frequencies, respectively);
and SnDOF×3 is the selection matrix for the measured responses. In Equation (9), at every time step,
the current response such as acceleration is calculated from initial responses, which becomes a
computational burden as the amount of calculation increases linearly as time goes on. By contrast,
Equation (10) uses the Newmark method to predict the next modal responses based on the current
information, i.e., system parameters estimated from time-update part and modal responses of the
previous time-step. This modified measurement-output model facilitates handling time-variant system
parameters. In Equation (11), the vector of the predicted modal responses is transformed to nodal
responses by the matrix of calculated mode shapes. Each element in the selection matrix is set as 1
if measurements are made at the corresponding DOF. Finally, the nodal responses predicted by the
changed system parameters are matched to the measured responses to calculate the Kalman gain.

The state-space model consisting of Equations (8), (10) and (11) may achieve desirable accuracy of
estimation in some cases. However, when using sparse measurements, it has been reported that even
if the predicted response well matches the measured responses, unobserved response quantities may
be considerably different from the actual ones due to the biased estimation of parameters [27]. Noise in
sparse measurement may exacerbate the bias and instability of estimation. To alleviate this undesirable
situation, this paper proposes to utilize a regularization technique to avoid rapid and wrong transitions
during the estimation. In particular, adopting a well-known regularization technique, Tikhonov term
is included in the objective function with a regularization factor to obtain stabilized solutions based
on a priori information and the measurements [28–32]. From the Bayesian perspective, the Tikhonov
term corresponds to a prior (as a normal distribution in general) to inform a possible solution space [1].
In detail, a regularization term is added to measurement-output model as constraints as follows:

xk+1 = x̂P + rx

where x̂P =
∑k

i=k−Nw
x̂i

(12)

where x̂P is a vector representing prior information about system parameters, which is updated at
every time-step in Equation (12); rx denotes the standard deviation of prior as regularization factor to
constrain the estimation, i.e., xk ∼ N

(
x̂P, Σ

)
and diag(Σ) = r2

x; and Nw is set up as 5% of nT. Actually, it
is a critical issue to determine the regularization factor in existing studies of regularization. In this paper,
the regularization factor in Equation (12) is selected intuitively not to increase the number of tuning
parameters. Because the following dual adaptive filtering techniques requires more than two tuning
parameters, it is not desirable to further increase the number of those parameters. The assumption
about intuitive selection will be explained in the part regarding numerical investigations.

By including the regularization term in the measurement-output model, stable estimation
is achieved while avoiding divergence due to noisy sparse measurements. Therefore, this
regularization-based state-space model is utilized in this study to track sudden damage in system
parameters under seismic loads.



Appl. Sci. 2020, 10, 850 8 of 23

3.2. Dual Adaptive Filtering for Measurement Noise Estimation

For accurate estimation of time-variant system parameters, the advanced state-space model
needs to be used in conjunction with a proper adaptive filtering technique. There are two reasons
for the limited tracking ability of conventional filters when statistics in measurements change. First,
the predicted state vector in the time-update part is influenced by the size of covariance of artificial
process noise. Second, both covariance matrices of artificial process and measurement noises affect the
calculation of the Kalman gain. Therefore, if both covariance matrices are constant during estimation,
the tracking performance of conventional filters will be limited for time-variant dynamic system.

While developing the proposed filter, a few other adaptive techniques were explored. For example,
Liu et al. (2005) proposed an adaptive tracking technique for the purpose of leak detection and location
in the management of a pipeline system [17]. This tracking technique was performed based on particle
filter, which is also known as a sequential Monte Carlo method. However, it is noted that the idea
of adaptive technique is utilized also in the UKF-based approaches. The details and limitations of
this technique (with modification for UKF) are described in Appendix A. It is especially noted that
this adaptive technique controls the artificial process noise, which causes severe bias and instability
of estimations. The other adaptive technique explored in this study is a master-slave Kalman filter
(MS-KF), which is also called as a dual adaptive filtering. The main concept of MS-KF is that, when a
master filter (MF) estimates the given random variables, the slave filter (SF) will estimate the covariance
matrix of either artificial process or measurement noises in MF at every time-step. There are two types
of MS-KF based on process noise estimation (MS-KFPE) and measurement noise estimation (MS-KFME).
Among these, details of MS-KFPE are briefly presented in Appendix B because MS-KFPE is not suitable
for the goal of this study for the same reason as the adaptive technique described in Appendix A.

Unlike the two techniques mentioned above, MS-KFME controls artificial measurements noise and
can be utilized with the advanced state-space model. The general algorithm of MS-KF is illustrated by a
block diagram in Figure 2. In the slave filter (SF) part, two random variablesωk ∈ Rnx×1 and υk ∈ Rnz×1

represent the artificial noises for process and measurements respectively modeled as ωk ∼ N(0, T)
and υk ∼ N(0, U) in which T ∈ Rnx×nx and U ∈ Rnz×nz are time-invariant covariance matrices; and the
superscript S indicates a variable related to the SF. A well-known drawback of MS-KF is its sensitivity
with respect to the choice of two covariance matrices of artificial noises in SF. Therefore, these artificial
noises should be selected carefully with those of MF [15,27]. Linear KF (LKF) is utilized for SF in
most cases because there is no accurate knowledge available for the state-space model [15]. In this
paper, a covariance-matching technique is utilized in the state-space model of SF because this intuitive
technique can be implemented easily with low computational costs [13,15,27,33].

In Figure 2, using the equations related to the number (2) indicates that the MS-KF estimates the
covariance of artificial measurements noise at every time-step of MF [13,15] (if the equations noted by
the number (1) are used, MS-KFPE is performed). MS-KFME can be conducted based on two types:
“the innovation and its covariance” or “the residual and its covariance”. In this paper, the latter one is
selected because its calculations are less complex.

The goal of SF in MS-KFME is to make the innovations, which is employed to provide a measure
of optimality of the filter, compatible with their expected covariance matrix. For this purpose,
the covariance-matching technique is conducted, i.e.,

zs
k+1 = diag

(
E
[
vk+1vk+1

T
])

(13)

Ik+1 = diag

 2nx∑
i=0

Wi
c

[
ζi

k+1|k − ẑk+1|k
][
ζi

k+1|k − ẑk+1|k
]T

 (14)

where Equation (13) represents the actual covariance based on innovations, and the Equation (14) is the
predicted covariance of innovations from MF. If two matrices from Equation (13) and (14) are similar to
each other, the current covariance of artificial measurement noise of MF is considered appropriate.
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If the calculated value of Equation (13) is larger than that of Equation (14), Rk+1 needs to be increased
to avoid divergence of MF, and consequently this procedure increases the covariance of states, Pxx

k+1.
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Figure 2. General block diagram illustration of Master-Slave Kalman Filters.

There are three advantages in using MS-KFME: First, no additional parameter is introduced for
the algorithm (as for MS-KFPE, the time-window is required). Second, while the other two adaptive
techniques shift the solution space rapidly by increasing Qk, MS-KFME widens the solution space by
increasing Pxx

k+1. Indeed, the biased estimation may be avoided by increasing Pxx
k+1 instead of increasing

the size of Qk rapidly, and stable estimation will be achieved. Lastly, this correction process for artificial
measurements noise is implemented in measurement-update of MF before calculating the Kalman gain.
Therefore, the corrected covariance of artificial measurements noise by SF can be utilized immediately.
These advantages enable MS-KFME to track the sudden decrease of system parameter in a stable
manner during the seismic excitations.

The algorithm of MS-KFME with the newly proposed state-space model is summarized in Figure 3.
In the time-update part, calculations of SPs are not needed because of the linear system-process model
in Equation (8). The part corresponding to the slave LKF is represented in gray background along
with detailed descriptions. It is noteworthy that the regularization term in Equation (12) is considered
in the form of dummy variables [34] when the auto- and cross- covariance matrices are calculated
in the measurement-update part of MF. In these calculations for two covariance matrices, the prior
information of regularization is required. When the time-step is shorter than the selected time-window,
the values of initial state are used for this prior information. After that time point, this prior is updated
in the state-update part.
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4. Numerical Investigations

4.1. SI under Simulated Damage Scenarios

To test the combination of the selected dual adaptive filtering techniques and the proposed
state-space model based on regularization, a shear building having 6 DOFs in Figure 4 is investigated.
The lumped mass of each floor is assumed as 1 kg, and Young’s modulus of all inter-story is equal to
1 Pa (i.e., inter-story stiffness of each floor is 24 N/m). Rayleigh damping, which is proportional to
mass and stiffness matrices, is utilized by assuming a damping ratio of 5% for the first and second
modes. For the linear system, Young’s modulus of each component is estimated using an EQ ground
motion. The time-history of the 180-degree component of ground acceleration recorded at El Centro
station during the earthquake event in 1940 with Mw = 6.95 is used in this numerical investigation.
The length of this ground acceleration history is 42 s, and discretized by 0.01 s. To consider potential
damage scenarios, the EQ time-history is first applied to the shear building without damage events.
The relative displacements between adjacent stories are calculated to find the peak values at each story
and the occurrence-time as shown in Table 1.
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Figure 4. Schematic view of a shear building.

Table 1. Calculated peak relative displacements and occurrence-times without considering damage.

Peak Relative Displacement Occurrence-Time of Peak Response

1st story 0.0559 8.58 s
2nd story 0.0454 4.94 s
3rd story 0.0393 5.23 s
4th story 0.0500 7.50 s
5th story 0.0568 9.92 s
6th story 0.0490 6.15 s

Based on the simulated sequence of peak displacements, five damage scenarios are created in
terms of sudden decrease of Young’s moduli as summarized in Table 2. Scenarios 1 and 2 depict
sequence of sudden decreases of story stiffness. Scenario 3 simulates a sequential failure initiated by
the maximum-peak response at 5th story. Scenarios 4 and 5 are assumed to depict more complicated
sequential scenarios. In Scenario 4, the second story experiences the additional sudden decrease 7.42 s
after the initial decrease of corresponding story’s stiffness. Scenario 5 consists of three sudden decreases
of different stories. After simulating the above scenarios, the condition of sparse measurements is
defined such that accelerations at the first, second, fourth, and sixth story can be measured. From this
assumption, the selection matrix S will be set up as S13 = S23 = S43 = S63 = 1 and Si j = 0 otherwise.
Then, the noise-history, which is simulated from a uniform distribution between 95% and 105% of
RMS of measured accelerations, is added to simulate noise in the measurements.

Table 2. Damage scenarios based on simulated peak relative displacements in Table 1.

Scenario No. Description of Scenario

Scenario 1 E2 decreases by 25% at 4.94 s
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E1 decreases by 33% at 8.58 s
Scenario 2 E4 at 7.50 s (25%)
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E1 at 8.58 s (33%)
Scenario 3 E5 at 9.92 s (28%)
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4.2. Tuning Process Using Particle Swarm Optimization

As stated in Section 2.2, all filter methods should be tuned by selecting proper covariance
matrices of artificial noises to achieve an optimal estimation. In using LKF, EKF, and UKF, just
one parameter is tuned. Although each diagonal term of those covariance matrices may require
individual tunings, it is assumed that all elements in vectors of states and measurements have same
statistical characteristics for simplicity. Generally, the covariance of artificial measurements noise is
determined based on sensor specification. The last tuning parameter is then the covariance of artificial
process noise and can be selected from the derived L-curve. However, this process does not work for
adaptive filtering techniques, because more than two tuning parameters are required even under the
assumption that sensor specification can determine the covariance of the artificial measurement noise.
The tuning process for MS-KFME with the proposed state-space model handles three parameters, i.e.,
two parameters corresponding to covariance matrices of master and slave filters’ artificial process noise,
and the regularization factor in the proposed state-space model. In this case, it is impossible to derive
the L-curve for two tuning parameters.

This paper utilizes the particle swarm optimization (PSO) to tune the dual adaptive technique with
the proposed state-space model. PSO was originally inspired by the information circulation and social
behavior observed in bird flocks and fish schools and is suited to solve problems where the optimal
solution is a point in a multi-dimensional space of the parameter [35]. Odry et al. (2018) showed that
PSO can find proper tuning parameters for optimal estimation performance [14]. However, if there are
many variables in global optimization problem, this optimization process may give a computational
burden. This is because PSO uses many particles to probe the best in the solution space, and the
required number of particles increases exponentially as the number of tuning parameters increases.
Another issue is that the performance of MS-KF is sensitive to choices of covariance matrices of artificial
noises for master and slave filter. Actually, the positive definiteness condition for calculating SPs
related with Equations (2) and (4) may be violated by subtle changes in those covariance matrices, and
this numerical issue will interrupt the procedure of UKF as master filter. Therefore, it is desirable to
decrease the number of tuning parameters in PSO for stable tuning process, and thus, the following
assumptions will be introduced.

First, the regularization factor in the proposed state-space model is assumed as 10% of initial
states, which means that the solution space will be constrained by the normal probability density, i.e.,
x ∼ N(x̂P, Σ

)
and diag(Σ) = (0.1·|x0|)

2. The reason for adopting the regularization was to support
sequential estimations of filter to avoid divergence caused by the lack of information due to sparse
measurements. Therefore, there is no need to select the accurate regularization factor necessarily
because the regularization term can confine solution space weakly. In the following numerical examples,
moderate damage, which cannot be inspected visually, is assumed. Thus, in this paper, 10% of initial
states’ values is used as the regularization factor, which gave rapid convergence to the exact value.
Other values may be also appropriate, but too small values such as 1% of initial values are likely to
result in long transient period before converging to an accurate solution. Second, each diagonal term of
covariance of artificial measurements noise is assumed as 5% of the RMS of measurements for master
filter. This assumption of artificial measurements noise can be improved by accurate information about
actual sensor specification. Similarly, the covariance of artificial measurement noise for slave filter is
determined as 1% of the identity matrix for simplicity.

Through the above assumptions, two tuning parameters that control the size of covariance
matrices of artificial process noise for master and slave filter are used as variables for PSO. As in
Equation (7), these two parameters affect the innovation in the following objective function:

fI(x1, x2) =
√

1
nT

(∑T
k=0 ‖vk(Q(x1), T(x2))‖

2
)

where Q = diag(|x0|·10−x1) and T = Inx×nx ·10−x2
(15)
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in which x1 and x2 are tuning parameters, and Inx×nx is an identity matrix. The objective function in
Equation (15) is constructed to find an optimal estimation having the least RMS of innovation-history.
This paper used the PSO algorithm in the global optimization toolbox of 2018b-version of MATLAB®.

When performing PSO, there are two important points to achieve efficiency: (1) setting boundary
conditions in PSO for random variables and (2) determining the number of particles representing initial
locations. The boundary conditions constrain the solution space, and thus a wrong setting may lead to
finding no optimal solution. In some cases, the results of PSO are located near boundaries. In this
situation, PSO should be re-performed, and it is recommended to shift the relevant variables’ boundary
to include the corresponding end. On the other hand, to determine the number of particles properly,
the generated particles should be scattered uniformly around the whole solution space. For example,
one could discretize uniformly in the range of each variable such as [0.1, 0.2, 0.3, . . . , 0.9]. In this case,
the total number of particles is assumed as 81 for 2-dimentional problem.

There may be more efficient alternatives than using these recommendations. However, it is
essential to perform PSO iteratively to find a near-optimal solution because of intrinsic randomness in
PSO. Table 3 presents results of PSO using 81 particles about the damage scenarios with the selected
boundary conditions given as [lower bound, upper bound]. In Scenarios 3 and 4, PSO was re-performed
because the results were located at one of the boundaries.

Table 3. Tuning parameters identified by particle swarm optimization.

Scenario
Results of PSO

(x1,x2)
Initial Boundary Changed Boundary

for x1 for x2 for x1 for x2

Scenario 1 (3.51, 2.33) [2, 4] [1, 5] - -
Scenario 2 (3.81, 2.19) [2, 4] [1, 5] - -
Scenario 3 (3.98, 5)
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(4.21, 1.73) [2, 4] [1, 5] [3, 5] -
Scenario 5 (3.95, 2.68) [2, 4] [1, 5]

With the tuning parameters obtained by PSO, the MS-KFME is conducted for the scenarios.
For normal-UKF (n-UKF) and adaptive tracking technique-based UKF (AUKF) in Appendix A, PSO
using Equation (15) (with the variable x2 excluded) is performed to determine x1 as 3.23 and 3.88,
respectively. MS-KFPE (in Appendix B) was not performed due to the difficulty in selecting the size of
time-window. Figure 5a–c shows the estimation results by the proposed method, n-UKF and AUKF,
respectively, under Scenario 1. From the results, it is confirmed that, while the results of n-UKF
and AUKF show biased estimations, the MS-KFME derives accurate estimations about all parameters.
Although divergence in n-UKF and AUKF was avoided by adopting the regularization term into
state-space model, those filters still converged into wrong values. These results show that filter
methods, which control artificial process noise, cannot adapt to measurements, whose statistics change
due to damage.
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Figure 5. Estimation by MS-KFME (proposed), n-UKF, AUKF: Scenario 1 with RMS-noise 5%. 
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Figure 5. Estimation by MS-KFME (proposed), n-UKF, AUKF: Scenario 1 with RMS-noise 5%.
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Figure 6 reports estimation results by MS-KFME for Scenario 2. After a short range of unstable
estimation at around 11 s, the estimation converges to accurate values without bias. When initial
boundaries by PSO (Table 3) are used for Scenario 3 (Figure 7a), the estimation of the fifth story’s
parameter, where acceleration-history is missing, shows divergence after around 38 s. The estimations
of first and third stories’ parameters are inaccurate and biased as well. Figure 7b shows that, when the
newly derived PSO’s result is used, the bias in estimation of fifth story’s parameter disappears, and
the accuracy of first and third stories’ estimations is improved. From these results, it is noted that the
tuning process using PSO should be performed iteratively for finding the near-optimal solution.
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Figure 7. Estimation by MS-KFME: Scenario 3 with RMS-noise 5%.

Next, more complicated sequential damage scenarios are considered to test stable
tracking-capability of the proposed method. The PSO’s result for Scenario 4 (the second story
experiences the additional sudden damage after the initial damage) was derived at one of the boundaries.
Thus, PSO was re-performed to find new tuning parameters reported in Table 3. The estimations
with the newly derived tuning parameters are presented in Figure 8. In this figure, the first story’s
parameter is not assumed to be damaged. By the way, the range from around 10 to 25 s shows slightly
biased estimation of the first story, and this bias is being severe before the estimation approaches to the
exact value at around 35 s. This is probably because the corresponding acceleration for the damaged
third story is not measured, and the damage occurred at adjacent stories. It may be a burden for slave
filter to infer accurate information based on only innovations from master filter without structural
knowledge. However, as mentioned in Section 3.2, the MS-KFME aims to obtain stable estimations from
sparse measurements by searching solution space gradually rather than rapid tracking. The results
confirm that the estimations about adjacent stories are distinguishable and converged to accurate
values respectively after the transient period.
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Figure 8. Estimation by MS-KFME: Scenario 4 with RMS-noise 5%.
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Finally, Scenario 5, which consists of three sudden damages in three different stories,
are investigated as shown in Figure 9. When compared with Scenario 4, this scenario assumes
that the damage occurs at separate stories, and corresponding accelerations of these stories are
measured. In this case, faster convergence to accurate values is achieved.
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4.3. Further Investigations Using Different Ground Motions

To test general applicability of the proposed method, another real EQ ground motion is applied
to the same shear building in Figure 4. The time-history of the 65-degree component of ground
acceleration from the 1971 San Fernando earthquake (Mw = 6.61 at the ‘2516 Via Tejon PV’ station)
is used. The 56-second-long time history is discretized by 0.005 s. This EQ ground motion matches
an assumption that damage happens at the middle of EQ time-history. That is, when calculating the
relative displacements between adjacent stories, the peak values were located around the middle of
EQ time-history. In Table 4, the scenarios based on the calculated peak values are presented. In the
previous numerical tests, the n-UKF and AUKF showed early convergence before approaching accurate
values. Scenarios in this section require that MS-KFME should not be converged too early during
the filtering-process and adapt to time-varying statistics of the measurements. From this further
investigation, it is proved that the proposed method enables us to estimate status of system parameters
without early convergence.

Table 4. Damage scenarios for San Fernando EQ and tuning parameters from PSO.

Scenario Description of Scenario Results of PSO

Scenario 1’ E2 decreases by 25% at 21.78 s
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E1 at 25.45 s (33%) (3.27, 9.05)
Scenario 3’ E5 at 22.73 s (18%)
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E5 at 45.47 s (38%) (3.67, 8.53)

To derive tuning parameters in Equation (15), PSO using 81 particles was performed with boundary
conditions as x1 ∈ [3, 5] and x2 ∈ [5, 10]. These boundary conditions, which are different from those in
Table 3, are obtained by performing PSO several times. This result proves that PSO requires boundary
conditions appropriate for the given problem, and PSO-based tuning process should be re-performed
iteratively to obtain proper boundary conditions.
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The results in Figures 10–13 confirm that MS-KFME with parameters tuned by PSO can accurately
detect the sudden damage of systems despite sparse and noisy measurements. These also demonstrate
that the proposed method helps avoid early convergence and enables us to track status of system
accurately throughout the excitation period. In Figure 11 about Scenario 2’, it is noted that the
time-history of the fifth story’s target parameter decreases along with the damaged parameter of
the fourth story, but the estimation of the fifth story’s parameter returns back to the accurate value.
It should be noted that the proposed method achieves this result even though the acceleration of the
fifth story was missing. A similar observation is made in Scenario 3’ where the fifth story is damaged
instead of the fourth story. The results of Scenario 3’ in Figure 12 show better separation between the
estimations of fourth and fifth stories when compared with the results of Scenario 2’. This phenomenon
indicates that when acceleration-history, whose statistics change due to the damage of corresponding
parameter, is measured, estimations are less stable than the opposite case. In Figure 13, the estimations
in the range after successive damage are more accurate than those in the range corresponding to
initial damage.

Appl. Sci. 2020, 10, 850 18 of 22 

of system accurately throughout the excitation period. In Figure 11 about Scenario 2’, it is noted that 
the time-history of the fifth story’s target parameter decreases along with the damaged parameter of 
the fourth story, but the estimation of the fifth story’s parameter returns back to the accurate value. 
It should be noted that the proposed method achieves this result even though the acceleration of the 
fifth story was missing. A similar observation is made in Scenario 3’ where the fifth story is damaged 
instead of the fourth story. The results of Scenario 3’ in Figure 12 show better separation between the 
estimations of fourth and fifth stories when compared with the results of Scenario 2’. This 
phenomenon indicates that when acceleration-history, whose statistics change due to the damage of 
corresponding parameter, is measured, estimations are less stable than the opposite case. In Figure 
13, the estimations in the range after successive damage are more accurate than those in the range 
corresponding to initial damage. 

 

Figure 10. Estimation by MS-KFME: Scenario 1’ with RMS-noise 5%. 

 

Figure 11. Estimation by MS-KFME: Scenario 2’ with RMS-noise 5%. 

Figure 10. Estimation by MS-KFME: Scenario 1’ with RMS-noise 5%.

Appl. Sci. 2020, 10, 850 18 of 22 

of system accurately throughout the excitation period. In Figure 11 about Scenario 2’, it is noted that 
the time-history of the fifth story’s target parameter decreases along with the damaged parameter of 
the fourth story, but the estimation of the fifth story’s parameter returns back to the accurate value. 
It should be noted that the proposed method achieves this result even though the acceleration of the 
fifth story was missing. A similar observation is made in Scenario 3’ where the fifth story is damaged 
instead of the fourth story. The results of Scenario 3’ in Figure 12 show better separation between the 
estimations of fourth and fifth stories when compared with the results of Scenario 2’. This 
phenomenon indicates that when acceleration-history, whose statistics change due to the damage of 
corresponding parameter, is measured, estimations are less stable than the opposite case. In Figure 
13, the estimations in the range after successive damage are more accurate than those in the range 
corresponding to initial damage. 

 

Figure 10. Estimation by MS-KFME: Scenario 1’ with RMS-noise 5%. 

 

Figure 11. Estimation by MS-KFME: Scenario 2’ with RMS-noise 5%. Figure 11. Estimation by MS-KFME: Scenario 2’ with RMS-noise 5%.



Appl. Sci. 2020, 10, 850 19 of 23
Appl. Sci. 2020, 10, 850 19 of 22 

 

Figure 12. Estimation by MS-KFME: Scenario 3’ with RMS-noise 5%. 

 

Figure 13. Estimation by MS-KFME: Scenario 4’ with RMS-noise 5%. 

5. Conclusions and Topics for Future Study 

In this paper, a novel methodology was proposed to track sudden damage of structural system 
under dynamic excitations using sparse measurements. First, the state-space model often used for 
the purpose of parameter estimation was modified to handle time-variant system parameters. The 
regularization term was also introduced to avoid divergence of estimation caused by sparse noisy 
measurements. Second, the master-slave Kalman filter for measurement noise estimation (MS-KFME) 
was utilized to adapt to time-varying status of the target system. The unscented Kalman filter (UKF) 
as master filter estimates the status of target system parameters while a linear Kalman filter (LKF) as 
slave filter estimates the covariance of artificial measurement noise in UKF through a covariance-
matching technique. Lastly, particle swarm optimization (PSO) was exploited to tune the artificial 
noises of MS-KFME with practical considerations. To test the proposed methodology, sets of structural 
response data were simulated for a shear-building system subjected to two real earthquake ground 
motion time histories. Several damage scenarios were introduced based on the simulated data such 
as peak values of inter-story drifts. For comparison purposes, the normal-UKF and adaptive UKF, 
which control artificial process noise, were conducted with sparse noisy measurements. Unlike the 
other two methods, the proposed method provided accurate estimation of sudden damage in system 

Figure 12. Estimation by MS-KFME: Scenario 3’ with RMS-noise 5%.

Appl. Sci. 2020, 10, 850 19 of 22 

 

Figure 12. Estimation by MS-KFME: Scenario 3’ with RMS-noise 5%. 

 

Figure 13. Estimation by MS-KFME: Scenario 4’ with RMS-noise 5%. 

5. Conclusions and Topics for Future Study 

In this paper, a novel methodology was proposed to track sudden damage of structural system 
under dynamic excitations using sparse measurements. First, the state-space model often used for 
the purpose of parameter estimation was modified to handle time-variant system parameters. The 
regularization term was also introduced to avoid divergence of estimation caused by sparse noisy 
measurements. Second, the master-slave Kalman filter for measurement noise estimation (MS-KFME) 
was utilized to adapt to time-varying status of the target system. The unscented Kalman filter (UKF) 
as master filter estimates the status of target system parameters while a linear Kalman filter (LKF) as 
slave filter estimates the covariance of artificial measurement noise in UKF through a covariance-
matching technique. Lastly, particle swarm optimization (PSO) was exploited to tune the artificial 
noises of MS-KFME with practical considerations. To test the proposed methodology, sets of structural 
response data were simulated for a shear-building system subjected to two real earthquake ground 
motion time histories. Several damage scenarios were introduced based on the simulated data such 
as peak values of inter-story drifts. For comparison purposes, the normal-UKF and adaptive UKF, 
which control artificial process noise, were conducted with sparse noisy measurements. Unlike the 
other two methods, the proposed method provided accurate estimation of sudden damage in system 

Figure 13. Estimation by MS-KFME: Scenario 4’ with RMS-noise 5%.

5. Conclusions and Topics for Future Study

In this paper, a novel methodology was proposed to track sudden damage of structural system
under dynamic excitations using sparse measurements. First, the state-space model often used
for the purpose of parameter estimation was modified to handle time-variant system parameters.
The regularization term was also introduced to avoid divergence of estimation caused by sparse noisy
measurements. Second, the master-slave Kalman filter for measurement noise estimation (MS-KFME)
was utilized to adapt to time-varying status of the target system. The unscented Kalman filter (UKF) as
master filter estimates the status of target system parameters while a linear Kalman filter (LKF) as slave
filter estimates the covariance of artificial measurement noise in UKF through a covariance-matching
technique. Lastly, particle swarm optimization (PSO) was exploited to tune the artificial noises of
MS-KFME with practical considerations. To test the proposed methodology, sets of structural response
data were simulated for a shear-building system subjected to two real earthquake ground motion time
histories. Several damage scenarios were introduced based on the simulated data such as peak values of
inter-story drifts. For comparison purposes, the normal-UKF and adaptive UKF, which control artificial
process noise, were conducted with sparse noisy measurements. Unlike the other two methods, the
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proposed method provided accurate estimation of sudden damage in system parameters even if the
corresponding parameter’s response was missing. These results demonstrated the potential of the
proposed method for practical applications.

In general, it is critical to tune filter methods to obtain near-optimal estimation results. Especially,
the tuning process of MS-KFME is known to be sensitive to choices of covariance matrices of artificial
noises for master and slave filter. Even if the number of tuning parameters is reduced to just two
parameters through the recommended assumptions, it is impossible to determine the tuning parameters
empirically. To this end, this paper utilizes particle swarm optimization (PSO). The PSO-based tuning
process is affected by choice of boundary conditions, and thus it is essential to perform PSO repeatedly
to find the best tuning parameters.

It is recommended to further explore the use of an efficient global optimization method to avoid
assumptions that were introduced to reduce the number of tuning parameters. If so, a tuning process of
dual adaptive filter will be more flexible to adapt to practical applications. In addition, the slave filter
in this paper used the covariance-matching technique as a state-space model. The matching technique
depends on differences between actual and theoretical covariance while structural knowledge is not
exploited. Because of this limited capability of covariance-matching technique from SI point of view,
some important structural information may not be revealed accurately, which causes slow convergence
into accurate values or biased estimations. To infer meaningful information appropriately from sparse
noisy measurements, the latest machine-learning techniques and Bayesian methods could provide a
suitable state-space model for the slave filter.
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Appendix A. Adaptive Tracking Technique Using Particle Filter

Liu et al. (2005) proposed an adaptive tracking technique employing particle filter [17]. The
following equations describe an appropriately modified version of the UKF-based tracking technique:

Vk+1 =
[
ρVk +

1
2nx + 1

∑2nx

i=0

[
ζi

k+1|k − zk+1

][
ζi

k+1|k − zk+1

]T
]
/(1 + ρ) (A1)

Mk+1 =
1

Nk+1

∑k+1

k=1

[ 1
2nx + 1

∑2nx

i=0

[
ζi

k+1|k − ẑk+1|k
][
ζi

k+1|k − ẑk+1|k
]T

]
(A2)

λ =
tr[Vk+1]

tr[Mk+1]
, λk+1 =

λ if λ > 1

1 if λ ≤ 1
(A3)

where Vk+1 and Mk+1 are the covariances of the actual and theoretical residual; ρ is the forgetting
factor ranging between 0 and 1 (for which ρ = 0.95 is often selected); and tr[·] is the trace of the matrix.
The calculation of Equations (A1)–(A3) is performed in the measurement-update part of UKF. The
key idea of the above equations is that if there are considerable sudden changes in the state vector,
the actual-residual covariance Vk+1 becomes different from the theoretical-residual covariance Mk+1.
Then, the covariance of the artificial process noise increases rapidly in the next time-step to track the
sudden decrease of states, i.e., Qk+1 = λkQk. At this calculation, the whole elements in the covariance
of artificial process noise are increased with the same ratio. Instead, to consider general cases where
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each system parameter usually decreases at different time-points with different level of damage, the
Equation (A3) can be modified to:

Λii = (Vk+1)ii/(Mk+1)ii, (Λk+1)ii =

Λii if Λii > 1

1 if Λii ≤ 1
(A4)

which is a simple modification from the original version to consider the decreases in each system
parameter, separately. The limitation of this adaptive technique is that the inaccurate changes in state
vector may cause severe bias or unstable estimation. Additionally, the increasing factor can be calculated
when the corresponding responses are measured, which violates the condition of sparse measurements.

Appendix B. MS-KFPE

In Figure 2, the equations associated with (1) indicate using MS-KFPE. The SF in MS-KFPE uses
the current time step’s filtering information provided from the master filter to correct the covariance
Qk for the improvement of the overall filtering performance [13]. The following equations are used in
the state-space model for SF of MS-KFPE:

zs
k+1 = diag

(
1

Nk

∑k+1

i=k−Nk
[Kk+1vk+1][Kk+1vk+1]

T
)

(A5)

dk+1 = diag
(
Pxx

k+1|k − Pxx
k+1 −Qk

)
(A6)

zs
k+1 = qk+1 + dk+1 + υk (A7)

where Nk is the time-window, which controls how fast the adaptation of Qk is achieved. Equation (A5)
describes empirical covariance based on residuals as a measurement for slave filter. The first two
terms in the right-hand side of Equation (A6) describe the prediction of residual’s covariance from
the master filter. Then, through Equation (A7), the empirical covariance of the residual is matched
to the prediction value. The gap between those two covariance matrices is utilized to compensate
wrong assumption of covariance of artificial process noise in MF. This correction procedure of SF
is conducted in the part of measurement-update of UKF to use the corrected covariance in the next
time step. MS-KFPE is required to select additional parameter, i.e., time-window unlike MS-KFME.
Although the time-window can be determined, there is still a possibility of biased estimation due
to inaccurate increases of covariance of artificial process noise. A similar situation occurs when the
technique described in Appendix A is used.
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