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Abstract: The epileptogenic focus is a brain area that may be surgically removed to control of epileptic
seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given
the difficulty of determining the localization of this brain region responsible of the initial seizure
discharge, many works have proposed machine learning methods for the automatic classification of
focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification
as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during
the processing of the huge amount of information collected during several days of patient monitoring.
In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons
online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area
to be resected, if they have doubts. This goal requires a real-time implementation with as low a
computational cost as possible. For that reason, this work proposes both a feature set and a classifier
model that minimizes the computational load while preserving the classification accuracy at 95.5%,
a level similar to previous works. In addition, the classification procedure has been implemented on
a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a
device can embed the whole classification process, from accepting raw signals to the delivery of the
classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation
begins providing results after a 5 s latency, and later, can deliver floating-point classification results at
3.5 Hz rate, using overlapped time-windows.

Keywords: electroencephalogram; epileptic EEG signal classification; epilepsy; epileptogenic focus;
real-time implementation; FPGA

1. Introduction

Epilepsy is a common neurological disorder usually described by seizures which are recurrent in
nature. This disorder can be produced by different brain disorders, such as brain tumors, intracranial
hemorrhages and brain malformations [1], and depending on the affected area, a disorder may generate,
apart from epileptic seizures, malfunctions in motion and patient perception [2].

An epileptic seizure is a period of time where the patient experiences a set of symptoms with
different levels of severity: uncontrolled shaking movements of the body with loss of consciousness
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(generalized tonic-clonic seizure), shaking movements of a specific part of the body with different levels
of consciousness (focal seizure), or short moments of focal seizures with impairment of awareness
(absence seizure). Epileptic seizures can be originated by abnormal, synchronous, or even excessive
brain neural activity, causing a temporary disruption to the way that the brain normally works.
Anyway, what happens to someone during a seizure depends on the affected part of the brain and
how far the seizure activity disseminates in the brain.

Epilepsy can be classified primarily into two types: generalized and partial (or focal) epilepsy [3].
Generalized onset seizures affect, at the same time, both sides of the brain or groups of cells on both
sides of the brain. On the other hand, focal onset seizures (the term focal is used instead of partial to
be more accurate when talking about where seizures begin) usually start in one area or group of cells
on one side of the brain.

The activity of the brain is usually registered using either electroencephalography (EEG) or
functional magnetic resonance imaging (fMRI). Although fMRI has better spatial resolution, the use of
the multidimensional time series generated from electroencephalogram EEG is more popular, as it
allows high precision time measurements, is functionally fast and is relatively cheap.

The EEG epileptogenic source’s localization has been studied for decades [4,5]; however,
the methods were not implemented in clinical practices until recently. Nowadays, the EEG is considered
a noninvasive and useful test to assess whether a pharmacoresistant patient can benefit from the
resective epilepsy surgery [6]. As the resective surgery aims to remove surgically the brain sections
involved in the focal onset epilepsy, it is important to distinguish precisely between “focal signals,”
those recorded in brain areas where first ictal signals are detected, and “non-focal signals,” those
registered from brain areas not related to the seizure onset [7]. Many patients with epilepsy may
require EEG signals to be recorded from deep structures of the brain using intracranial electrodes.

Usually, the focus localization is essentially made using registers acquired monitoring the patient
24 h a day, during a stay of several days in an epilepsy monitoring unit (EMU). In these kind of units,
apart from scalp EEG (and intracranial electrodes to record signals from deep structures of the brain,
in many patients), the epilepsy patients are recorded on video, along with their speech and movements.
Thus, all data are collected targeting the evaluation of its seizure disorder, seeking to gather data before
a seizure starts, during one and during recovery. The evaluation of this information can be used to
locate candidate areas for the epileptogenic focus, although in some cases it is not enough to locate the
epileptogenic focus precisely prior to the surgery.

The visual analysis of the EEG recordings of seizures with intracranial electrodes can help in
locating the seizure. However, visual inspection is a hard and time consuming process that can be
affected by the clinician subjectivity. In addition, it is not easy to determine the seizure source by a
direct visual inspection of the EEG signal recordings.

To select candidate areas from EEG signals could be helpful a computerized analysis of the
EEG [8,9]. As with other pathologies [10-12], machine learning has been applied in epilepsy
at many works [13-15] to classify EEG signals as normal versus epileptic or seizure versus
inter-ictal. However, the most challenging classification problem is focal (F) versus non-focal (NF).
The classification of seizure from normal and seizure-free signals has achieved a 100% classification
accuracy. However, this goal has not been achieved to date for the classification of focal and
non-focal EEG signals. Neurosurgeons have difficulties determining the brain region responsible of
the initial seizure discharge, so this kind of classification may serve as a tool to help epileptologists
to resect the epileptogenic area. Compared with signals of the epileptogenic areas, the signals from
non-epileptogenic areas are more nonlinear, less random and more nonstationary.

Many machine learning systems have been developed to classify and detect the epileptogenic
source signals. Sharma et al. [13] used entropies derived from the coefficients of the wavelet transform
of the EEG signals to feed a least squares-support vector machine (LS-SVM) model to distinguish
focal and non-focal EEG signals. In [16], Sharma et al. also used the LS-SVM classifier to feed the
entropies derived from some subbands decomposed using tunable-Q wavelet transform (TQWT).
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In [17], Sharma et al. utilized empirical mode decomposition (EMD) and entropy for the classification
of focal and non-focal EEG signals. In this work, intrinsic mode functions (IMFs) from focal and
non-focal EEG signals were extracted using EMD, and then the entropies were fed the input of a
LS-SVM classifier. Das et al. [18] also used entropy-based features from the EMD, DWT (discrete
wavelet transform) and EMD-DWT domains, along with a k-nearest neighbor (k-NN) classifier model.
In turn, Zeng et al. [19] used features derived from euclidean measures obtained from the phase space
reconstruction (PSR) of several IMFs, obtained using EMD as well. Bhattacharyya et al. [20] proposed
the decomposition of the EEG signal into rhythms using the empirical wavelet transform (EWT),
and then used some area measures from them as input for a LS-SVM classifier model, to recognize
focal and non-focal EEG signals. Another work of Bhattacharyya et al. [15] also used multivariate
subband entropy measures from TQWT along with multivariate fuzzy entropy in combination with a
LS-SVM classifier model. Chatterjee et al. [21] also used SVM and k-NN classifiers fed by multifractal,
detrended fluctuation analysis (MFDFA) based feature sets. Singh et al. [22] used features derived
from DFT-based rhythms of the EEG to fed the LS-SVM classifier. Taran et al. [23] proposed the use
of spectral moment based features extracted from the modes of the clustering VMD (CVMD) and
extreme learning machine (ELM) classifiers. Deivasigamani et al. [24] utilized features extracted from
the dual tree complex wavelet transform (DT-CWT) to fed an adaptive neurons fuzzy interference
system (ANFIS).

However, these works tend to require a considerable computational load, especially the most
recent ones. As an example, San-Segundo et al. [25] proposed a deep neural network (DNN) made up of
two convolutional layers for feature extraction and three fully connected layers for classification. In this
work, authors increased the classification accuracy a little at the expense of increasing, considerably,
its computational needs. In turn, Daoud et al. [26] used both a deep convolutional autoencoder
and an unsupervised learning scheme merging a deep convolutional variational autoencoder and a
K-means algorithm.

This progressive increase of the computational demand could impede the jump of using the
epileptogenic source localization during surgery. This application needs a real-time implementation,
and could be used as a help-decision tool by neurosurgeons to refine the localization of an epileptogenic
area during resective epilepsy surgery. Note that the recent technology is mature enough to implement
machine learning processes in real-time [27,28].

Thus, the goals of this work were to assess the possibility of locating the epileptogenic focus in
real-time, and study the simplification of the classification process to reduce its computational needs
as much as possible while maintaining similar classification accuracy to previous works. We also
studied the resource usage and performance of the real-time application on a recent Xilinx FPGA
reconfigurable device.

The main contributions of this work are:

o The proposal of an automatic classification procedure optimized to classify in real-time the
location of the epileptogenic focus from EEG inter-ictal signals. It is conceived to be used in a
portable device as a decision-assisting tool by neurosurgeons during surgery.

e  The proposed feature set and the classifier model have been selected to minimize both the number
of features and the computational cost, while preserving the classification accuracy at a level
similar to that in previous works.

e  The classification procedure has been implemented using a reconfigurable logic FPGA device.
This hardware implementation computes the whole procedure, accepts the EEG raw input signal
and delivers the classification result. Two designs have been implemented, using single and
double floating point precision following the IEEE 754 standard for floating-point arithmetic.

e  The analysis of the resource usage of this kind of implementation, its accuracy with respect a
Matlab implementation and how fast the device can deliver results (maximum frequency of
operation).
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The rest of the paper is organized as follows. Section 2 introduces the dataset, and the analyzed
features and classifier models. The details of the hardware implementation and the proposed
computational method are described in Section 3. Results of the analysis and discussion are presented
in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper.

2. Methodology, Materials and Methods

This section presents an overview of the dataset utilized, and introduces the analyzed features
and classifier models.

2.1. Dataset

In this work, the publicly available Bern-Barcelona database [7] was used. This is an open source
EEG dataset that has been used for a large number of epilepsy studies [16-20]. This dataset collects
intracranial EEG recordings from five pharmacoresistant epilepsy patients, including two classes of
EEG signals: focals and non-focals. Focal signals (F) are those captured from an epileptogenic area
(acquired from those channels that detected ictal EEG signal changes first, as decided by at least two
neurologists via visual inspection) and non-focal signals (NF) are captured in channels out of this area.
Each class contains 3750 pairs of simultaneously acquired signals "x" and "y," all of them randomly
selected, and consisting of 20 s windows of simultaneous recording, sampled at 512 Hz. Each focal pair
consists of one of the focal EEG channels for the x signal, and one of this channel’s neighboring focal
channels for the y signal, both simultaneously acquired from the same patient. The non-focal pairs
were selected from nonfocal EEG channels in the same way [7,29]. All EEG signal were band-pass
filtered by an fourth order Butterworth (0.5 Hz-150 Hz). In addition, before being included into the
database, signal pairs were visually inspected to discard prominent measurement artifacts.

Note that all recordings of seizure activity, and three hours after the last seizure, were excluded.
Thus, this database contains neither ictal nor postictal stage activity.

2.2. Preprocessing

The 50 Hz of the EEG signals was filtered using a moving average of order 5. In addition, EEG
signals were filtered using a Butterworth low pass IIR filter with f = 80 Hz and order N = 6.

2.3. Feature Extraction

This is one of the most important steps in classification problems. Table 1 lists the 39 features
considered in this work for each segment of the signal dataset. All these have been used succesfully as
features in previous EEG seizure detection works [14,30-37].

The features considered are from different domains, such as time, frequency, information theory
and entropy. But note that all of them are univariate and imply low or medium computational load to
extract them.

Statistical parameters such as mean, variance, skewness and kurtossis have been used to extract
information on changes in the distribution and amplitude of the EEG data. Those parameters have
been considered on the first and second derivative too. Frequency parameters have been calculated by
means of the DFT transform, as spectral power or relative energy between different bands. In addition,
some nonlinear features have been calculated, such as fractal dimension, used to compare rhythms
in the self-similarity present in the signals; entropy of the signal; and spectral entropy, to depict
randomness of the EEG in the frequency domain.

However, note than other features having greater computational complexity were not considered,
even if these had been used successfully in other works. The reason is obvious; this work aimed to
select the set of features having the lowest computational load while providing similar classification
accuracy to other works in the bibliography. Thus, the more computationally complex features were
discarded from the beginning, such as the calculation of certain entropy measures from IMF signals
calculated using EMD, wavelet transform or other time-frequency domain features.
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Table 1. List of extracted features.

EEG Feature

Description

Log energy entropy (LogEn) [30]
Median frequency (MDF) [31]

Mean frequency (MNF) [31]

Katz fractal dimension (KFD) [31]
Lower quartile 1 (Q1) [31]

Upper quartile 3 (Q3) [31]

Inter quartile range (IQR) [31]

Semi inter quartile deviation (SID) [31]
Skewness (Sk) [32]

Kurtosis (Kr) [32]

Root mean square (RMS) [33]

Band power (PB) [33]

Zero crossing (ZC) [33]

Complexity (Comp) [33]

Mobility (Mob) [33]

Activity (Act) [33]

Spurious free dynamic range (SFDR) [34]
Curve length (CL) [34]

Teager energy (TE) [34]

Variance (Var) [34]

Standard deviation (Std) [34]

Mean (Mean) [34]

1st derivative variance (Varl) [34]

1st derivative standard deviation (Std1) [34]
1st derivative mean (Mean1) [34]

2nd derivative variance (Var2) [34]

2nd derivative standard deviation (Std2) [34]
2nd derivative mean (Mean2) [34]
Derivative variance ratio (RatioVar) [36]
Power (P) [35]

1st difference (1d) [35]

Normalized 1st difference (N1d) [35]
2nd difference (2d) [35]

Normalized 2nd difference (N2d) [35]
Normalized Length Density (NLD) [35]
Higher order crossings (HOC) [38]
Band power (Pu) [35]

Recursive Efective Efficiency (REE) [35]
Relative Energy Ratio (rE) [37]

Non-normalized energy based entropy

Division of the EEG power spectrum into two regions
Mean normalized frequency of the power spectrum
Index characterizing the fractal pattern complexity
25% of the EEG signal

75% of the EEG signal

Difference between Q3 and Q1

Measure of spread

Measure of the degree of symmetry

Measure of tailedness of the probability distribution
Root mean square of the EEG signal

Average power of the EEG signal (0 to f;/2)

Number of times that the signal changes of sign
Hjorth parameter

Hjorth parameter

Hjorth parameter

Length along a EEG signal

Length along a EEG signal

Non linear energy

Variance of the EEG signal

Standard deviation of the signal

Mean of the EEG signal

Variance of the first derivative

Standard deviation of the first derivative

Mean of the first derivative

Variance of the second derivative

Standard deviation of the second derivative

Mean of the second derivative

Ratio of derivative respect absolute of derivative variances
Power of the signal window

Feature extraction and selection for emotion recognition from eeg
Normalization of 1st difference

Feature extraction and selection for emotion recognition from eeg
Normalization of 2nd difference

Quantifies self-similarities

Describes the oscillatory pattern of a signal

Spectral power in certain spectral band

Energy ratio of spectral bands

Relative energy between bands

2.4. Feature Reduction

Feature reduction reduces the computational complexity of the classifier and also avoids the
possibility of redundancy. In this study, we obtained several discriminatory features for the two class
classification process (Section 4.1). The number of features was reduced using the RelieF feature
selection technique [39], as is explained in Subsection 4.1.

2.4.1. Log Energy Entropy

Entropy is a concept handling predictability and randomness, with higher values of entropy
always being related to a lesser system order and more randomness. The entropy of an EEG channel is
a measure of uncertainty, where the EEG signals are considered a random variable. The log energy

entropy of a x EEG signal is defined as [40]:

HLogEn (x)

N-1
== ;) (loga(pi(x)))?, @
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p(x) being the probability density function. With this entropy calculated regarding the signal power
spectrum as a probability distribution, the log energy spectral entropy is obtained.

2.4.2. Skewness

It is a higher-order statistical attribute of a time series. Skewness is a measure of the asymmetry
of the probability distribution (pdf) of a real-valued random variable around its mean.

X — x3 _ 2 .3
Skew[x] = E[( 0”)3]:E[ ) ig‘” .

)

2.4.3. Root Mean Square

Is the square root of the mean square, the arithmetic mean of the squares of a set of numbers, also
known as the quadratic mean:

®)

2.4.4. Derivative Variance Ratio

This is the quotient between the variance of the derivative of the signal and the variance of the
absolute value of said derivative. It is a derivative variance ratio (called RatioVar) [36]:

Ratiovar =

4)

2.4.5. Relative Energy Ratio

It is used to observe the changes in EEG frequency bands due to the stressors. When stress occurs,
the energy of Alpha band, HF, will reduce. Meanwhile, energy of lower bands will increase [37]:

_ Total Energy In HF

E= .
g Total Energy In LF

©)

2.5. Classifier Models

Several classifiers have been used in this analysis (Section 4.1), each one having its own specific
strengths and weaknesses. All them are briefly outlined below.

2.5.1. Support Vector Machine (SVM)

It is a supervised classification technique that constructs a separating hyperplane maximizing the
margin between the input data classes that are viewed in an n-dimensional space (n is the number
of features used as inputs). Essentially, this involves orienting the separating hyperplane to be
perpendicular to the shortest line separating the convex hulls of the training data for each class,
and locating it midway along this line.

In addition to performing linear classification, SVMs can efficiently perform a non-linear
classification using what is called the kernel trick, implicitly mapping their inputs into
high-dimensional feature spaces.
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2.5.2. K-Nearest Neighbor (KNN)

KNN is a supervised learning technique where a new instance is classified based on the closest
training samples present in the feature space. It does not use any model to fit, and is only based on
memory. When a test data is entered, it is assigned to the class that is most common amongst its k
nearest neighbors.

2.5.3. Decision Tree

It is a method that creates a model that enables one to predict the target value of an item
(represented in leaves) based on several input variables (represented as branches). In the case of using
a classification tree analysis, the predicted outcome is the class (discrete) to which the data belongs.

2.5.4. Logistic Regression

It is a classification algorithm used to assign observations to a discrete set of classes. Unlike
linear regression, which outputs continuous values, the logistic regression transform its output using
the logistic sigmoid function, to return a probability value that can be mapped to two or more
discrete classes.

2.5.5. Discriminant Analysis

Linear and quadratic discriminant analysis were used. Linear discriminant analysis (LDA)
is a generalization of the Fisher’s linear discriminant that finds a linear combination of features
characterizing or separating two or more classes. In turn, quadratic discriminant analysis separates
input features into two or more classes of objects by a quadratic surface, becoming a general version of
the linear version.

2.5.6. Ensembles

Ensemble classification improves results by combining several models. It can be used with any
learning method. Thus, this approach allows for better predictive performance compared to single
models. The number of classifier components has a great impact on the classification accuracy. In this
work, trees, discriminant and k-NN classifier components were used.

2.5.7. Neural Network Classifier (NN)

A neural network consists of a series of units (neurons) arranged in layers. This arrangement
converts an input vector into some output. To do so, each neuron takes its inputs and calculates the
output by applying a usually nonlinear function (the activation function), to later pass the output to
the next layer. Generally, neural networks are defined as feed-forward: a unit feeds its output to all the
units on the next layer, but there is no feedback to the previous layer. Signals are weighted when fed
the input of a unit neuron. The weights are tuned in the training phase of the classifier.

Neural networks are considered to be good classifiers due to their inherent features, such as
adaptive learning, robustness, self-organization and generalization capability.

2.6. Performance Analysis

In order to evaluate the performance of the proposed method, the performance of the classifiers
are expressed in terms of classification accuracy (Acc), defined as follows [41]:

TP+ TN

100 6
TP+EN+ TN +EP ©)

Accuracy(%) =

where TP, TN, FP and FN denote true positives, true negatives, false positives and false negatives,
respectively.
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3. Hardware Implementation and Computational Method

This section discusses the implementation details. We will leave for Section 4 the reasons for
and how this computational procedure was chosen. At this point, all that matters to know that the
classifier model used was a perceptron with 25 neurons in the single hidden layer, 5 neurons in the
input layer and 2 neurons in the output layer (Algorithm 2). The 5 extracted features (Table 2) were
computed following Algorithm 1. Details about feature selection and classifier model selection are left
for Section 4.

The proposed hardware implementation was conceived as an intellectual property (IP) core using
Xilinx Vivado HLS and the Xilinx Vivado Design Suite 2016.2 [42]. It provides a signal interface
definition that enables it as a standalone module, being able to also be used as a peripheral of a
more complex system on chip (SoC), embedded microprocessor, etc. Further, this approach offers the
capability of customization for specific needs in many different hardware applications.

3.1. Working Modes

The IP core perform two different working modes:

- Initialization mode. The initialization of the IP core consists of the load of the matrices
Xnmaxs Xnmins Wi B Wo, Bo, Xagmaxs Xdmin, Ymin, and Yuayx, using the external signal interface.
These matrices are essentially weights and bias of the neural network, along with normalization
and denormalization values and vectors. All together, these matrices allow the IP core to perform
a proper classification. Note that the calculation of these matrices is achieved out of this IP core,
and the results are transferred to it during this initialization process. Once the initialization is
complete, the core can change to another working mode, never before.

- Run mode or on-line mode. In this mode, the input data x is fed into the IP core. Then, several
features are extracted, and in turn, fed into the neural network system. The output is computed
according to the initialized network topology. The IP core, when running in this mode, computes
and serves the corresponding output before accepting a new input.

3.2. IP Core Signal Interface

In Xilinx FPGAs, external core signal interfaces are used to follow proprietary protocol
specifications, such as AXI4 [43,44], AXI4-Lite or AXI4-Stream [44,45]. In this work the AXI4 protocol
was selected to permit specifying arrays as arguments. However, note that the protocol interface has
almost no influence on performance when the core is running in the on-line mode. The reason is that
the reported performance refers to the complete epileptic focus classification task, while the load of
one input vector by iteration implies a negligible overhead. Therefore, for replication purposes, it can
be expected to achieve similar results, for the running mode, regardless of the protocol specification
implemented for the core signal interface (e.g., AXI4-Lite, AXI4 or AXI4-Stream).

Figure 1 outlines the external signal interface of the IP core, where signal lines are represented by
thin black arrows and buses, and bunches of signals are represented by white thick arrows.

Signal START indicates when the core can start processing data, the READY signal indicates when
the core is ready to accept new inputs, the IDLE signal indicates when the core is idle and the DONE
signal indicates when the core operation has been completed. Altogether, these signals constitute the
block-level interface, controlling the core independently of the port-level I/O protocol.

On the other hand, the input and output data ports implement a handshake data flow protocol.
Lines A_TVALID, A_TREADY and the bus A_TDATA integrate the input data port, while B_TVALID,
B_TREADY and the bus B_TDATA integrate the output data port. The TDATA bus is the payload,
while TVALID and TREADY lines signal when the information pass across the interface. These
signals integrate a two-way flow control mechanism that enable master and slave to control the data
transmission rate rate across the interface.
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Finally, the MODE signal is used as application-signaling. It requests the entering on initialization
mode or on-line mode.

) S—
CLK DONE
—_—
nRESET IDLE
START READY
—_—
RT-EPI
MODE
IP Core B_TDATA
A_TDATA
B_TVALID
————
A_TVALID
—_ > A_TREADY
B_TREADY
——

Figure 1. Interface signals used by the RT-EPI IP core. White arrows represents buses.

3.3. System Parameterization

The definition of the SLEN neural network topology was conceived parametrically to achieve a
flexible design with minimal code modifications. The main parameters are:

—  L:Is the length, in samples, of the input signal window.

—  IN:Is the number of neurons in the input layer.

—  N: Is the number of neurons in the hidden layer.

—  ON: Is the number of neurons in the output layer.

—  FT: Boolean determining the type of IEEE 754 floating-point arithmetic precision: single or double.

3.4. Computation of the RT-EPI Algorithm

The proposed IP hardware core implements a real-time epileptogenic focus classification of a
different EEG input window signal each iteration.

3.4.1. Algorithm Description

Algorithm 1 shows the steps in which perform the feature computation. This computational
procedure follows the expressions described in Table 2 to extract features from the input signal,
and then, to compose the input data pattern to be used as input to the neural network.

Algorithm 2 shows the computational procedure implementing the classification. Note that
it is mandatory to the previous IP core so that the implementation may be fully functional and
begin accepting any input data. The initialized structures are the normalization and denormalization
parameters (Xumax, Xnmins Xdmax, Xdmins Ymin, Ymax), plus the weights and biases of the hidden and output
layers (Wy, by, Wy, b,). Further, the first step of the algorithm is the normalization of the data input
pattern. Then, the outputs of the hidden and output layers are calculated. Although the hyperbolic
tangent sigmoid function has been used as an activation function, the proposed algorithm allows
the use of a wide range of activation functions (including piece-wise linear activation functions).
The results of the output layer are then denormalized to obtain the final output.

The pseudocode in Algorithms 1 and 2 show all the matrices and vectors involved in each step of
the computation, with their respective dimensions.

The computational procedure was implemented using a sequential architecture. This architecture
minimizes both the usage of memory and arithmetic slices. And, although the throughput results can
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be improved using a parallel architecture, the use of a sequential architecture enabled us to establish a
standard machine to be used as a reference in subsequent works.

Algorithm 1 Feature extraction pseudocode.

Input: x, ,, — Inputsignal.
Output: x’ (1xs) Output features vector.
L&
1: X(]X]) - s le
i=1
2: X =x—X
(1xL)
BX = 50Hz_removal (x).
L low_pass_filtering(x) ™.
L&
¥ Xy 7L Z Xi
i=1
=X—X
(1xL)
e
7. RMS 1 i;xl
= 3
1) (xi—x)
8. skew ==l -
(1x1) L b3
2\2
1) (xi—%)°)
i=1
9: d(1><L—1) | difl =X; — Xj1 fOT’ = {2,...,L}.
0oa | a;=|d;| fori={1,.,L—1}
. of
11:  RatioVar =4
(1x1) Oa

12: = .
tmp(]XL) |FFT(x)|

13 p | pi=k-tmp;, k=2 fori={2,.,L/2}andk =1 fori={1,1+L/2}.

(1x1+L/2)
321

ZPi

w rE = = (pi C [12Hz,80Hz], p; C [1Hz,12Hz] ).

L Pj
j=5

: _ 2
15: LogEn(lxl) = ;logZ(pi).

(1x5)

16 X = [rE LogEn o RatioVAr]

(*) Filter coefficients: B[0] = 0.0001; B[1] = 0.0006; B[2] = 0.0014; B[3] = 0.0019; B[4] = 0.0014; B[5] = 0.0006; B[6] = 0.0001; A[0] =
1.0000; A[1] =-4.1069; A[2] = 7.2450; A[3] = -6.9795; A[4] = 3.8569; A[5] = -1.1558; Al6] = 0.1464.
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Algorithm 2 Classification of an input pattern. pseudocode

Input: X/ () — Input data pattern.

Xpmi — Input normalization vectors.
axiny’ T ) p

\7 Ymax, o — Range normalizing input.

Xnmax

Ymin

Wy,

(1x1

(INxN)

b,  — Hidden layer bias.

(1xN)

— Hidden layer weights matrix.

W, _ — Output weights matrix.

(NxON)
bo(lon) — Output layer bias.
xd’”“uxom , Xdmin 1xoN) — Output denormalization vectors.

Output: Y, .

1xON)

(]/max - ymin) ’ (xl - xnmin)
1: = ine
Xnorm 1. 1) Xnmax) — Xpmin + Ymin

2. tmpl = Tansig( Xporm - Wy + by, ).
(1xN)
3t 2 = Tansig( t 1-W b, ).
mp2 ansig( tmp o+bo)

1y — (tmpl — ymin) i (xdmax — dein) + Xgmin-
(1xON) Ymax — Ynmin

(N': number of hidden neurons, IN: number of input neurons, ON: number of output neurons.)

3.4.2. Design Considerations

The proposed design allows the definition of IEEE 754 floating point units using single or double
data type precision. This selection together with the parametric definition of the SLFN neural network
permits one to test the design in different conditions with few code modifications.

The activation function implemented in this design was the hyperbolic tangent sigmoid.

On the other hand, the proposed design uses pipelining. The main reasons for that is that
pipelining alleviates the great latency involving the use of floating point operations, and the suitability
of the algorithm for its use, since most of the steps of Algorithms 1 and 2 can be implemented with for
loops or nested for loops.

The pipelining technique helps to optimize the initiation interval, defined as the number of
clock cycles that must occur before a new input can be applied. Thus, the initiation interval becomes
the parameter to optimize, and the effort must focus on approximating it to one as much closely as
possible. To carry this out, we used the PIPELINE optimization pragma directive in each step of
the computational procedure implemented using for loops. This generates a pipeline design with
an initiation interval as low as possible, which dramatically reduces the total latency of the loop
implementation.

In addition, the clock period target was set to 4 ns. This forces the compiler to obtain the fastest
hardware implementation.

Take into account that both the above design considerations and the computational procedure
described in Algorithms 1 and 2 must be followed to replicate the implementation results in this work.

4. Results

The analysis described in this work was carried out using the Bern-Barcelona dataset (Section 2.1).
The first 50 focal and non-focal register pairs of the dataset were used. As all considered features are
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univariate, and 40 s of EEG signals are available in each register pair (20 s x 2), a total of 4000 s of EEG
signals were considered in this study.

In order to better compare our results with the results provided by previous works, we used
five-fold cross validation in our experimental procedure. In this approach, the EEG signals are divided
randomly into five equal portions. Four out five portions were considered for training and the rest,
half for validation and half for testing.

All the feature extraction algorithms and classification models were implemented using Matlab
R2018a and the "Statistics and Machine Learning Toolbox."

The first goal was to find the classification procedure with the lowest computing cost, because
of the real-time implementation aim. Thus, we had to be find (1) a set of features with the minimum
number of features and minimum computing cost, using (2) the simplest classifier model, and (3) the
optimum segment length. A minimum classification accuracy of 95% was required, a value above the
average of related works in the bibliography.

To do so, all considered features, Table 1, were ranked by discrimination capacity and by
computational cost. Then, different classification procedures were checked in a loop. At each iteration
of the loop, a combination of features were selected (taking into account the ranks); then, fed to 24
classification models, Table 3; and finally the classification accuracies for different segment lengths
were calculated. The loop finished when the smallest set of features reached 95% of classification
accuracy on at least one of the classification models.

Once the classification procedure was defined, it was coded in C using Xilinx Vivado HLS and the
Xilinx Vivado Design Suite 2016.2 [42]. These tools were also used to carry out synthesis, simulations
and cosimulations. The Xilinx Virtex-7 XC7VX1140T FPGA device was selected for synthesis and
implementation, because it is a biggest Virtex-7 device that permits implement the application without
resource restrictions.

The coded design is parameterizable, and follows a pipelined and sequential architecture that
computes (Algorithms 1 and 2) all the classification procedure from accepting the raw signal to the
delivery of the classifier output.

The reported analyses were conducted using two different arithmetic precisions: a 32-bit
floating-point algorithm ("single" design), and 64-bit floating-point algorithm ("double" design). Both
implementation designs used the IEEE 754 standard.

4.1. Set of Features and Classification Model

The RelieF algorithm was used as feature extraction algorithm. RelieF returns a rank of features
and its weights to represent the discrimination capacity of these features. These ranks and weights
were used to select the relevant set of features, along with the computational cost criteria, optimizing
the real-time implementation of the application. The number of selected features was defined as the
minimum set of features that allowed us to obtain a minimum threshold of 95% classification accuracy
on at least one of the classification models (Table 3).

To determine the best classification model, 24 classification models were tested. Table 3 lists all
these models along with their prediction speed and memory usage characteristics. Note that only
those classification models with low or medium speed and memory usage were chosen, due to the
importance of minimizing these parameters in the real-time implementation.

All classification models were trained with several sets of features, seeking to determine the
feature set and classification model at the same time. However, the evaluation of the classification
models depends on a third parameter: the window length. Figure 2 shows the accuracy results
for the selected sets of features (Table 2), for all the classification models and the variations of the
window length from 1 to 10 s. Note that this figure only shows the best score for the neural network
classification model. Figure 3 details the classification accuracy obtained using different numbers of
neurons for the hidden layer.
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Thus, five features were finally selected, those in Table 2, to be used with a neural network as the
classification model. As it can be seen, the computational cost of the five selected features is low (case
of features derived from the temporal domain) or medium (in the case of frequency domain features,
where it is necessary to compute the Fourier transform).

This minimum set of features achieves a classification accuracy of 95% using a Neural Network
and five seconds of segment length. In addition, the optimum number of neurons in the hidden layer
of the neural network is 25, as it can be shown in the analysis of Figure 3.

Thus, from that point we will assume that the implementation is done by a neural network of
type perceptron with just one hidden layer of 25 hidden neurons and two output neurons in the output
layer (provided the two classes of this classification problem). In addition, the neural network will
have five input neurons, because five is the dimensionality of the selected number of features, which,
in turn, would be computed from window lengths of 5fiveseconds of the input signal.

Table 2. Set of selected features.

Features
Root Mean Square RMS, =4/ % Zfil x?
_ )3

Skewness = Lﬂ)?)

SNEGr—p)?)2
Derivative Variance Ratio RatioVar = 58~ with A(i)=x(i)—x(i—1)

p |A]
Relative Energy Ratio rE = M with P(x) the Spectral Power
Yonon P(X)

Log Energy Spectral Entropy LogEn = Y 1og2(P(x)?)

Table 3. Acronyms, prediction speed and memory usage characteristics of all the classification models
used in this work.

Acronym Classifier Prediction Speed Memory Usage
[TreeCoarse] Decision Tree (Coarse Tree) Fast Small
[TreeMedium] Decision Tree (Medium Tree) Fast Small
[TreeFine] Decision Tree (Fine Tree) Fast Small
[DiscrLin| Discriminat Analysis (Linear Discriminant) Fast Small
[DiscrQuad)] Discriminat Analysis (Quadratic Discriminant) Fast Large
[RegrLog] Logistic Regresion Fast Medium
[SVMLin] Support Vector Machine (Linear SVM) Fast! Medium
[SVMQuad] Support Vector Machine (Quadratic SVM) Fast? Medium3
[SVMCubic] Support Vector Machine (Cubic SVM) Fast? Medium?
[SVMFineGaus) Support Vector Machine (Fine Gaussian SVM) Fast? Medium?
[SVMMedGaus) Support Vector Machine (Medium Gaussian SVM) Fast? Medium?
[SVMCoarseGaus]  Support Vector Machine (Coarse Gaussian SVM) Fast? Medium3
[KNNFine] Nearest Neighbor (Fine KNN) Medium Medium
[KNNMedium] Nearest Neighbor (Medium KNN) Medium Medium
[KNNCoarse| Nearest Neighbor (Coarse KNN) Medium Medium
[KNNCosine] Nearest Neighbor (Cosine KNN) Medium Medium
[KNNCubic] Nearest Neighbor (Cubic KNN) Slow Medium
[KNNWeighted| Nearest Neighbor (Weighted KNN) Medium Medium
[BoostTrees] Ensemble (Boosted Trees) Fast Low
[BaggTrees] Ensemble (Bagged Trees) Medium High
[SubspaceDiscr] Ensemble (Subspace Discriminant) Medium Low
[SubspaceKNN] Ensemble (Subspace KNN) Medium Medium
[RUSBoostTrees] Ensemble (RUSBoost Trees) Fast Low
[Neural Network] Neural Network (3-Layer Perceptron) Fast® Low®

Fast for binary classification, medium for multiclass classification. Fast for binary classification, slow for
multiclass classification. Medium for binary classification, high for multiclass classification. Slow for
high-dimensional data. Medium for high-dimensional data. When a moderate number of neurons are used.
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Classification Accuracy (%)
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Figure 2. Classification accuracy for all the classification models (using the selected set of features) in front of the window length. As can be seen, the neural network
model enabled us to achieve 95% accuracy for a window of five seconds.
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Figure 3. Classification accuracy of the neural network as a function of the number of hidden neurons
in the hidden layer.

4.2. Hardware Resources Analysis

Table 4 gathers all the resource analysis results. It also shows resource usage as a percentage of
occupation of the Xilinx XC7VX1140T FPGA, intending to provide an idea of the design occupancy in
current FPGAs.

It can be seen that the design demands near the same DSP48E slices for both designs, 133 for
single precision and 137 for double precision. Obviously, this slight variation has been achieved thanks
to the pipelined design.

Table 4. Resource usage, performance and precision of the FPGA implementation as a function of the
data type (“float” is for 32-bit floating-point arithmetic precision, and "double" for 64 bit floating-point
arithmetic precision). Resource usage is indicated by the number of required slices and the percentage
of occupation of a Xilinx XC7VX1140T FPGA.

Data Type
Resources Double Float
DSP48E 137 133
BRAM 185 95
FF 45,240 39,921
LUT 52,571 46,302
DSP48E 4.0% 4.1%
BRAM 4.9% 2.5%
FF 3.2% 2.8%
LUT 7.4% 6.5%
Clock Period (ns) 535+ 05 521+ 05
Max. Clock Frequency (MHz) 186.9 1919
Clock cycles 73,999,901 53,996,354
Max. Classification Frequency (Hz) 2.53 3.55

Accuracy (MAE)

3.9428 x10~1°

1.0005 x10~°
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The required number of flip-flops (FF) and look up tables (LUT) were not high, presenting only
small variations between designs.

On the other hand, as is natural, the amount of block RAM doubled for double arithmetic precision
with respect to single arithmetic precision. That is due to the use of 64-bit representation of double
precision and 32-bit of single precision. Then, block RAM requirement halves according the amount of
memory needed for its representation.

4.3. Hardware Performance and Accuracy

Mean absolute error (MAE) was used to measure the accuracy of the results of each design with
respect to the Matlab implementation. MAE measures the average magnitude of the errors without
considering the direction of its deviation, taking into account the absolute differences between them.

The accuracy shown in Table 4 is the maximum of the accuracy obtained for the results of each
output neuron. As it can be seen, the accuracy for the single design is very low, but the accuracy
for the double design is so low that, in practice, it indicates that results in this case are similar to the
results obtained in its Matlab implementation. It is natural, because both implementations use double
precision data types.

In turn, the number of clock cycles shows a strong dependency of the data type (Table 4), and the
numbers of minimum allowable cycles reported for both designs were similar.

The maximum frequency of operation is obtained from the minimum clock period and the
required number of clock cycles. It is represented in Table 4 for both data type designs. As it can be
seen, the computation of all the classification procedure, from accepting raw signals to the delivery of
the classification output can be done at a thythm of 2.53 Hz for the "double" design and 3.55 Hz for the
"single" designs (3.55 classification outputs by second).

5. Discussion

The analysis described in this paper was carried out using the Bern-Barcelona dataset. Thus,
all related works in the bibliography, selected for the sake of comparison, use the same database.
That provides a more comparable framework, given that the use of works using other datasets may
expose significant differences when performing the same classification method. As an example,
San-Segundo et al. [25] shows that the focal-nonfocal (F-NF) classification accuracy may differ more
than 20% when the same methods applies to the Bern-Barcelona dataset [7] and the Epileptic Seizure
Recognition dataset [46]. In this example, the nature of the signals in the dataset, mainly the difference
between signal lengths (only 1s for the latter), makes the difference. Thus, note that the Bern-Barcelona
dataset is the logical selection when facing just the F-NF problem, provided its longer signal length
(20 s) and its specialization in inter-ictal signals (recordings of seizure activity and three hours after the
last seizure activity are excluded).

Table 5 compares our results with previous works for the task of classifying the focal and
non-focal signals using the Bern-Barcelona EEG dataset. It details the obtained classification accuracy,
summarizes the extracted features, and indicates the type of classifier used in each work.

Note that the purpose of this work was not to beat the accuracy results of previous works in the
bibliography; our goal was to obtain, at the same time, the best classification procedure having the
lowest possible computational load (for feature extraction and classification), aiming at its real-time
implementation. Despite this, we obtained pretty good accuracy results. The 95.5% classification
accuracy obtained in this work surpasses many other related works [13,15-18,20-22,47], while some
other works [19,23,24,48] surpasses this result by a maximum of 1.5% classification accuracy ( [19]
achieved 97% classification accuracy). Thus, when not considering [25], the comparison with the other
related works can be considered pretty good in light of the great simplification achieved for the feature
extraction process. In turn, San-Segundo et al. [25] obtained to 98.6% classification accuracy (3.1%
more than this work), but at the expense of using a computationally intensive tool, a deep neural
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network, which is far away from the simplicity sought in this work; that is the reason to exclude this
work from comparison from this point forward.

Table 5. Comparison of focal and non-focal classification results with previous works.

Authors Classifier Type Extracted Feature Accuracy
Sharma et al. (2015) [17] LS-SVM EMD with IMFs 87.0%
Das et al. (2016) [18] k-NN EMD-DWT, log-energy entropy 89.4%
Chatterjee et al. (2017) [21] SVM, k-NN MFDFA 92.2%
Singh et al. (2017) [22] LS-SVM DFT based filter bank 89.7%
Sharma et al. (2017) [16] LS-SVM TQWT! 95.0%
Sharma et al. (2017) [13] LS-SVM Wavelet based entropies 94.3%
Bhattacharyya et al. (2017) [15] LS-SVM Fuzzy entropy of TQWT 84.7%
Bhattacharyya et al. (2018) [20] LS-SVM Rhythm separation from EWT 90.0%
Taran et al. (2018) [23] ELM Clustering VMD 96.0%
Deivasigamani et al. (2018) [24] ANFIS Extracted from CWT 96.0%
Zeng et al. (2019) [19] RBF-NN EMD and PSR 97.0%
San-Segundo et al. (2019) [25] DNN Fourier transform 95.5%
San-Segundo et al. (2019) [25] DNN Wavelet transform 97.4%
San-Segundo et al. (2019) [25] DNN Raw data 98.6%
San-Segundo et al. (2019) [25] DNN 6 IMFs from EMD 98.9%
Rahman et al. (2019) [47] Stacked SVM VMD, DWT, and others? 95.2%
Sharma et al. (2019) [48] SVM LSDA from bispectrum 96.2%
This work Neural Network 5 low computational complexity 95.5%

features extracted in real-time

1 With different kernel function. 2 Other features: refined composite multiscale dispersion entropy (RCMDE),
refined composite multiscale fuzzy entropy (RCMFE) and autoregresive model coefficients (AR).

As it can be seen in Table 5, extracted features were used to proceed from computationally
intensive processes, such as the decomposition of EEG signals using empirical mode decomposition
(EMD) to extract intrinsic mode functions (IMFs). Thus, Sharma et al. [17] obtained 87.0% classification
accuracy using five entropy features extracted from IMFs; Das et al. [18] also used entropy-based
features from the EMD, DWT (discrete wavelet transform) and EMD-DWT domains, achieving 89.4%
classification accuracy; and Zeng et al. [19] arrived to a 97% classification accuracy using features
derived from Euclidean measures obtained from the phase space reconstructions (PSRs) of several
IMFs obtained using EMD.

The wavelet transform has been also a computationally intensive process used in related works
as the basis of the feature extraction process. Thus, Sharma et al. [16] obtained several entropy
features from the tunable-Q wavelet transform (TQWT), reporting a 95.0% classification accuracy;
Bhattacharyya et al. [20] obtained 90.0% classification accuracy using as features, projections of the
reconstructed phase space (RPS) from the rhythm separation achieved using the empirical wavelet
transform (EWT); Sharma et al. [13] obtained 94.25% classification accuracy from various wavelet
based entropies; Bhattacharyya et al. [15] obtained 84.67% classification accuracy using TQWT based
multivariate sub-band fuzzy entropy with LS-SVM classifiers; and Deivasigamani et al. [24] obtained
96.0% classification accuracy based on a set of features extracted from the dual tree complex wavelet
transform (DT-CWT) and using an adaptive neuron fuzzy interference system (ANFIS).

Other works use variational mode decomposition as the basis of feature extraction, such as
Rahman et al. [47], who obtained a 95.2% classification accuracy using features such as refined
composite multi scale dispersion entropy (RCMSDE), refined composite multiscale fuzzy entropy
(RCMSEFE) and autoregressive model (AR) coefficients extracted from variational mode decomposition
(VMD), DWT and VMD-DWT domains; or Taran et al. [23], who obtained 96.0% classification accuracy
using spectral moment based features extracted from the modes of the clustering VMD (CVMD) and
extreme learning machine classifiers.
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Note that the computational cost of the feature extraction process in previous works is greater
than the computational cost of the feature set proposed in our work. The only work in the bibliography
having a computational cost comparable to that of our work is Singh et al. [22], that obtained a 89.7%
of classification accuracy deriving features from DFT-based rhythms of the EEG. In the same way,
we have to compute the DFT too. Nevertheless, we obtain a better classification accuracy (5.8% more).

Thus, despite its simplicity, a classification procedure that performs better than most of related
works, or, in the worst case, got surpassed by a maximum of 1.5% of classification accuracy (not
considering [25]) was achieved.

However, this work does not propose just an optimum feature set, but an optimum classification
procedure, as a whole. Thus, the proposed feature set, Table 2, can be combined optimally with
a neural network classifier model when five seconds of segment length are used (Section 4.1).
Our analysis indicates that this, altogether, guarantees the best accuracy performance with a minimum
computational cost. The proposed neural network is of perceptron type, with just one hidden layer of
25 hidden neurons, five input neurons (the dimensionality of the proposed feature set) and two output
neurons in the output layer.

On the other hand, the FPGA real-time implementation of the classification procedure, following
Algorithms 1 and 2, has been done using a sequential architecture. The benefits of using this architecture
are the minimization of the memory usage and the number of arithmetic hardware blocks. Anyway,
to improve the throughput results this computation can be easily parallelized.

The proposed hardware design allows the definition of floating point arithmetic units of single or
double data type precision (following the IEEE 754 standard for floating-point arithmetic). As it was
expected, both designs offer a great MAE accuracy. “Double” design achieves an accuracy similar to
the Matlab environment implementation: 3.94x 101>, while the “float” design offers a great accuracy:
1.00 x10~%. MAE accuracy was measured using the Matlab implementation as a reference.

The analysis demonstrates that the proposed hardware implementation does not uses many
resources. Both designs need no more than 137 DSP slices, while BRAM usage is 95 MB for the “single”
design (doubling to 185 MB the requirements for the “double” design, provided that, obviously,
the 64-bit double precision data types doubles the memory needs of the single 32-bit data type).

Note that the computational needs of the implementation in a Virtex 7 Xilinx FPGA device requires
a reduced portion of its total resources; see Table 4. In fact, this application can be executed even on a
small and cost-effective Xilinx XC6SLX100 Spartan-6 FPGA, assuring a low-cost of implementation.

Regarding the performance, it has been shown that the proposed implementation can perform all
computation tasks at a maximum of 3.55 Hz when using the single data types, or 2.53 Hz when using
double data types. That means that the single design can deliver outputs at a thythm of 3.55 times
by second.

However, note that this 3.55 Hz of classification frequency (2.53 Hz for double design) is only
effective after the first 5 s of acquisition time due to the 5 s segmentation. This implies a minimum
latency time to achieve the first result from the beginning of an acquisition without artifacts of the
EEG signal. From this 5 s latency, the proposed implementation is capable of handling overlapped
time windows, delivering results at the maximum classification frequency. Thus, for the single design,
a result will be provided each 1/3.55 = 0.28 seconds after the first 5 s window length.

Thus, we have shown that an adequate selection of the set of features, classifier model and length
of the window segment, allows one to obtain good classification accuracy results (above the average
of previous related works) while maintaining a low computational load for the whole classification
procedure. It enables us to move the classification procedure to the real-time field, embedded in a
logic-reconfigurable FPGA.

The proposed implementation can be carried out on a small portable device embedding a fast
classification engine of epileptogenic focus. This device can serve as a help decision tool to assist
neurosurgeons to refine the localization of the epileptogenic area during the resective epilepsy surgery
in those cases where greater precision or confirmation were needed.
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6. Conclusions

The locating of the epileptogenic focus using interictal EEG signals is generally a computerized
analysis carried out off-line by neurosurgeons and epileptologists to determine the brain regions
responsible for the initial seizure discharge. However, previous works tend to propose more
computationally costly procedures the more recent they are.

This work shows that an adequate selection of the set of features, classifier model and length of
the window segment, allows one to obtain good classification accuracy results (above the average)
while maintaining a low computational load. It enables the real-time implementation of the whole
classification procedure, on an FPGA reconfigurable device, from accepting the raw EEG signals to the
delivery of the classification outputs at a rhythm of up to 3.55 Hz. It opens the door to the use of the
automatic classification as a decision-assisting tool during surgery, enabling neurosurgeons to refine
the localization of the epileptogenic area during the resective epilepsy surgery.

Concluding, it has been shown that the proposed hardware implementation of the epileptogenic
foci locator can be embedded on a small portable device, embedding, thus, a fast classification engine
of epileptogenic signals in epilepsy.
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Abbreviations

The following abbreviations are used in this manuscript:

EMD Empirical mode decomposition

IMF Intrinsic mode function

DWT Discrete wavelet transform

MFDFA  Multifractal detrended fluctuation analysis
DFT Discrete Fourier transform

TQWT Tuneable-Q wavelet transform

EWT Empirical wavelet transform

ELM Extreme learning machine

VMD Variational mode decomposition

ANFIS Adaptive neuro fuzzy interference system
RBF-NN Radial basis function neural network

PSR Phase state reconstruction
DNN Deep neural network
LSDA Locality sensitive discriminant analysis
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