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Featured Application: The methods presented provide the know-how for the immobilization of
metal–organic frameworks (MOFs) in the form of pellets and membranes with increased water
repellency, known for its competitive ability for MOFs binding sites with air contaminants. These
methods can provide advances in the preparation of filters for the removal of toxic compounds in
air purification devices.

Abstract: Herein, we present a simple and inexpensive method for the immobilization of
Metal–Organic Framework (MOF) particles in the form of pellets and membranes. This processing
procedure is possible using polymethacrylate polymer (PMMA) as a binding or coating agent,
improving stability and significantly increasing the water repellency. HKUST and MMOF-74
(M = Mg2+, Zn2+, Co2+ or Ni2+) are stable with the processing and high loadings of MOF materials into
the processed pellet or membranes. These methods can provide the know-how for the immobilization
of MOFs for, for example, application in air purification and the removal of toxic compounds and are
well-suited for deployment in air purification devices.

Keywords: metal–organic frameworks; processing; pellet; membrane

1. Introduction

Metal–Organic Frameworks (MOFs) are a versatile and broad class of crystalline materials with
high porosity and a massive internal surface area [1–3]. These properties and the extraordinary
diversity of their organic and inorganic building units make MOFs highly relevant in applications such
as catalysis, sensors, batteries, biomedicine, and food safety [4–8]. Due to their synthetic versatility,
long-range order, rich host–guest chemistry, uniform pore size, and high surface area, MOFs are
particularly well-suited for the adsorption of a wide range of anthropogenic hazardous pollutants
including NOx, SOx, CO, H2S, NH3, HCN, volatile organic compounds (VOCs), and polycyclic
aromatic compounds (PAHs). Most of these pollutants are classified as toxic/carcinogenic and pose a
global risk to the environment and human health. However, in order to successfully be used in these
applications, MOFs must be both stable, featuring exceptional properties, and processed in a form that
enables their integration into devices [9]. The use of processing methods that afford a certain degree of
cohesion and allow shaping, and the spatial orientation of the crystals as needed, while interfacing
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with other components of the device [10]. Indeed, the use of suitable processing methodologies
determines the usefulness of a material, allowing it to perform at its best [11]. Notwithstanding, MOF
integration into devices is still a challenging task because most synthesis takes place inside sealed
glass tubes under solvothermal conditions, yielding very insoluble powders formed by randomly
aggregated crystallites making it impossible to apply in most of the currently available technologies.
In this context, much of the present research focuses on developing MOF processing methods [12].
Although some MOF materials have already been processed into textiles [13], membranes [14,15],
non-woven fabrics [16], and nanofibers [17], most of the processing methods used are complex and
difficult to transpose to industry. Here, we propose a simple and efficient method for processing MOFs
into pellets, and to incorporate them into membrane supports. We target the application of these
materials in filters in air purifiers. HKUST and MMOF-74 (where M = Mg2+, Zn2+, Co2+, or Ni2+)
were synthesized and processed in the form of pellets and membranes. These MOFs were selected
due to their well-known capability to adsorb harmful indoor gases, namely CO2, CO, and SO2 [18–29].
MOF materials were prepared and characterized by X-ray diffraction and scanning electron microscopy.
Because of the strong competition of water molecules with these harmful gases, water adsorption
isotherms of materials in the powder, and pellet forms were measured. Pellets were prepared by a
simple and cost-efficient extrusion method using only water as the “binding agent”. The stability of
these pellets was evaluated in terms of temperature and humidity.

2. Materials and Methods

2.1. General Instrumentation

Scanning electron microscopy (SEM) images were collected on a high-resolution microscope
equipped with a Schottky emission gun (Hitachi SU-70 (4 kV)) with a working distance of about
10 mm. Samples were prepared by deposition on aluminum sample holders followed by carbon
coating performed on a carbon evaporator (Emitech K950).

Fourier transform infrared (FT-IR) spectra (4000–400 cm−1) were recorded using KBr pellets (VWR
BDH Prolabo, SpectrosoL, FT-IR grade; typically, 2 mg of sample were mixed in a mortar with 200 mg
of KBr) on a Mattson 7000 galaxy series spectrometer equipped with a DTGS CsI detector, or on a
Bruker Tensor 27 spectrometer by averaging 256 scans at a maximum resolution of 2 cm−1.

Routine powder X-ray diffraction (PXRD) data were collected at ambient temperature on an
X’Pert MPD Philips diffractometer (Cu Kα1X-radiation, λ1 = 1.540598 Å; λ2 = 1.544426 Å), equipped
with an X’Celerator detector and a flat-plate sample holder in a Bragg–Brentano para-focusing optics
configuration (45 kV, 40 mA). Intensity data were collected by the step-counting method (step 0.04◦),
in continuous mode, in the ca. 5 ≤ 2θ ≤ 50◦ range.

The water vapor sorption isotherms were measured on a dynamic vapor sorption apparatus from
surface measurement systems, using N2 as the carrier gas (Air Liquide Alphagaz, less than 3 ppm
H2O, the total flow of 200 sccm). Dry aliquots (ca. 20 mg) were loaded in a steel pan and suspended in
the measuring chamber. The experiment started with a 2 h pre-treatment at 150 ◦C, to completely dry
the sample, followed by the isotherm at 25 ◦C with increasing and decreasing relative humidity (RH)
steps from 0% to 98%. Each humidity step was kept until the rate of change of mass per fixed time
(dm/dt) was lower than 0.002%, for at least 10 min.

2.2. Reagents

2,5-Dihydroxyterephthalic acid (97%); benzene-1,3,5-tricarboxylic acid (95%); Mg(NO3)2·6H2O
(99.8%), CoCl2·6H2O (99%), Zn(OAc)2.2H2O (98%), and Ni(NO3)2·6H2O (97%) were obtained from
Sigma-Aldrich. Dimethylformamide and ethanol of analytical grade were obtained from Carlo Erba.
KBr for infrared spectroscopy was obtained from BDH SpectrosoL. Methyl methacrylate polymer
(PMMA) was obtained from TCI. All chemicals were used as received without further purification.
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2.3. Synthesis

2.3.1. MOF-74 Family

The following procedures were reproduced from Liao et al. with minor modifications [30].
MgMOF-74: 2,5-Dihydroxyterephthalic acid (0.66 g, 3.39 mmol) and Mg(NO3)2·6H2O (2.86 g,

11.1 mmol) were mixed and dispersed in DMF/EtOH/H2O (v/v/v, 15/1/1, 300 mL) in a PTFE lined
autoclave (500 mL). After complete dissolution, the vial was capped tightly and placed in an oven at
125 ◦C. After 20 h, the vial was removed from the oven and allowed to cool to ambient temperature.
The resulting yellow microcrystals were collected and washed with DMF. The solvent exchange with
ethanol was performed 3 times a day for 2 days.

CoMOF-74: 2,5-Dihydroxyterephthalic acid (0.50 g, 2.52 mmol) and CoCl2·6H2O (2.01 g, 8.45
mmol) were mixed and dispersed in DMF/EtOH/H2O (v/v/v, 1:1:1, 200 mL) in a PTFE lined autoclave
(500 mL). The vial was capped tightly and placed in an oven at 100 ◦C. After 24 h, the vial was removed
from the oven and allowed to cool to ambient temperature. The microcrystals were collected and
washed with DMF. The solvent in the sample was exchanged with ethanol 3 times a day for 2 days.

NiMOF-74: 2,5-Dihydroxyterephthalic acid (0.51 g, 2.52 mmol) and Ni(NO3)2·6H2O (2.41 g,
8.32 mmol) were mixed and dispersed in DMF/EtOH/H2O (v/v/v, 1:1:1, 200 mL) in a PTFE lined
autoclave (500 mL). After complete dissolution, the vial was capped tightly and placed in an oven at
100 ◦C. After 24 h, the vial was removed from the oven and allowed to cool to ambient temperature.
The microcrystals were collected and washed with DMF. The solvent in the sample was exchanged
with ethanol at least 3 times a day for 2 days.

ZnMOF-74: 2,5-Dihydroxyterephthalic acid (1.02 g, 5.04 mmol) and Zn(OAc)2·2H2O (4.43 g,
20.1 mmol) were dissolved in 90 mL of DMF with stirring, followed by the addition of 5 mL of distilled
water. The mixture was heated in an oven at 100 ◦C for 20 h. After decanting the supernatant, the
product was rinsed with DMF and immersed in ethanol for 2 days, during which time the activation
solvent was decanted and replaced three times.

2.3.2. HKUST

Benzene-1,3,5-tricarboxylic acid (2.10 g, 9.99 mmol) and Cu(acac)2 (4.03 g, 15.4 mmol) were mixed
and dispersed in DMF/EtOH/H2O (v/v/v, 1/1/1, 100 mL) in a PTFE lined autoclave (150 mL). After
complete dissolution, the vial was capped tightly and placed in an oven at 80 ◦C. After 20 h, the
vial was removed from the oven and allowed to cool to ambient temperature. The resulting blue
microcrystals were collected and washed with DMF.

2.4. Pellet Preparation

Pellets were prepared using a home-made extrusion apparatus with an external heating source.
In summary, 500 µL of water was added dropwise to 500 mg of MOF until the formation of a malleable
paste. Subsequently, this paste is introduced into an extrusion apparatus, and the final pellet is dried at
ambient conditions.

2.5. Membrane Preparation

A suspension containing 50 mg of HKUST or MOF-74 in 10 mL CH2Cl2 was stirred for 15 min.
To this suspension, 150 mg of polymethylmethacrylate (PMMA) in powder was added and left stirring
for 30 min. The remaining viscous solution was then cast in a glass petri dish and left unstirred at
ambient conditions until complete evaporation of the solvents.
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3. Results and Discussion

3.1. MOF Synthesis

The synthesis of HKUST and a series of MMOF-74 (where M = Mg2+, Zn2+, Co2+, or Ni2+)
was adapted from the work of Omar Farha’s group [30], affording gram-scale amounts of the target
materials. Scaling up of MOFs synthesis often leads to the formation of undesired phases. However, our
materials are pure and present good crystallinity (Figure 1). Regarding the MOF-74 family, depending
on the metal center used, different crystal sizes and morphologies are obtained (Figure 1, insert).
MgMOF-74 and CoMOF-74 present large block-like crystals with sizes comprehended between 25 and
50 µm, while NiMOF-74 and ZnMOF-74 have reduced crystal sizes with a thin plate or spherical-like
shape significantly smaller than the previous congeners (below 10 µm).

Appl. Sci. 2020, 10, 798 4 of 13 

3. Results and Discussion 

3.1. MOF Synthesis 

The synthesis of HKUST and a series of MMOF-74 (where M = Mg2+, Zn2+, Co2+, or Ni2+) was 

adapted from the work of Omar Farha’s group [30], affording gram-scale amounts of the target 

materials. Scaling up of MOFs synthesis often leads to the formation of undesired phases. However, 

our materials are pure and present good crystallinity (Figure 1). Regarding the MOF-74 family, 

depending on the metal center used, different crystal sizes and morphologies are obtained (Figure 1, 

insert). MgMOF-74 and CoMOF-74 present large block-like crystals with sizes comprehended 

between 25 and 50 m, while NiMOF-74 and ZnMOF-74 have reduced crystal sizes with a thin plate 

or spherical-like shape significantly smaller than the previous congeners (below 10 m). 

 

Figure 1. Powder X-ray diffractograms and SEM images of (a) HKUST and (b) MOF-74 family. 

3.2. Water Adsorption Studies 

One of the drawbacks of using MOFs in adsorption applications is the competition between the 

target gases and water molecules [31]. Many MOFs have high water uptakes [32]. For example, 

Yahgi’s group reported an aluminum bearing MOF capable of adsorbing water from desert air with 

an incredible efficiency [33]. 

Water adsorption isotherms measured at 25 °C in order to ascertain the amount of water 

adsorbed at different relative humidity (RH, 20%–98%) As expected, both HKUST and MgMOF-74 

show an increase in water adsorption with increasing RH, reaching a total of 36.1% and 31.5% mass 

uptake at 98% RH since both materials exhibit large pores and surface areas (Figures 2 and S1). In 

contrast, while ZnMOF-74 shows a similar water adsorption profile (with a total of 24.5%), Co- and 

NiMOF-74 present very small water uptakes (under 6%), even at high RH (98%). The metal center 

has a vital role in the water adsorption process. Moreover, it is observed a significant hysteresis 

behavior in the adsorption/desorption process of Mg- and ZnMOF-74 in comparison to Co- and 

NiMOF-74 (with the ratio between adsorption/desorption ca. two times higher for Mg- and ZnMOF-

74). 

Figure 1. Powder X-ray diffractograms and SEM images of (a) HKUST and (b) MOF-74 family.

3.2. Water Adsorption Studies

One of the drawbacks of using MOFs in adsorption applications is the competition between
the target gases and water molecules [31]. Many MOFs have high water uptakes [32]. For example,
Yahgi’s group reported an aluminum bearing MOF capable of adsorbing water from desert air with an
incredible efficiency [33].

Water adsorption isotherms measured at 25 ◦C in order to ascertain the amount of water adsorbed
at different relative humidity (RH, 20–98%) As expected, both HKUST and MgMOF-74 show an
increase in water adsorption with increasing RH, reaching a total of 36.1% and 31.5% mass uptake at
98% RH since both materials exhibit large pores and surface areas (Figure 2 and Figure S1). In contrast,
while ZnMOF-74 shows a similar water adsorption profile (with a total of 24.5%), Co- and NiMOF-74
present very small water uptakes (under 6%), even at high RH (98%). The metal center has a vital
role in the water adsorption process. Moreover, it is observed a significant hysteresis behavior in the
adsorption/desorption process of Mg- and ZnMOF-74 in comparison to Co- and NiMOF-74 (with the
ratio between adsorption/desorption ca. two times higher for Mg- and ZnMOF-74).

Previous reports show a correlation between the hysteresis water vapor sorption and desorption
isotherms curves with increasing cation radii [34]. However, this correlation is not observed here,
since nickel and cobalt show a lower hysteresis than magnesium and yet have a larger size. In this
case, the adsorption mechanism is not achieved mainly by interaction with the metallic nodes. As
previously reported, water molecules can also interact with the material itself via hydrogen bonding,
which ultimately can lead to a change in this trend. [35,36].
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3.3. MOF Processing

3.3.1. Pellets

In this work, pellets of all materials were obtained by a simple extrusion method, whereby a small
amount of water is added to the corresponding MOF powder. The resulting paste is then loaded into
a syringe and heated, as depicted in Figure 3a. The processing of these materials into pellets were
chosen due to two main reasons: it is a simple and inexpensive processing method, which can be
advantageous to transpose to industry; and, in terms of engineering in industrial practice MOFs, are
required to be pelletized and packed into columns for real gas capture and process studies [37].
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Depending on the form of extrusion used, the materials can be processed into different sizes and
shapes (Figure 4), and in large quantities, effortlessly. The pellets were characterized by powder X-ray
diffraction, showing that this process preserves the structural integrity of the materials (Figure S2).
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Despite the rapid and straightforward pellet preparation method, with time, the lack of binding
agent causes the pellets to peel off, presumably due to their dehydration. To circumvent this problem,
we used a coating with methyl methacrylate polymer (PMMA), which has already found application in
membranes for CO2 removal in submarines [38]. PMMA coating enables the MOF adsorption of target
gas molecules while preventing contact with water molecules. The coating process is straightforward,
as depicted in Figure 3b. The pellets are immersed in a PMMA solution in dichloromethane and left to
dry at ambient conditions and preserve their integrity for months.

Subsequently, we assessed the water stability of uncoated and PMMA coated pellets. As shown
in Figure 5, the uncoated pellets immediately disaggregate after immersion. In contrast, the coated
pellets preserve their integrity even after one week immersed in distilled water.

Pellets were then introduced for 72 h in a desiccator containing a saturated solution of magnesium
nitrate or potassium sulfate to simulate exposure to ca. 54% and 98% RH, respectively. At 54% RH, the
coated pellets maintain their integrity, while the uncoated pellets already show some degradation (not
shown). At 98% RH, the uncoated HKUST and MgMOF-74 pellets were cracked or even completely
disaggregated, while the coated pellets bearing showed no visible degradation (Figure 6).

Interestingly, the integrity of the CoMOF-74 pellet remains the same at high RH even without
PMMA coating. This behavior is attributed to the low water adsorption of Co- and NiMOF-74
(Section 3.2). All coated materials maintain their structural integrity in 98% RH (Figure 7).

To better understand the (un)coated pellets’ behavior in humid conditions, water vapor isotherms
were also measured at 25 ◦C for HKUST. As shown in Figure 8, the processing into pellets decreases
considerably the water adsorption of HKUST (ca. 10% water uptake at 98% RH). This response can be
explained by the reduced contact surface of crystals when compared to the powder form. Interestingly,
the coated and uncoated pellets show approximately the same water uptake and similar isotherms.
Thus, the coating process only maintains the pellet form and does not change the water uptake.
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Figure 8. Water vapor sorption and desorption isotherms curves for coated (red) and uncoated (black)
HKUST pellets measured at 25 ◦C. Straight and dashed lines represent the adsorption and desorption
processes, respectively.

Gas molecules trapped inside MOF pores may be easily removed, increasing the temperature.
For this reason, the stability of the prepared pellets was accessed under different temperature conditions.
Here, we only illustrate these studies with HKUST pellets.

Pellets were submitted to different cycles of increase–decrease temperature. After coating,
pellets were introduced in an oven, heated at 125 ◦C for 24 h, and allowed to cool down to ambient
temperature (this process was repeated four times). Most MOFs used as gas sorbents are regenerated
at a temperature of 125 ◦C. The structural integrity of the pellets after each cycle was analyzed by
powder X-ray diffraction. As observed in Figure 9, the material preserves its structure and crystallinity,
even after four cycles. No visible change is observed in the pellets except for some small black areas,
probably associated with the PMMA film pointing that the PMMA coating can increase the overall
pellet stability significantly.
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3.3.2. Membranes

MOFs materials were processed into filters using the PMMA as the support. MOFs in the
powder form were suspended in a PMMA solution in dichloromethane and cast into a mold. After
solvent evaporation, an MOF@PMMA membrane was obtained (MOFs preserving their structure and
crystallinity, Figure S3).

As observed in Figures 10 and 11, HKUST and Mg-MOF-74 are homogeneously distributed over
the entire membrane. Membranes with a higher amount of MOF material can also be obtained, but they
are fragile and brittle. A MOF:PMMA mass ratio of 1:3 is the highest possible without compromising
the membrane elasticity. Humidity and temperature tests of these membranes were carried out. Due to
the insolubility of PMMA in water, membranes show no change at high RH. On the other hand, at
temperatures above 140 ◦C, membranes become fragile and break.
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corresponding EDS copper elemental mapping on HKUST@PMMA membrane.

4. Conclusions

In summary, we present a versatile and straightforward approach to the integration of MOF into
pellets and membranes. The processing of HKUST-1 and MMOF-74 (M = Mg2+, Zn2+, Co2+, or Ni2+)
in pellets and membranes achieved high MOF loadings. Pellet processing was carried out by a simple
extrusion method using water as the “binding agent”. Furthermore, the studied materials were also
supported into PMMA membranes with a simple procedure where the materials stay homogeneously
distributed over the entire membrane. These are stable up 140 ◦C and high RH.

Over time, the MOFs pellets peel off, and their stability is improved with polymethacrylate
polymer coating: no deterioration was observed at 98% RH and 125 ◦C. Likewise, the MOF membranes
also proved stable in high humidity conditions, without loss of structural integrity and crystallinity.
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