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Abstract: The hallmarks of cancer represent an essential concept for discovering novel knowledge
about cancer and for extracting the complexity of cancer. Due to the lack of topic analysis frameworks
optimized specifically for cancer data, the studies on topic modeling in cancer research still have a
strong challenge. Recently, deep learning (DL) based approaches were successfully employed to learn
semantic and contextual information from scientific documents using word embeddings according
to the hallmarks of cancer (HoC). However, those are only applicable to labeled data. There is a
comparatively small number of documents that are labeled by experts. In the real world, there
is a massive number of unlabeled documents that are available online. In this paper, we present
a multi-task topic analysis (MTTA) framework to analyze cancer hallmark-specific topics from
documents. The MTTA framework consists of three main subtasks: (1) cancer hallmark learning
(CHL)—used to learn cancer hallmarks on existing labeled documents; (2) weak label propagation
(WLP)—used to classify a large number of unlabeled documents with the pre-trained model in the
CHL task; and (3) topic modeling (ToM)—used to discover topics for each hallmark category. In the
CHL task, we employed a convolutional neural network (CNN) with pre-trained word embedding
that represents semantic meanings obtained from an unlabeled large corpus. In the ToM task,
we employed a latent topic model such as latent Dirichlet allocation (LDA) and probabilistic latent
semantic analysis (PLSA) model to catch the semantic information learned by the CNN model for
topic analysis. To evaluate the MTTA framework, we collected a large number of documents related
to lung cancer in a case study. We also conducted a comprehensive performance evaluation for the
MTTA framework, comparing it with several approaches.

Keywords: multi-task learning; topic analysis; semantic learning; convolutional neural network;
latent semantic learning; biomedical domain; cancer hallmark; lung cancer

1. Introduction

Cancer is the second leading cause of death globally in 2018 and it is incredibly complicated [1].
The characteristics used to distinguish cancer cells from normal cells are called the hallmarks of
cancer (HoC) [2,3]. The cancer hallmark is the fundamental principle of malignant transformation of a
cancer cell and useful to understand tumor pathogenesis. It is becoming highly influential in cancer
research [4-6]. There are common 10 hallmarks of normal cells required for malignant growth that have
been proposed that provide an organizing principle to explain the variety of the biological processes
leading to cancer [3]. These are sustaining proliferative signaling (SPS), evading growth suppressors
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(EGSs), resisting cell death (RCD), enabling replicative immortality (ERI), inducing angiogenesis (IA),
activating invasion and metastasis (AIM), genome instability and mutation (GIM), tumor-promoting
inflammation (TPI), deregulating cellular energetics (DCE), and avoiding immune destruction (AID).

Most of the cancer research results have been published in the biomedical literature. The famous
biomedical literature database is PubMed, which has indexed approximately 30 million citations
including around 4 million cancer-related literature by 2019. As biomedical literature on servers grows
exponentially, biomedical text mining has been intensively investigated to find information in a more
accurate and efficient manner [7,8]. A large amount of biomedical literature in that database provides
a great opportunity to extract useful knowledge for cancer research. Researchers use a keyword-based
query to collect relevant literature from that database. Due to the complexity of cancer, a large number
of keywords, their synonyms, and combinations are required, which is a very time-consuming task
to retrieve relevant literature by using only a keyword. Most of the previous studies have used the
comparatively small dataset annotated by the experts for the hallmarks of cancer. The dataset is small
and the number of labeled documents, in particular, is very limited. To address this issue, we leverage
a large number of documents related to lung cancer from PubMed in a semi-supervised manner.

Recently, deep learning (DL) based approaches have achieved state-of-the-art performance and are
increasingly applied to most natural language processing (NLP) tasks [9-11]. NLP has benefited greatly
from the convolutional neural network (CNN) [12] and recurrent neural network (RNN) [13] due to
their high performance without any feature engineering. Generally, CNNs are hierarchical and RNNs
are sequential architectures. The distributed representations, known as word embedding [14], are often
used as the first layer in DL models. Distributed representations are mainly learned through context
and the learned word vectors can capture general syntactic and semantic information. Those word
vectors have proven to be efficient in capturing context and semantic similarity, analogies, and due to
its smaller dimensionality are fast and efficient in text mining tasks [15]. Typically, word embeddings
are pre-trained by optimizing an auxiliary objective in a large unlabeled corpus and used for other
downstream tasks.

A topic model is a probabilistic model, which is used to find the statistics of topics from a
large amount of corpus. Traditional topic models such as latent Dirichlet allocation (LDA) [16] and
probabilistic latent semantic analysis (PLSA) [17] have been successfully employed in various text
corpora. It maps a high dimensional frequency space to a lower-dimensional topic space. Moreover,
the topic model can capture semantic information, which can reveal the latent relations among
documents. It also can effectively solve the polysemy, synonym, and other problems, which has a vital
significance in document feature extraction and content analysis. However, using a topic model to
analyze the HoC has not been reported.

Therefore, the purpose of this paper is to focus on the topic analysis for the HoC, design an
efficient classification model, capture semantic information from a large amount of documents for
extracting complexity of cancer, present a scalable framework to analyze trend and topics for the
HoC, and improve the cancer hallmark classification performance and topic modeling result for each
hallmark category. The main contributions are as follows.

1.  We present a multi-task topic analysis (MTTA) framework to analyze cancer hallmark-specific
topics in a multi-task manner by leveraging large amounts of unlabeled documents.

2. We leverage a large number of unlabeled documents related to lung cancer according to the
HoC. Experiments on the unlabeled documents have demonstrated that the MTTA framework is
potentially valuable for the HoC analysis with an impressive superiority.

3. We highlight the importance of the latent topic models on weak-labeled documents that are
produced by the CNN model. The experimental results show that the CNN model can classify
cancer hallmarks better than other approaches and conventional topic models can discover
topics efficiently.

4. We produce semantic representations for each hallmark category using the CNN model and
capture this semantic information for each hallmark category using conventional topic models.
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The rest of this paper is organized as follows. Section 2 summarizes related works on cancer hallmarks,
topic modeling, and semantic learning. Section 3 presents the MTTA framework and its sub-tasks:
cancer hallmark learning (CHL), weak label propagation (WLP), and topic modeling (ToM) in detail.
Section 4 outlines the experimental setup and Section 5 shows experimental results of cancer hallmarks
classification on manually labeled data and analysis of topic modeling on weak-labeled data related to
lung cancer and discusses the effectiveness of the MTTA framework. Finally, we make a conclusion to
this paper and discuss the future work in Section 6.

2. Related Work

This section reviews recent advances in biomedical text classification according to the HoC,
and topic modeling for cancer research.

2.1. Cancer Hallmarks Classification

Machine learning (ML) and DL techniques have been explosively applied to research in the fields
of cancer and NLP. However, few research efforts have addressed cancer hallmark classification with
ML and DL.

Baker et al. [18] acquired a collection of PubMed abstracts using a set of search terms representative
for each of the 10 hallmarks. They used text mining methodologies such as tokenization, part-of-speech
tagging, lemmatization, dependency parsing, and named entity recognition for identifying relevant
information in the literature and extracted seven feature types such as a lemmatized bag of words,
noun bigrams, grammatical relations, verb classes, named entities, medical subject headings, and
chemical lists. They developed 10 independent binary classifiers to predict whether an abstract belongs
to each hallmark category and achieved an average Fl-score of 77%. Baker et al. [19] presented a
joint learning method that learns distributed semantic representations at different types of granularity
such as words, sentences, documents, and class using the Support Vector Machine (SVM) algorithm.
They also showed a semi-supervised classification result using the same classifier. Their model achieved
an Fl-score of 76.4% on a corpus of 1580 PubMed abstracts. Baker et al. [20] presented a CNN model
to achieve better performance with conventional ML algorithms with manually engineered features.
They compared the result with the SVM classifier, outperformed the performance in the seven cancer
hallmark tasks. Baker et al. [21] applied a hierarchical model for the multi-label classification task.
They initiated the final hidden layer of a neural network that leverages label co-occurrence relations
such as hypernymy. They achieved the Fl-score of 75.3% on a document level and the accuracy of
89% on the sentence level. Baker et al. [22] developed an automatic text mining methodology and
tool to retrieve and organize millions of PubMed literature into the 37 cancer hallmarks by adding
subclasses. They used the SVM classifier to predict a biomedical document and trained individual
binary classifiers. Their models achieved the average Fl-score of 52% and an accuracy of 97.9% on the
sentence level classification for all cancer hallmarks.

Du et al. [23] proposed a DL framework for multi-label classification of biomedical text without
any manual feature engineering. They trained a single model for a large set of labels. The proposed
model alleviates human effort for feature engineering and avoids training an individual model for
each class label. Their proposed model achieved the F1-score of 81.5% on a corpus of 1580 abstracts.
Pyysalo et al. [24] presented a literature-based discovery system with a particular focus on the molecular
biology of cancer using NLP methods and ML. They trained a CNN model on 37 cancer hallmarks
including the basic 10 hallmarks. The model supports the system to classify sentences to hallmark
categories. Peng et al. [25] evaluated and analyzed biomedical NLP representation models on five
tasks with 10 datasets including cancer hallmark classification. They found that the BERT models
pre-trained on PubMed abstracts achieved better performance than other models. Their best model
achieved the F1-score of 87.3% on a corpus of 1580 PubMed abstracts.

Most of the previous studies used the small dataset, which contains around 1500 documents.
In this paper, we leveraged a large number of unlabeled documents related to lung cancer from PubMed.
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We analyzed topics on the unlabeled documents for each cancer hallmark category by employing text
mining, deep learning, and topic models.

2.2. Topic Modelling for Biomedical Text Mining

Topic modeling is a useful method to enhance cancer researchers’ ability to interpret biomedical
information. However, using a topic model to analyze the HoC has not been reported, there are few
studies that analyzed topics for biomedical and its related documents.

Researchers used a topic model to analyze biomedical literature about genomes such as
protein—protein interaction and gene-level analysis. Andrzejewski et al. [26] developed the automatic
extraction model to discover the protein—-protein interactions from biomedical literature. They employed
the LDA model to capture the differences in the vocabulary from Medline abstracts. Wang et al. [27]
also employed an LDA generative topic model to extract protein—protein interaction detection from
the biomedical literature successfully. They applied the model on a corpus of 5319 full-text documents
annotated by MINT and IntAct databases. They reported that the topic model captures the in-depth
relationship not only between the methods and related words but also among the different methods.
Wang et al. [28] proposed a method to extract commonalities between gene-related documents in an
unsupervised manner using a topic model. They employed an LDA model to extract topics from
documents. They found that the topics are usually reasonably well described by the currently employed
topic algorithms.

Drug discovery is one of the most important challenges in biomedical research. Bisgin et al. [29]
investigated the efficacy of topic modeling for the discovery of hidden patterns and their meanings from
food and drug administration approved drug labels. They found that the identified topics have distinct
contexts directly linked to specific adverse events or therapeutic applications. Bisgin et al. [30] also
constructed a probabilistic topic model on the terms in the medical dictionary for drug repositioning.
The topic model identified fifty-two unique topics, each containing a set of terms in this study.
They found that drugs considered to be similar might often be effective for the same disease.

Retrieving relevant information from biomedical text data is an active challenging area of research.
Chen et al. [31] proposed an approach that employs an LDA topic generative model to promoting
ranking diversity for biomedical information retrieval. They showed that the proposed approach
achieved an 8% improvement over the Aspect MAP reported in TREC 2007 Genomics track [32].
Moreover, Song et al. [33] explored the knowledge structure and trends in bioinformatics by applying
text mining techniques including topic modeling to PubMed Central full-text articles. As a result by
the topic model, they found that word co-occurrence analysis reveals that major topics focus more
on biological aspects than on computational aspects of bioinformatics. Wang et al. [34] developed
a literature mining system based on topic modeling called BioTopic. They extracted topics from
large-scale documents. They showed that their preprocessing technique improves the result by 5%
than traditional preprocessing techniques. They achieved 86% of precision in the topic modeling task.
They found that the fine-grained preprocessing with topic modeling shows better results than the
previous literature mining systems.

Therefore, there are a few cancers and its related analysis using topic modeling. Cui et al. [35]
applied the LDA Gibbs sampling model on the analysis of the top five deadliest cancer research trends,
which is extended from the cosine coefficient using the vector space model after transforming the
topic-word matrix into a topic word vector. They showed the word clouds to visualize the allocation of
the topics for each cancer research, and how to make a computational evaluation for the trend results.

3. Materials and Methods

In this section, we described the presented MTTA framework, which consists of three-main
subtasks: CHL, WLP, and TM. The overview of the MTTA framework is shown in Figure 1. Firstly,
in the CHL task, we developed the CNN model to learn semantic knowledge about the HoC on a small
number of labeled documents. The input of CHL is labeled documents and the output is a trained
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model. We used a pre-trained word embedding to capture semantic information as the first layer of
the CNN model. In the last layer of the CNN model, we used a softmax function [36] to calculate a
probability for each hallmark category. We updated model weights during training. Secondly, in the
WLP task, we used the CNN model as our cancer hallmark classifier to annotate unlabeled documents.
The input of WLP is unlabeled documents and the output is weak labeled documents. To reduce
data noisy, we filtered out the documents by removing a low probability (lower than 80%) after the
annotation. As a result, we produced weak-labeled documents. Thirdly, in the ToM task, we employed
text mining techniques to preprocess the weak-labeled documents, to identify biomedical entities by
discovering medical concepts, and an LDA and LSA models to analyze hallmark-specific topics on the
weak-labeled documents. There is no weight updating. The list of abbreviations used in this work are
summarized in Table 1.

Table 1. List of abbreviations.

Abbreviations Definitions

Dy, Labeled documents

Number of labeled documents
Unlabeled documents

Number of unlabeled documents
Topics

Number of topics

Classification model

Vocabulary for labeled documents
Word vector

Weak labeled documents

Number of weak labeled documents
Class probability for each class (positive and negative)
Entities

Number of entities

Dirichlet prior (Topic distribution)
Dirichlet prior (Word distribution)
Multinomial distribution over Q topics
Multinomial distribution over R entities

mm:awmw[\]g@ <§20~]cngz

_________________________________________________________________________________

UNLABELED ! WEAK LABEL PROPAGATION (WLP) | WEAK-LABELED
DOCUMENTS ! ! DOCUMENTS

CANCER HALLMARK
CLASSIFIER

FILTERING

ALL ANNOTATED
DOCUMENTS

SEARCH TERM
(EX: LUNG)

P R S e e R e ' e e

E CANCER HALLMARK LEARNING (CHL) ' TOPIC MODELING (TM)

PUBMED

TEXT
PREPROCESSING

FULLY CONNECTED

x P MEDICAL ENTITY
MAX-POOLING b el

MANUALLY
LABELED

DOCUMENTS ' CONVOLUTIONAL

WORD EMBEDDING LATENT TOPIC MODELS

Figure 1. The overview of the MTTA framework.

Algorithm 1 describes the main flow of the MTTA framework as briefly explained above.
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Algorithm 1 Multi-task topic analysis framework

Input: A set D; = {D1,D,,...,Dn} of N labeled documents; a set Dy = {D1, D>, ..., Dg} of S unlabeled
documents;

Output: AsetT = {Tl, Ty,..., TQ} of Q topics for each hallmark category;
begin

1
2

~

Train cancer hallmark classifier using CNN model on Dy ;

~

Annotate Dy; using pre-trained classifier;

)
=

Filter-out annotated Dy using the probability threshold;

=
=

Preprocess and identify medical entities from filtered Dyy;

(
(
(
(
(

a1
~

Discover T for each hallmark category;

end

3.1. Cancer Hallmarks Learning

In the CHL task, we employed a CNN model to learn the HoC on labeled documents, which has
the following five layers: word embedding (200 dim) — convolutional (three kernels with sizes of
3,4, 5, and 100 feature maps) — max-pooling — fully connected (256 nodes) — softmax. As used in
the previous studies [18,20], we used the same strategy to learn the HoC. We trained 10 independent
one-class-classifiers for each hallmark category. In the last layer, we used a softmax function to calculate
probabilities for each positive and negative class. Positive class indicates specific hallmark category
and negative class indicates the non-hallmark category. Algorithm 2 describes the main flow of the
CHL task as briefly explained above.

Algorithm 2 Cancer hallmark learning task

Input: A set D;, = {D1,D;,...,Dy} of N labeled documents; pre-trained word vectors;
Output: A model M trained on Dy;
begin

1

~

Create a vocabulary V from Dy ;

(

(2) Retrieve a real-valued vectors v for V;

(3) Initialize the weights for each layer;

(4) Train a classification model;

(5) Calculate probabilities for each positive and negative classes using softmax function;
end

For the cancer hallmarks classification task, those that were rich in biomedical literature were
used. Baker et al. [20] investigated the different word embedding techniques for the classification task
and compared the performances. As the discussion, the window size 2-word vectors produced by
Chiu et al. [37] outperformed all the other vectors. We also applied the same word vector (chiu-win-2)
on this task. The chiu-win-2 vectors contain 200-dimensional vectors for 2.2 million words.

3.2. Weak Label Propagation

In this WLP task, we used the pre-trained CNN model as our hallmark classifier, which can
classify unlabeled documents into 10 hallmark categories. As calculated by the softmax function, the
probability of each class (positive and negative) was produced. To reduce data noise, we filtered out
the documents with low probability. We set the threshold value to 0.8. That means the documents with
lower and equal probability to 0.8 were ignored and the documents with greater probability than 0.8
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were kept for topic analysis. Finally, we produced weak-labeled documents for each hallmark category.
Algorithm 3 describes the main flow of the WLP task as briefly explained above.

Algorithm 3 Weak label propagation task

Input: A set Dy = {Dy,D»,...,Dg} of S unlabeled documents; a model M trained on Dy ;
Output: A set Dy = {D1,D;, ..., Dz} of Z weak-labeled documents;

begin

(1)  Create a empty list for Dyy;

(2) Calculate probabilities P for each class (positive Ppos and negative Pyeg);
(3) if Ppos >0.8do

4) Append this document to the Dyy;

(5) else

(6) Ignore this document;

(7) end

end

3.3. Topic Modeling

In the ToM task, we employed conventional topic models to analyze topics for each hallmark
category. The ToM task is composed of three steps: (1) text preprocessing; (2) medical entity
identification; and (3) latent semantic analysis. Most structured biomedical text data commonly needs
classic preprocessing techniques, including data cleaning, stop-word removal, punctuation removal,
tokenization, etc. The task of information extraction for medical texts mainly includes named entity
recognition. A classic topic modeling has the key steps including the bag of words, model training,
and model output. Algorithm 4 describes the main flow of the ToM task as briefly explained above.

Algorithm 4 Topic modeling task

Input: A set Dy = {D1,D»,...,Dz} of Z weak-labeled documents;
Output: AsetT = {T1, Ts,..., TQ} of Q topics for each hallmark category;
begin

1

~

Preprocess each document in Dyy;

(

(2)  Identify biomedical entities form each document;

(3)  Apply the conventional topic models to the identified biomedical entities;
(4) Produce a set T for each hallmark category;

end

Each step of the ToM task has been briefly discussed.

3.3.1. Text Preprocessing

For reasons previously mentioned, it is important to clean user-generated data before topic
modeling. During preprocessing the following steps were followed for better performance of cancer
hallmarks topic modeling.

e  All numbers and special characters were removed.

e  All uppercase characters were changed into lowercase.
e  All non-ASCII character was removed.

e All stopword was removed.
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e All classes in an abstract including background, objective, method, result, and conclusion
were removed.

3.3.2. Medical Entity Identifier

This section describes the strategy followed by the medical entity identification task. We used the
MetaMap tool [38] to identify the unified medical language system (UMLS) [39] terminology in the
medical domain and subsequentially, we performed a ranking of relevant documents to be returned.
The UMLS is a repository of biomedical vocabularies developed by the US National Library of Medicine.
Our work used “2018AA Full Release UMLS Metathesaurus”, it contained approximately 3.67 million
concepts and 14 million unique concept names from 203 source vocabularies. Vocabularies integrated
with the UMLS Metathesaurus include the NCBI taxonomy, Gene Ontology, the Medical Subject
Headings (MeSH), MedDRA, RxNorm, or SNOMED-CT. In UMLS when a concept is added to the
Metathesaurus, it receives a unique identifier named concept unique identifiers (CUI). This identifier
will be very useful in our system. MetaMap is a highly configurable application developed to map
biomedical text to the UMLS Metathesaurus. MetaMap employs NLP and computational linguistic
techniques: tokenization, part-of-speech tagging, syntactic analysis, word sense disambiguation, and
others. This tool first breaks the text into phrases and then, for each phrase, it returns the concepts
detected and several other information. Concepts are ranked according to a relevance value. In this
paper, we used all the identified CUI, acronyms and abbreviations (AA) as our medical entities.
For example, the CUI for the concept “Hypoxia-Inducible Factor” is C0215848. The AA for the concept
“Low-folate” is LE. We created a dictionary of the CUI and AA for the following latent topic models.

3.3.3. Latent Topic Models

In this section, we described the conventional latent based topic models LDA and PLSA used in
this paper. Basically, it shows the steps in topic modeling, which include a bag of word, training of the
model, and output of a topic model. We assumed that there were Q topics, E entities, and Z documents
in a corpus.

The bag of words (BoW) model representation is used in information retrieval and natural
language processing. In BoW, it represents text by ignoring its order and grammar. As shown in
Table 2, there are five entities such as low-folate, metastasis, neoplasm metastasis, decreased folic acid,
tryptophanase, and five documents in a corpus. The value E;; in the matrix shows the number of times
term i appear in a document. For example, E13 = 8 means a number of times “low—folate” entity appear
in D3 the document is 8.

Table 2. Bag of words representation of documents.

Entity (CUI or AA) D, D> Ds Dy D

low-folate (LF)
metastasis (C4255448)
neoplasm metastasis (C0027627)
decreased folic acid (C0239623)
tryptophanase (C0041260)

Q1

N O W W~
— RN RN
O N O U1 o
_= =Wk O
W O OO\

The term-document matrix was considered as a simplified representation of documents as the
input to the topic model. In a bag of words, the size of the term-document matrix was huge. The goal of
topic modeling is to find the concept that runs through documents by analyzing the words of the texts.
Topics were discovered during the training of models. For topic models like LDA and PLSA, word term
space of the documents converted into topic space as it is definitely sure that topic space is smaller
than word term space. The outputs of these models contain two matrices that are the word probability
distributions over topics and the second one is the topic probability distributions over documents.
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The PLSA is a statistical technique for the analysis of a collection of the document. The probabilistic
latent semantic analysis is evolved from a latent semantic analysis. In PLSA, assume D denotes the label
of a documenti.e., D belongs to Dy = {D1, D>, ..., Dz}, and Z denotes the number of documents in the
data. T is a topic, T belongs to T = {T1, Ty,..., TQ}, i.e., there is a Q number of topics. E represents an
entity, E belongs to E = {Eq, Ey, ..., ER}, i.e,, there is a R number of entities in data. Therefore, P(T|D)
denotes the probability of topic T in document D, and P(E (T) means the probability of entity E in
topic T. Then, for PLSA, the generative procedure for each word in the document is described in
Algorithm 5.

Algorithm 5 Probabilistic latent semantic analysis

Input: A set Dy = {D1,D»,...,Dz} of Z weak-labeled documents; a set E = {E1, E, ..., ER} of R entities;
Output: AsetT = { T, T, ..., TQ} of Q topics for each hallmark category;

begin

(1)  Select a document D, with probability P(D);

(2) Randomly choose a topic T, from the distribution over topics P(Tq|DZ) ;

Tq);

(3) Randomly choose an entity E, from the distribution over the topic P(Er

end

In LDA, a document is viewed as a combination of different topics where each document is
assumed to have a group of topics that are assigned to document using LDA. This is identical to
PLSA, in practice, this results in better disambiguation of words and a more precise assignment of
documents to topics. LDA is a generalization of the PLSA model, which is equivalent to LDA under a
uniform Dirichlet prior to distribution. In LDA, the two probability distributions, P (T|D) and P(E|T)
are assumed to be multinomial distributions. Thus, the topic distributions in all documents share
the common dirichlet prior a, and the word distributions of topics share the common dirichlet prior
1. Given the parameters a and 1 for document D, parameter Op of a multinomial distribution over
Q topics is constructed from dirichlet distribution Dir(6D|oz) . Similarly, for topic Q, parameter g
of a multinomial distribution over R entities is derived from Dirichlet distribution Dir (ﬁQ|r]) . Asa
conjugate prior for the multinomial, the Dirichlet distribution is a convenient choice as a prior and
can simplify the statistical inference in LDA. Therefore, in PLSA, by contrast, any common prior
probability distribution was not specified for P(T|D) and P(E |T) Naturally, there are no a and
in the generative process of PLSA. Then, for LDA, the procedure for each word in the document is
described in Algorithm 6.

Algorithm 6 Latent Dirichlet allocation

Input: A set Dy = {D1,D»,...,Dz} of Z weak-labeled documents; a set E = {E1, E, ..., ER} of R entities;
Output: AsetT = {Tl, Ty,..., TQ} of Q topics for each hallmark category;

begin

(1) Choose Op from the distribution Dir(a);

(2) Choose g from the distribution Dir(n);

(3) for each entity in entities do

4) Choose a topic T from the multinomial Op;
(5) Choose an entity E from the multinomial fg;
(6) end

end
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4. Experimental Setup

In this section, we described the experimental datasets, hyperparameters of both the DL and
topic models and training procedures, respectively. We also described all evaluation measures and
baseline methods for each task. Finally, we described the experimental environment all the methods
are trained on.

4.1. Dataset

We evaluated the presented MTTA framework on the small manually labeled dataset and crawled
a large number of unlabeled documents from PubMed repository.

4.1.1. Manually Labeled Documents

We used the manually labeled cancer hallmark dataset [20], which consists of 1852 biomedical
publication abstracts annotated for the hallmarks of cancer by Baker et al. [18]. An annotation was
performed at the document level by an expert with more than 15 years of experience in cancer research.
We used the training, development and testing data divided in Baker et al. [20]. The statistics of
datasets are described in Table 3.

Table 3. Labeled datasets. Y: hallmarks and N: non-hallmarks.

Train Development Test
Hallmark
Y N Y N Y N
SPS 328 975 43 140 91 275
EGS 172 1131 22 161 46 320
RCD 303 1000 42 141 84 282
ERI 81 1222 11 172 23 343
1A 99 1204 13 170 31 335
AIM 208 1095 29 154 54 312
GIM 227 1076 38 145 68 298
TPI 169 1134 24 159 47 319
DCE 74 1229 10 173 21 345
AID 77 1226 10 173 21 345

4.1.2. Unlabeled Documents

Our interest and a case study’s interest are in modeling hallmark-specific topics thus PubMed
provided an ideal testing scenario for mining biomedical document abstract data. We used a real-life
PubMed dataset related to lung cancer. The data was collected with a search term “lung” via Biopython’s
module called Entrez [40]. We collected 667,861 unlabeled document abstracts. Manual inspection of
the dataset revealed that it was quite compact in terms of topical variance in the hallmark level. Each
entry in the dataset represented a single document with its associated abstract including background,
objective, methods, results, conclusion, etc.

4.2. Deep Learning Model

This section describes the experimental setup for the deep learning model in the cancer hallmark
learning task. For evaluating the CNN model, an exact matching criterion was used to examine three
different metrics such as a macro and weighted averaged F1-score. We then compared the CNN model
with its supervised manner in terms of the macro and micro F1 score. For this purpose, we implemented
the following baseline learning algorithms:

e CNN [12]: a basic CNN model. It has three convolutional layers with a kernel width of 3, 4,
and 5 with 100 output channels.

e RCNN [41]: a hybrid RNN and CNN model. The combined architecture CNN followed by
Bidirectional Long Short Term Memory (BiLSTM).
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e Gated Recurrent Unit (GRU) [42]: one of the basic RNN models. Only forward GRU with
256 hidden units.

e Bidirectional Gated Recurrent Unit (BiGRU) [43]: one of the basic RNN models. Forward and
backward GRU with 256 hidden units.

e  Long Short Term Memory (LSTM) [44]: one of the basic RNN models. Only forward LSTM with
256 hidden units.

e  BiLSTM [45]: one of the basic RNN models. Forward and backward LSTM with 256 hidden units.

The hyperparameters used in the CNN model are described in Table 4. We used Adam optimizer
to update parameters while training. We used dropout and an early stopping strategy with patience 20
to avoid overfitting and an early stopping monitored weighted F-score on development sets.

Table 4. Hyperparameters.

Parameter CNN RNN
Learning rate 0.001 0.001
Batch size 128 128
Hidden dimension 256 -
Number of layers 2 -
Number of filters - 100
Filter size - [3, 4, 5]
Early stopping patience 20 20
Dropout 0.5 0.5

4.3. Topic Model

For the conventional topic models LDA and PLSA, we used the Gensim Python library [46] with
all default parameter settings. The experimental results can be improved by tuning the parameters.
We evaluated the models using a semantic coherence score. This metric was proposed to measure
the interpretability of topics and was demonstrated to correspond to human coherence judgments.
Coherence can also be used for determining the optimal number of topics and the coherence score
monotonously decreases if the number of topics increases.

In this paper, the experimental hardware platform was Intel Xeon E3, 32G memory, GTX 1070
Ti. The experimental software platform was Ubuntu 18.04 operating system and the development
environment was Python 3.5 programming language. The Pytorch library [47] and the Scikit-learn
library [48] of python were used to build the presented MTTA framework and comparative
experiments, respectively.

5. Experimental Result and Discussion

In this section, we used the labeled and unlabeled datasets to assess the performance of the
MTTA framework, especially, CNN model and topic models, respectively. We mainly compared the
performances of methods in two aspects: (1) compare the CNN model with other deep learning-based
models on small labeled data in CHC task; (2) annotate the unlabeled documents related to the lung
cancer in WLP task; and (3) explore the performance of LDA and PLSA models on the weak-labeled
documents in ToM task.

5.1. Cancer Hallmark Classification Result

In the CHC task, we developed the CNN model and the other deep learning-based models.
Each model employs the pre-trained chiu-win-2 word vectors using external semantic networks with
both base and tuned variants. In the base variant, it uses the word vectors from chiu-win-2 and does not
update the word vectors. In the tuned variant, it uses the word vectors and updates word vectors during
training for its own specific task. We also compared the models with the best-published performance
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in Baker et al. [20] in terms of the macro-averaged F1-score. They used the same CNN model with base
and tuned modification of word vectors. As can be seen clearly in Table 5 (macro-averaged F1-score)
and Table 6 (micro averaged Fl-score).

Table 5. Supervised algorithms on the labeled dataset (macro Fl-score).

Model SPS EGS RCD ERI IA AIM GIM TPI DCE AID
Baker et al. [20] Best 70.00 71.50 86.90 91.50 85.70 82.60 81.70 84.20 88.30 75.80
Base 73.49 82.22 92.93 92.98 88.60 88.45 86.93 87.43 94.36 84.42

CNN Tuned 7466 8015 9212 9318 8910 90.15 87.62 8793 9583 8431
RCNN Base 74.38 81.67 91.10 92.95 86.46 89.82 85.96 88.92 96.62 88.61
Tuned 75.13 79.77 91.32 92.82 87.41 89.57 86.05 88.70 95.52 88.55
GRU Base 74.76 79.14 85.95 91.44 88.12 87.78 82.30 86.48 90.48 83.74
Tuned  76.65 74.03 87.86 90.57 88.28 87.38 83.31 86.78 93.52 81.31
BiGRU Base 70.99 57.45 69.85 87.86 85.46 83.58 80.46 72.99 89.09 74.01
! Tuned 71.16 58.73 70.61 85.87 85.39 82.69 81.05 71.03 90.40 70.37
LSTM Base 76.47 72.42 82.94 86.32 86.48 86.30 82.22 82.08 91.05 78.83
Tuned 76.62 69.62 82.84 87.22 87.10 84.84 82.60 82.26 90.43 78.88
BiLSTM Base 66.23 57.15 58.29 74.86 72.53 68.82 73.99 65.20 81.57 60.82
! Tuned  65.33 56.75 56.36 73.44 72.61 69.73 73.00 64.00 80.90 62.40
Table 6. Supervised algorithms on the labeled dataset (micro F1-score).
Model SPS EGS RCD ERI IA AIM GIM TPI DCE AID
CNN Base 81.99 92.31 95.08 98.13 96.68 94.06 91.68 94.96 98.64 96.92
Tuned 8246 91.56 94.61 98.21 96.76 94.76 92.15 95.11 98.91 96.84
RCNN Base 82.15 91.92 93.94 98.13 95.97 94.96 91.29 95.31 99.10 97.27
Tuned 8246 91.37 94.06 98.09 96.36 95.00 91.17 95.27 98.87 97.35
GRU Base 81.98 89.70 90.55 97.99 96.02 93.32 89.67 93.46 97.86 96.70
Tuned  82.99 89.64 91.68 97.83 95.93 93.13 90.25 93.57 98.52 96.62
BiGRU Base 78.98 82.55 78.71 97.11 95.25 91.37 88.49 88.27 97.77 94.62
! Tuned 79.51 82.61 78.60 96.84 95.44 90.82 89.18 87.17 97.69 93.98
LSTM Base 82.97 87.94 88.19 96.95 95.58 92.61 89.48 91.13 98.05 95.88
Tuned  83.13 87.80 88.60 96.92 95.85 91.54 89.78 91.68 97.97 96.13
BiLSTM Base 76.24 82.52 71.57 94.34 92.78 84.78 85.11 84.97 96.32 92.17

Tuned 7563  80.19 7096 9410 93.00 85.60 8495 83.88 9643  92.64

As shown in the experimental results of the macro-averaged F1 score, the tuned-CNN model
outperformed the other models on the four tasks (93.18%, 89.10%, 90.15%, and 87.62% on ERI, IA,
AIM, and GIM, respectively). The base-CNN model outperformed the other models on the two tasks
(82.22% and 92.93% on EGS and RCD, respectively). The combined model base-RCNN outperformed
on the three tasks (88.92%, 96.62%, and 88.61% on TPI, DCE, and AID, respectively). The tuned-GRU
model achieved 76.65% on the remained SPS task.

As shown in the experimental results of the micro-averaged F1 score, the tuned-CNN model
outperformed the other models on the three tasks (98.21%, 96.76%, and 92.15% on ERI, IA, and GIM,
respectively). The base-CNN model outperformed the other models on the two tasks (92.31% and 95.08%
on EGS and RCD, respectively). The combined model base-RCNN outperformed on the two tasks
(95.31% and 99.10% on TPI and DCE, respectively). The combined model tuned-RCNN outperformed
on the remaining two tasks (95.00% and 97.35% on AIM and AID, respectively). The tuned-LSTM
model achieved 83.13% on the remaining SPS task.

We concluded that for this experiment, CNN based models were more efficient than RNN based
models in case of a low semantic dependency and a high out of vocabulary tasks. The CNN models
were good at extracting local and position invariant features. For the weak label propagation task,
we selected the tuned-CNN model because of its performance.
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5.2. Weak Label Propagation Result

In this task, we show the experimental results of weak-labeled documents related to lung cancer.
We annotated a large number of unlabeled documents using the tuned-CNN model showed in the
previous section. While label propagation, the softmax function was used to calculate a probability for
each positive and negative class. To reduce the data noise problem, we filtered-out the documents
that had low probability (lower than 0.8) and selected the documents that had a high probability
(higher and equal to 0.8). The statistics of the weak-labeled data are shown in Table 7.

We found 48,953 documents related to ERI cancer hallmark from a total of 667,861 documents
at most. It had a total of 7,698,235 medical concepts (CUI) and 80,444 unique CUIs. We found only
43 documents related to DCE cancer hallmark from a total of 667,861 documents at least. It has a total
of 7701 CUIs and 2124 unique CUIs.

After finding all hallmark specific documents, we applied the conventional topic models LDA
and PLSA on the weak-labeled documents.

Table 7. The statistics of the weak-labeled documents (lung cancer).

Hallmark No. of Documents No. of Entities No. of Unique Entities
SPS 4097 766,146 22,576
EGS 950 170,965 11,272
RCD 14,313 2,710,563 56,052
ERI 604 102,357 9531

IA 3009 582,378 22,362
AIM 48,953 7,698,235 80,444
GIM 7733 1,444,839 33,579
TPI 30,403 6,006,649 67,733
DCE 43 7701 2124
AID 13,098 2,094,029 40,055

5.3. Topic Modelling Result

This section shows the results of the topic modeling. We reported the top-10 concepts from the
top-1 topic for each hallmark in Tables 8-17. The topics of each hallmark were explored using LDA
and PLSA models and the results were compared. We found the following topics were most related to
cancer hallmarks from lung cancer data. The common non-medical words are highlighted.

As shown in Table 8, the identified CUI “Epidermal Growth Factor Receptor” is mostly concerned
with the hallmark “sustaining proliferative signaling” (SPS) in the different concepts. For example,
EGFR is a shortage of the epidermal growth factor receptor. The concepts “EGFR gene, EGFR protein,
and EGFR measurement” were found in the top-10 concepts. Liu et al. [49] reported that activation of
EGEFR-tyrosine kinases is a key reason for lung cancer progression. We found that EGFR was the best
topic in the SPS hallmark.

As shown in Table 9, TP53 was mostly concerned about the hallmark evading growth suppressors
(EGSs) in multiple concepts such as the TP53 wt Allele and TP53 gene. Amin et al. [50] mentioned the
recent report of the Cancer Genome Atlas (TCGA) assessment of squamous cell lung cancers, where
the most common significantly mutated gene was TP53. We found that TP53 was the best topic in the
EGS hallmark.

As shown in Table 10, we found that the concept “Apoptosis” was the key topic in resisting cell
death (RCD). Liu et al. [51] discussed the role of apoptosis in non-small-cell lung cancer (NSCLC).
They report that the processes of autophagy and apoptosis, which induce degradation of proteins and
organelles or cell death upon cellular stress.

As shown in Table 11, we found that the concept “senility”, “senescence”, and “old age” were the
key concepts in the hallmark enabling replicative immortality (ERI). Senescence or biological aging
is the gradual deterioration of functional characteristics and senility describes that a person who is
experiencing dementia brought about by old age. Yaswen et al. [52] discussed the therapeutic targeting
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of replicative immortality. They reported that a protective role of senescence has been inferred in
murine models of lung adenomas, T-cell lymphomas, prostate tumors, and pituitary tumors.

As shown in Table 12, we found that the concept “Vascular Endothelial Growth Factors (VEGF)”
was a key concept in the hallmark inducing angiogenesis (IA). Shimoyamada et al. [53] reported that
VEGF is crucial for angiogenesis, vascular permeability, and metastasis during tumor development.

As shown in Table 13, we found that the concepts “Neoplasm” and “Metastasis” were mostly
concerned about the hallmark activating invasion and metastasis (AIM). Martin et al. [54] reported that
the liver is one of the most common sites for metastatic disease and in the United States and Europe,
secondary liver neoplasms are far more common than primary hepatic neoplasms. Lung cancer that
spreads to the liver is called metastatic lung cancer rather than liver cancer.

As shown in Table 14, we found that the concepts “mutation” and “mutation abnormality” were
the key topics related to the hallmark genome instability and mutation (GIM). Ninomiya et al. [55]
discussed genetic instability in lung cancer. Genetic instability refers to a high frequency of mutations
within the genome of a cellular lineage. These mutations can include changes in nucleic acid sequences,
chromosomal rearrangements, or aneuploidy.

As shown in Table 15, we found that the concept “lipopolysaccharides” was the key concept
related to the hallmark tumor-promoting inflammation (TPI). Melkamu et al. [56] discussed that
lipopolysaccharide enhances mouse lung tumorigenesis. Lipopolysaccharide (LPS), known as a trigger
of inflammatory responses, has been suggested to be implicated in cancer invasion or angiogenesis [57].

As shown in Table 16, we found that the concept of “aerobic glycolysis” was the key concept
related to the hallmark deregulating cellular energetics (DCE). Min et al. [58] discussed metabolic
alterations in NSCLC and the impact of metabolic reprogramming on the development and progression
of human cancers and deregulated metabolism. They mentioned that aerobic glycolysis is important
for reducing the economic and social burden of cancer.

As shown in Table 17, we found that the concept “Blood group antibody I” was the key concept
related to the hallmark avoiding immune destruction (AID). Gwin et al. [59] discussed the loss of blood
group antigen A in NSCLC. They confirmed the finding, NSCLC patients who were blood group A
and had paraffin-embedded primary lung cancer tissue suitable for immunohistological analysis of
antigen A expression.

Table 8. The top-1 topic on the sustaining proliferative signaling (SPS) hallmark.

Patients ; Epidermal Growth Factor Receptor Measurement; Epidermal Growth Factor
LDA Receptor; EGFR protein, human; Combined; Therapeutic procedure; Tryptophanase;
Non-Small Cell Lung Carcinoma; EGFR gene; combination of objects.

Epidermal Growth Factor Receptor Measurement; EGFR protein, human; Epidermal Growth

PLSA Factor Receptor; EGFR gene; Non-Small Cell Lung Carcinoma; | Patients ; Tryptophanase;
Therapeutic procedure; Non-Small Cell Lung Cancer Pathway; NCI CTEP SDC Non-Small Cell
Lung Cancer Sub-Category Terminology.

Table 9. The top-1 topic on the evading growth suppressor (EGS) hallmark.

LDA Induce (action) ; Expression (foundation metadata concept); Expression procedure; | Effect ;

Homo sapiens; Apoptosis; Tryptophanase; TP53 wt Allele; TP53 gene; Inhibition.

Cell Count ; | Induce (action) ; Expression procedure; Expression (foundation metadata

PLSA concept); Tryptophanase; Carcinoma of lung; Apoptosis; Malignant neoplasm of lung; | Effect ;

TP53 gene.
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Table 10. The top-1 topic on the resisting cell death (RCD) hallmark.

LDA

Tryptophanase; Neoplasms; Treating; Therapeutic procedure; | Patients ; PSA Level Less than
Two; 2+ Score, WHO; 2+ Score; therapeutic aspects; Administration procedure.

PLSA

Apoptosis; Induce (action) ; Tryptophanase;  Cell Count ; Expression procedure;  Effect ;

Expression (foundation metadata concept); Therapeutic procedure; Treating; Increase .

Table 11. The top-1 topic on the enabling replicative immortality (ERI) hallmark.

LDA

Senility; Old age; | Induce (action) ; Cellular Senescence; Tryptophanase; Fibroblasts;

Cell Count ; Homo sapiens; Associated with; Increase .

PLSA

Old age; Senility; | Induce (action) ; Cellular Senescence; Tryptophanase;  Cell Count ;
Expression procedure; Expression (foundation metadata concept); Fibroblasts; Homo sapiens.

Table 12. The top-1 topic on the inducing angiogenesis (IA) hallmark.

LDA.

Vascular Endothelial Growth Factors; Recombinant Vascular Endothelial Growth Factor;
Neoplasms; Tryptophanase; Angiogenic Process; Laboratory mice; Social group; Group Object;
Tumor Mass; Population Group.

PLSA

Vascular Endothelial Growth Factors; Recombinant Vascular Endothelial Growth Factor; Tumor
Angiogenesis; Angiogenic Process; Tryptophanase; Expression procedure; Expression
(foundation metadata concept); Neoplasms;  Patients ; P prime.

Table 13. The top-1 topic on the activating invasion and metastasis (AIM) hallmark.

LDA

Cell Count ; Neoplasm Metastasis; Secondary Neoplasm; Tryptophanase; Metastatic to;
Metastatic Neoplasm; metastatic qualifier; Metastatic Disease Clinical Trial Setting; Neoplasms;
Metastasis.

PLSA

Patients ; Neoplasm Metastasis; Secondary Neoplasm; Tryptophanase; Metastatic Neoplasm;
Neoplasms; Metastasis; P Blood group antibodies; P prime; Expression procedure.

Table 14. The top-1 topic on the genome instability and mutation (GIM) hallmark.

LDA

Mutation; | Present ; Tryptophanase; adduct; 1+ Score, WHO; 1+ Score;  Greater than one ;
Carcinoma of lung; Mutation Abnormality; Malignant neoplasm of lung.

PLSA

Mutation;  Patients ; Tryptophanase; Mutation Abnormality; P Blood group antibodies; P prime;
Induce (action) ; Exposure to; | Present ; EGFR protein, human.

Table 15. The top-1 topic on the tumor-promoting inflammation (TPI) hallmark.

LDA

Lipopolysaccharides; Tumor Necrosis Factor-alpha; ' Induce (action) ; TNF protein, human;

Increase ; Alpha tumor necrosis factor measurement; cytokine; Interleukin-1 beta; Protons;
Hepatic Involvement.

PLSA

Population Group; Groups; Social group; User Group; Stage Grouping; Group Object;
Tryptophanase; Induce (action) ; Increase ; House mice.
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Table 16. The top-1 topic on the deregulating cellular energetics (DCE) hallmark.

Aerobic glycolysis; Inhibition; Tryptophanase; Glycolysis; ' Induce (action) ; Metabolic Process,

LDA
Cellular; Glucose; Expression (foundation metadata concept); Increase ; Mitochondria.

Aerobic glycolysis; Glycolysis; Tryptophanase; Expression procedure; Expression (foundation

PLSA metadata concept); | Cell Count ; | Increase ; production; Malignant Neoplasms;
Induce (action) .
Table 17. The top-1 topic on the avoiding immune destruction (AID) hallmark.
LDA Blood group antibody I; Iodides; Tryptophanase; Neoplasms; Tumor Mass; Specimen Source
Codes—tumor; Neoplasm Metastasis; | Induce (action) ; Vaccination; T-Lymphocyte.

PLSA Tryptophanase; | Patients ; House mice; Laboratory mice; T-Lymphocyte; SNAP25 wt Allele;

SNAP25 protein, human; HERPUD1 gene; HERPUD1 wt Allele; Negation.

5.4. Visualization

This section reports the visual representation of the top-1 topic for each hallmark as a word cloud.
Word clouds have emerged as a straightforward and visually appealing visualization method for
text. They are used in various contexts as a means to provide an overview by distilling text down to
those words that appear with the highest frequency. Typically, this is done in a static way as pure
text summarization.

We created the word clouds on the top-100 concepts for each hallmark category. We used the
“WordCloud” python library to generate all word clouds. The word clouds for each hallmark category
are shown in Figures 2-11. The left side of each figure is a result of the LDA model and the right side
of each figure is a result of the PLSA model. See Tables 8-17 related to Figures 2-11.
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5.5. Optimal Number of Topics

This section explores the optimal number of topics in terms of the coherence score. We trained the
LDA and PLSA models by setting the number of topics to 20. As can be seen clearly in Figures 12-21,
our trained models were compared by coherence scores on each number of topics.

As shown in Figure 12, for hallmark SPS, the optimal number of topics was 5 explored by the
PLSA model. It achieved 51.70 of the coherence score. As shown in Figure 13, for hallmark EGS, the
optimal number of topics was 10 explored by the PLSA model. It achieved 44.61 of the coherence
score. As shown in Figure 14, for hallmark RCD, the optimal number of topics was 19 explored by
the LDA model. It achieved 49.44 of the coherence score. As shown in Figure 15, for hallmark ERI,
the optimal number of topics was 9 explored by the PLSA model. It achieved 37.90 of the coherence
score. As shown in Figure 16, for hallmark IA, the optimal number of topics was 5 explored by the
PLSA model. It achieved 47.39 of the coherence score. As shown in Figure 17, for hallmark AIM,
the optimal number of topics was 13 explored by the LDA model. It achieved 52.95 of the coherence
score. As shown in Figure 18, for hallmark GIM, the optimal number of topics was 5 explored by
the LDA model. It achieved 50.00 of coherence score. As shown in Figure 19, for hallmark TPI, the
optimal number of topics was 17 explored by the LDA model. It achieved 49.44 of the coherence score.
As shown in Figure 20, for hallmark DCE, the optimal number of topics was 6 explored by the PLSA
model. It achieved 45.75 of the coherence score. As shown in Figure 21, for hallmark AID, the optimal
number of topics was 17 explored by the LDA model. It achieved 52.18 of the coherence score.

As a result, the LDA model performed better results than the PLSA model on five hallmark tasks
(RCD, AIM, GIM, TP], and AID) in terms of the coherence score. The PLSA model performed better
results than the LDA model on five hallmark tasks (SPS, EGS, ERI, IA, and DCE) in terms of the
coherence score.

SPS

= LDA
0.55 = PLSA

Coherence Score
o
S
o

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Topics

Figure 12. Coherence score of the top-20 topics on the SPS hallmark.
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Figure 13. Coherence score of the top-20 topics on the EGS hallmark.
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Figure 14. Coherence score of the top-20 topics on the RCD hallmark.

ERI
0.60
e | DA
0.55 = PLSA
0.50

[
'S
[

Coherence Score
o o o o
N w w B
(&) o (4] o

o
N
=]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Topics

Figure 15. Coherence score of the top-20 topics on the ERI hallmark.
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Figure 16. Coherence score of the top-20 topics on the IA hallmark.
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Figure 17. Coherence score of the top-20 topics on the AIM hallmark.



Appl. Sci. 2020, 10, 834 21 of 25

GIM
0.60
= |DA
0.556 e PLSA
0.50

o
~
o

Coherence Score
o o o o
N w w S
(%] o o o

o
N
=]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Topics

Figure 18. Coherence score of the top-20 topics on the GIM hallmark.
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Figure 19. Coherence score of the top-20 topics on the TPI hallmark.
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Figure 20. Coherence score of the top-20 topics on the DCE hallmark.
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Figure 21. Coherence score of the top-20 topics on the AID hallmark.
6. Conclusions and Future Work

This paper presented a topic analysis framework, called MTTA in a multi-task manner. The MTTA
framework consists of three main tasks called CHL, WLP, and ToM. The CHL task employed the
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deep learning-based supervised learning algorithm, which could learn cancer hallmarks on the
existing manually labeled dataset. We compared multiple deep learning models and then selected the
tuned-CNN model in this paper. The WLP task employed the pre-trained CNN model as a cancer
hallmark classifier for unlabeled documents. To reduce data noise, we used a simple threshold on
each class probability calculated by softmax function. Finally, we created weak-labeled documents for
topic analysis. The ToM task employed conventional topic models LDA and PLSA for comparison.
The topic models utilize only biomedical concepts identified by UMLS terminology. The presented
MTTA framework was highly scalable on a large number of unlabeled documents. We found that the
conventional topic models were efficient to analyze topics on the weak-labeled document according to
the HoC. We verified that the CNN models achieved better results than other deep learning models.

We studied a large number of documents related to lung cancer for topic analysis. The pre-trained
deep learning model produced hallmark specific weak-labeled documents and topic models discovered
hallmark specific topics. The results show that we could efficiently extract a complex structure of
cancer knowledge according to the cancer hallmark and its related topics.

For future work, we will avoid using additional feature engineering and text mining methods for
improving the performance and usability of this work in an end-to-end manner. We will improve the
performance of cancer hallmark learning using the transformer networks, for example, the BERT [25]
pre-trained model. It will improve the quality of weak-labeled documents. To avoid class imbalance
problems that introduce bias and developing too many models, we will develop a single model, which
addresses multi-label classification task. We would point out that the conventional topic models LDA
and PLSA did not fit the medical concepts very well so we planned to investigate other topic models.
We will also compare different pre-processing techniques to identify medical entities from a large
number of unlabeled documents.
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