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Abstract: We explored exceptional points (EPs) in one dimensional non-Hermitian photonic crystals
incorporated with a defect. The defect was asymmetric with respect to the center. Two EPs could be
derived by modulating the normalized frequency and the gain-loss coefficient of defect. The reflection
coefficient complex phase changed dramatically around EPs, and the change in complex phase was
π at EPs. The electric field of EPs was mainly restricted to the defect, which can induce a giant
Goos–Hänchen (GH) shift. Moreover, we found a coherent perfect absorption-laser point (CPA-LP)
in the structure. A giant GH shift also existed around the CPA-LP. The study may have found
applications in highly sensitive sensors.
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1. Introduction

Non-Hermite, which stems from quantum mechanics [1], has promptly expanded to optics [2–5],
acoustics [6], and electronics [7]. Systems including gain or loss are non-Hermitian [8–12]. There is an
energy exchange between non-Hermitian systems and the external environment. Compared with the
quantum structures, gain and loss in optics are relatively easy to realize [13–15], so non-Hermitian
optics has become an intriguing research subject. The eigenvalues of Hamiltonian are real in Hermitian
systems, while they are generally complex in non-Hermitian systems. However, as the Hamiltonian
in optical systems meets parity-time (PT) symmetry, that is, the refractive indices of materials are
satisfying n(r) = n*(−r) [16,17], the eigenvalues can be real. The PT-symmetry will spontaneously break
if the gain and loss surpass some critical value, which is defined as the exceptional point (EP) [8,13].
The eigenvalues and eigenvectors of Hamiltonian degenerate in non-Hermitian systems at the EPs,
around which many fascinating optical properties may be induced, consist of sharp changes in the
complex phase [18], unidirectional invisibility [19,20], and topological boundary states [21].

In recent years, complex photonic crystals (PCs) have provided a new opportunity to explore the
non-Hermitian optical properties and other nonlinearities theoretically and experimentally [22–28].
Many significant optical characteristics have been discovered in PCs, such as solitons [29–33], topological
modes [34,35], and strong absorptions [36–39]. Furthermore, there are bandgap structures in the
transmission spectra as light impinges upon PCs, and light field localization can also be implemented
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in defective PCs, which could be utilized for enhancing the nonlinearity of materials [40,41] and the
lateral shifts of reflected beams [42–45].

EPs and coherent perfect absorption-laser points (CPA-LPs) exist in PT-symmetric PCs [46];
however, it is more difficult to make complex dielectrics obey PT symmetry experimentally. Here, we
embedded a defect in PCs. The refractive index of the defect is complex and the imaginary part of the
refractive index (denoted by a gain-loss coefficient σ) can be tuned. We searched EPs and CPA-LPs
in the parameter space composed of the frequency and gain-loss coefficient. We then explored the
complex phase changes of reflection and transmission coefficients around EPs and CPA-LPs. Next,
we investigated the degeneration of the eigenvalues of Hamiltonian at EPs and gave the distribution
of the electric field. Finally, we simulated the Goos–Hänchen (GH) shift of reflected and transmitted
beams around EPs and CPA-LPs.

2. Non-Hermitian Photonic Crystals

We constructed the non-Hermitian PCs, which were composed of two Bragg gratings and a defect,
as shown in Figure 1. Two different dielectrics, A and B, arrayed alternatively to form two Bragg
gratings. The dielectrics A and B were MgF2 and ZnS, respectively. The defect containing dielectrics C
and D was embedded in the Bragg gratings. The dielectrics C and D could be obtained by doping SiO2

with high and low impurities of refractive indices, respectively. We denoted the refractive indices of
dielectrics by na, nb, nc, and nd, respectively. The thickness of each layer was set as a quarter of the
optical wavelength, viz, La,b,c,d = λ0/4na,b,c,d, where λ0 = 100 µm is the midgap wavelength of the defect
PCs. The refractive indices of materials were na = 1.38, nb = 2.35, nc = 1.4 + 0.01σi, and nd = 1.6 + 0.01σi,
respectively, where σ is the gain-loss coefficient. The positive gain-loss coefficient represented loss
and the negative gain-loss coefficient represented gain. The gain in the defect could be realized by
doping Ge/Cr or nonlinear two-wave mixing [47,48], and the loss of material could be achieved by
acoustic modulators [49]. The designed PCs could also be abbreviated to (AB)NCD(BA)N, where N is
the periodic number of Bragg gratings, and here it shows N = 5.

Figure 1. (a) Schematic of one-dimensional non-Hermitian photonic crystals. The primitive unit-cell
layers, A and B, array alternatively to form two Bragg gratings. The defect composed of dielectrics C
and D is asymmetric with respect to the center. Dry and Dty are the lateral Goos–Hänchen shifts of
the reflected beam and transmitted beam, respectively. (b,c) Reflectance and transmittance spectra
for three specific values of the gain-loss coefficient, respectively. The asterisk represents complex
conjugate operations.

In simulations, the incident wavelength was in the range of terahertz band and the transmission
matrix method (TMM) was used to derive the reflection coefficient r and transmission coefficient
t [18]. Subsequently, the reflectance of light and transmittance can be denoted by R = rr* and T = tt*,
respectively. The reflection coefficient is generally complex and can be expressed as r/t = |r/t|exp(iϕr/t),
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where ϕr/t is the complex phase of the reflection/transmission coefficient. As a transverse magnetic
(TM) polarization wave obliquely impinged upon the PC with the incident angle θ, the lateral GH
shift of reflected/transmitted light beam was proportional to the slope of the reflection/transmission
coefficient complex phase, with respect to the incident angle, that is Dry/ty = −λdϕr/t/2πdθ [18], where
λ is the incident wavelength.

We set the incident light as a TM wave, and the incident angle was θ = 20◦. When light obliquely
impinged upon the PCs from the left, Figure 2a provides the reflectance spectra for three different values
of gain-loss coefficient σ, where (ω −ω0)/ωgap is the normalized frequency and ωgap = 4ω0arcsin|(nb −

na)/(nb + na)|2/π is the photonic bandgap [50]. The center frequency of the bandgap was defined as
ω0 = 2πc/λ0. One can see that there was a bandgap structure in the reflectance spectrum for each fixed
coefficient and a defect mode located at the middle of the bandgap. The reflectance of defect mode
was zero, viz. R1 = 0 was the coefficient σ = 0. For σ > 0, such as σ = 1, the reflectance 1 > R1 > 0 and
a partial incident light was reflected by the PCs. The reflectance surpassed 1 as the coefficient σ < 0.
The loss and gain in the defect can both enhance the reflectance of the defect mode. Figure 2b gives
the transmittance varying with the normalized frequency. Light could not transmit the PCs as the
frequency of wave was in the range of the bandgap, except for the defect mode. As σ = 1, the incident
wave could overall pass through the structure for the defect mode, i.e., T = 1. The transmittance was
T < 1 for the defect mode as the coefficient was σ > 1, while the transmittance was T > 1 for the defect
mode as the coefficient was σ < 1. The loss or gain in the defect can reduce or enhance the reflectance
of the defect mode, respectively.

Figure 2. (a,b) Reflectance and complex phase of reflection coefficient, respectively. (c,d) Complex
phase of reflection coefficient varying with the normalized frequency around the coherent perfect
absorption-laser point (CPA-LP) and exceptional point (EP)1. (e,f) Transmittance and complex phase of
transmission coefficient. The parameter space is composed of the normalized frequency and gain-loss
coefficient. Light is incident from the left.
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3. Exceptional Points and Sharp Change in Phase

Figure 2a demonstrates the reflectivity in the parameter space composed of the normalized
frequency (ω − ω0)/ωgap and gain-loss coefficient. One can see there is a peak and a valley in
the parameter space. The peak value was R1 = 1.03 × 105 and it can be viewed as +∞ in our
calculating accuracy. The maximum point was the CPA-LP, which located at [(ωLP −ω0)/ωgap = 0.0654,
σLP = −0.79]. The valley located at [(ωEP1 −ω0)/ωgap = 0.0654, σEP1 = −0.1] and was an EP labeled by
EP1. The reflectance of light at EP1 was R1 = 1.33 × 10−6, which is approximately equal to 0 in our
calculating accuracy. The non-Hermitian system can be viewed as a resonant cavity, of which the defect
is the cavity body and the Bragg gratings are reflectors. The resonance cavity and gain-loss coefficient
of the defect collectively induced the CPA-LP and EP1. Next, we demonstrate the characteristics which
approve the CPA-LP and EP.

For the light incident from the left, the reflection coefficient can be written as r1 = |r1|exp(iϕr1),
where ϕr1 is the complex phase of reflection coefficient, as shown in Figure 2b. The EP1 and CPA-LP
were two singular points in the complex phase of the reflection coefficient. The complex phase ϕr1

sharply changes around the EP1 and CPA-LP. That is, a slight increase in the normalized frequency
or in the gain-loss coefficient may lead to a great variation in the complex phase near the EP1 and
CPA-LP. For three specific values σ = −0.893, −0.793, and −0.693, which were near the CPA-LP, Figure 2c
provides the complex phase of reflection coefficient varying with the normalized frequency. For the
coefficient σ = −0.793, approaching to σLP, the complex phase change was ±π around the CPA-LP as the
frequency increased. For σ = −0.893, lower than σLP, the slope of complex phase curve was negative,
while for σ = −0.693, larger than σLP, the slope of complex phase curve was positive and there was a
meaningless 2π hopping in the complex phase. Figure 2d demonstrates the complex phase cures for
three given values, σ = −0.199, −0.099, and 0.001, around the EP1. One can see that the complex phase
change was also ±π as the coefficient approached σEP1, such as σ = −0.099. Different from the situation
near the CPA-LP, the slope of complex phase curve was positive as the coefficient σ < σEP1, while the
slope was negative as σ > σEP1 around the EP1. The common characteristic was that the closer the
parameters were to the CPA-LP and EP1, the higher the slope of curve was, which may have resulted
in a giant GH shift.

Figure 2e shows the transmittance light in the parameter space. There was a peak in transmission
in the parameter space as the normalized frequency and gain-loss coefficient changed. The maximum
point was exactly at the CPA-LP, which approves the properties of the CPA laser state. The maximum
transmittance was TLP = 1.34 × 105, which can be viewed as +∞ in our accuracy. The CPA-LP is a
boundary state (the power of mode is mainly restricted at the interface of two different materials).
The complex phase of transmission coefficient changed dramatically with the parameters around the
CPA-LP, as shown in Figure 2f. There was a hopping in the complex phase of transmission coefficient at
the CPA-LP and the variation was ±π. The hopping was meaningless ±2π at the other complex phase
jump points, where the complex phase could therefore be viewed to be continuous. The resonance
of defect cavity and the gain in dielectrics acted together to result in the CPA-LP. The extreme value
in transmittance meant that there was complex phase uncertainty of the transmission coefficient.
The sharp change in the complex phase of the transmission coefficient can also induce the lateral GH
shift of the transmitted light.

As the light incident from the right, the reflection coefficient was denoted by r2 = |r2|exp(iϕr2).
Figure 3a gives the reflectance in the parameter space. There were also two extreme points as the
normalized frequency and gain-loss coefficient increased. The minimum was labeled by EP2 and
located at [(ωEP1 −ω0)/ωgap = 0.0654, σEP2 = 0.1], while the maximum was the CPA-LP and located
at [(ωLP − ω0)/ωgap = 0.0654, σLP = −0.79]. The positive gain-loss coefficient represented loss and
negative gain-loss coefficient represented gain, respectively. When light was incident from the left,
the position of EP1 showed that gain in materials was required, and while the light was incident from
the right, loss was required to carry out the singularity of EP2. These properties indicate that the
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EPs were dependent on the directions of light incident form the left and right. The dependence on
directions for EPs resulted from the asymmetry of the defect and the non-Hermiticity of PCs.

Figure 3. (a,b) Reflectance and complex phase of reflection coefficient varying with normalized
frequency and gain-loss coefficient for a light incident from the right, respectively.

As the gain-loss coefficient σ changed, the real and imaginary parts of eigenvalues are depicted in
Figure 4a,b, respectively. For the incident and scattered waves, the scattering matrix in PCs can be written
as S = [t r1; r2 t], which is the counterpart of Hamiltonian in quantum systems [51,52]. The eigenvalues
of S-matrix were λ1,2 = t ± (r1r2)1/2 and the eigenvectors were (r1

1/2, ±r2
1/2). The eigenvalues coalesce

and the eigenvectors degenerated at (r1r2)1/2 = 0, which was defined as EPs of eigenvalues. That is,
the EPs could be derived by r1 or r2 = 0. We generally searched for EPs in the parameter space
on conditions of R1 or R2 = 0. The reflection coefficient complex phase ϕr1 and ϕr2 were bound to
experience a dislocation as R1R2 = 0, which is an unique characteristic of EPs. The zero reflection
and complex phase dislocation can be utilized to seek out EPs. When σ < σEP1 and σ > σEP2, the real
parts of the eigenvalues split into two branches. When σEP1 < σ < σEP2, the real parts of eigenvalues
degenerated. On the whole, the curves of real parts were anti-crossing and the imaginary part curves
were crossing around the EPs for the eigenvalues. The imaginary parts of eigenvalues degenerated at
EPs as well. These characteristics are often used to confirm EPs.

Figure 4. (a,b) Real and imaginary parts of Hamiltonian eigenvalues varying with the gain-loss
coefficient around the EPs, respectively.

4. Applications and Giant GH Shift

Figure 5a gives the distribution of the electric field for EP1. It demonstrates that the power of
electric field was mainly restrained in the defect. The electric field intensity decreased exponentially
as the coordinate extended to the left and right from the 0 point. The distribution of electric field
further manifested that EP1 was the defect state (or transmission state). Figure 5b provides the electric
field distribution of CPA-LP. The electric field mainly distributed the defect as well. This means that
CPA-LP was also a defect state. Two Bragg gratings formed the resonance of cavity, together with
some appropriate gain in defect, to result in the CPA laser state.
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Figure 5. (a) Electric field distribution of EP1. (b) Electric field distribution of CPA-LP.

In the parameter space, the complex phase of the reflection coefficient changed sharply as the
normalized frequency and gain-loss coefficient increased near EPs and CPA-LP. Figure 6a gives the
GH shift of reflected light around EP1 and CPA-LP. The interested area is divided into three parts by
dotted lines. EP1 and CPA-LP are exactly on the dotted lines. At EP1 and CPA-LP, one can see that
the GH shift was infinite, so EP1 and CPA-LP were the singularity of the GH shift. Except for EP1

and CPA-LP, the GH shift on the dotted lines was 0. Otherwise, the GH shift in region I and III was
positive, while the GH shift in region II was negative. The GH shift was greater as the parameters
increasingly approached EP1 and CPA-LP. In our accuracy, the positive GH shift could be as high as
106λ, and the negative GH shift could be as high as −105λ. The sharp change in the complex phase of
reflection coefficient near EPs and CPA-LP generated the giant GH shift. The singularity of the GH
shift at EPs and CPA-LP was also an intriguing characteristic.

Figure 6. (a,c) Lateral Goos–Hänchen (GH) shift of reflected light beam from the left and right,
respectively. (b) GH shift for three special gain-loss coefficients versus normalized frequency. (d) Lateral
GH shift of transmitted light beam. The parameter space is composed of the normalized frequency and
gain-loss coefficient. It has rescaled the GH shift by taking logarithm log10|Dy| for clarity for (a,c,d).

Figure 6b illustrates the relationship between the GH shift and normalized frequency for five
special gain-loss coefficients σ = −1.5, ±1 and ±0.5. One can see that the GH shift changed with the
normalized frequency. There was a peak in each curve as the coefficient σ > σEP1 or σ < σLP and a
valley existed in each curve as σLP < σ < σEP1. The positive and negative maximum GH shifts were at
the normalized frequency (ω −ω0)/ωgap = 0.0654. The incident beam was composed of many different
frequency components of plane waves. We have showed that the light field penetrated more deeply
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into the PCs as the parameters became closer to EP1 and CPA-LP, so the dispersion of plane waves was
more serious. For this reason, the reflected beam consisting of scattering waves had a giant lateral shift.

Figure 6c gives the GH shift around EP2 and CPA-LP as light was incident from the right. Similarly,
EP2 and CPA-LP were the singular points of the GH shift. Along the dotted lines, the GH shift was 0.
The GH shift in region I and III was positive, while the shift in region II was negative. The maximum
positive and negative GH shifts were 105λ and −104λ, respectively, indicating that the GH shift of the
reflected light from the right was smaller than that of the reflected light from the left. Therefore, the
GH shift of the reflected beam was dependent on the direction incident from the left and right.

The lateral shift also existed in the transmitted light. Figure 6d shows the GH shift of the
transmitted light beam near CPA-LP. The region was divided into two parts by the dotted line. The GH
shift in part I was positive, while the GH shift in part II was negative. The positive and negative GH
shifts were 2 × 104λ and −6.5 × 104λ, respectively. CPA-LP was the singular point for the GH shift and
the GH shift was infinite at CPA-LP. The GH shift along the dotted line was 0. Even though the CPA
laser state was not stable enough, the incident light and transmitted light were located at the two sides
of the PCs, respectively. Therefore, the spatial discrimination of sensors based on the GH shift of the
transmitted beam was better than that of sensors based on the GH shift of the reflected beam.

Based on the GH shift, the PCs can be utilized for highly sensitive sensors in probing the gain or
loss factor of materials. Here, we take the normalized frequency (ω −ω0)/ωgap = 0.065, for example,
to demonstrate the application. To make the phenomenon more obvious, the given normalized
frequency was nearωLP andωEP. Figure 7a shows the lateral GH shift. One can see that the GH shift
changed with the gain-loss coefficient of the defect and there were positive and negative GH shifts
around the EPs and LP. The positive and negative maxima could reach as high as the magnitude of
103λ. Figure 7b gives the sensitivity coefficient of sensors based on the GH shift in defecting gain or loss
coefficient of materials. The maximum sensitivity coefficient (SC) was 6.65 × 104, since the frequency
of incident wave was fixed. The SC can be further improved if the chosen frequency is closer toωLP

and ωEP. Different from our one-dimensional PC of the multilayer type, PC fibers can also utilized for
highly sensitive sensors for temperature sensing application via a Sagnac interferometer [53] or for
detection of high refractive index liquid analytes via surface plasmon resonance [54].

Figure 7. (a) Lateral GH shift varying with the gain-loss coefficient. (b) Sensitivity coefficient (SC) of
sensors used for detecting the gain-loss coefficient of material based on the GH shift. The normalized
frequency is (ω −ω0)/ωgap = 0.065 for (a,b).

The incident angle was selected as 20◦ and the purpose was to take a specific incident angle as
an example to demonstrate that EPs and CPA-LP can be induced in the parameter space when a TM
wave is obliquely incident into the non-Hermitian PCs. EPs and the CPA-LP can also be derived as the
incident angle is chosen as some other values. The positions of EPs and the CPA-LP changed with the
incident angle in the parameter space. If the incident wave was transverse electromagnetic (TE) wave
instead, EPs and CPA-LP could also obtained, while the lateral shift of the reflected beam was defined
as the Imbert–Federov shift in this case [55].
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5. Conclusions

To summarize, we have theoretically studied EPs in one-dimensional non-Hermitian PCs
incorporated with a defect. The defect which contains gain and loss is asymmetric with respect
to the center. Two EPs have been searched by increasing the normalized frequency and gain-loss
coefficient of defect. EPs are directionally dependent on the light incident from the left and right.
The complex phases of the reflection and transmission coefficients changed dramatically with the
parameters around EPs and there was a phase hopping of ±π at EPs. The electric field of EPs mainly
distributed at the center and EPs were confirmed to be defect modes. A giant GH shift of reflected and
transmitted light beams was induced around EPs. A CPA-LP was also found in the parameter space
and a giant GH shift existed around the CPA-LP as well. EPs and the CPA-LP were singularities of the
GH shift. This research provides an option for development in highly sensitive sensors.
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22. Li, H.; Xu, S.L.; Belić, M.R.; Cheng, J.X. Three-dimensional solitons in Bose-Einstein condensates with
spin-orbit coupling and Bessel optical lattices. Phys. Rev. A 2018, 98, 033827. [CrossRef]
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