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Abstract

:

Presently, security is a hot research topic due to the impact in daily information infrastructure. Machine-learning solutions have been improving classical detection practices, but detection tasks employ irregular amounts of data since the number of instances that represent one or several malicious samples can significantly vary. In highly unbalanced data, classification models regularly have high precision with respect to the majority class, while minority classes are considered noise due to the lack of information that they provide. Well-known datasets used for malware-based analyses like botnet attacks and Intrusion Detection Systems (IDS) mainly comprise logs, records, or network-traffic captures that do not provide an ideal source of evidence as a result of obtaining raw data. As an example, the numbers of abnormal and constant connections generated by either botnets or intruders within a network are considerably smaller than those from benign applications. In most cases, inadequate dataset design may lead to the downgrade of a learning algorithm, resulting in overfitting and poor classification rates. To address these problems, we propose a resampling method, the Synthetic Minority Oversampling Technique (SMOTE) with a grid-search algorithm optimization procedure. This work demonstrates classification-result improvements for botnet and IDS datasets by merging synthetically generated balanced data and tuning different supervised-learning algorithms.
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1. Introduction


Because of the rapid expansion of devices and applications offering services over the Internet, malicious actors have taken advantage of these connectivity resources to perform illegal activities like bot-based malware crafting. A botnet is a network of compromised computers that run a malicious program called a bot or agent [1]. The infected network is remotely controlled by a botmaster in charge of controlling the entire infrastructure through a Command and Control server (C and C), where all information from various network protocols, like HyperText Transfer Protocol (HTTP) and Internet Relay Chat (IRC), is stored. The involvement in botnet spreading is attributable to diverse motivations, varying from information leakage, spamming, phishing, and targeted Distributed Denial of Service (DDoS) attacks. A strain of botnet malware can eventually have harsh impact due that leads to great privacy, technological, and monetary losses.



Botnets and instruction attacks are packaged with more sophisticated techniques to camouflage themselves within a network, thereby emulating network traffic generated by benign applications, using strong encryption schemes through the HTTPS protocol [2] and unusual responses between C and C servers that are further accentuated with the constant injection of random and noisy network packets. Beside this, improper configurations in various networks devices can also lead to a potential malware infection [3]. As a result, infected hosts can be undetectable by network-security appliances such as firewalls, honeynets, Network Intruder Detection Systems (NIDS), Intruder Prevention Systems (IPS), and Intrusion Detection Systems(IDS).



Most physical and logical devices afford solutions on the basis of prebuilt signatures, anomaly based detection mechanics, or heuristic-based behavioral tests, proven to not be as effective due to many pitfalls leading to high false-positives ratios. An example of prominent detection failures is the constant updating processes that delay the identification of new threats, a lack of anomaly based rules for unknown samples, and behavioral tests that partially disclose malicious behaviors often mistaken as benign traffic.



On this basis, Machine-Learning (ML)-based solutions offer a sufficiently broad perspective on the early detection of a botnet attack. In this way, robust classification models can discover hidden malicious patterns in network flows, reveal notorious taxonomies, uncover particular attack dynamics, and distinguish unique features; important tasks that prebuilt security appliances may fail to assess [4]. However, for real-time botnet and IDS ML-based detection environments, data acquisition plays a major role, since the trade-off between dataset quality, quantity, and complexity reinforce the discriminative power of the chosen algorithms to effectively solve the initial formulation, thus reducing misclassification rates and increasing the trustworthiness of the implementation—a crucial step for protecting critical assets [5].



Although there are many publicly available datasets for botnets and IDSs resembling real scenarios [6,7,8], some drawbacks have been identified regarding the attributes of network captures (traffic redundancy), attack diversity, labeling-procedure reliability, and data dimensionality, more specifically, the compensation between the number of benign and malicious samples [9]. In supervised ML-based problems, when a certain number of classes are not equally distributed, the data are said to be unbalanced, impacting the algorithm capabilities to aptly learn from the samples of the predominant class, following to a degradation of classification performance. Considering [9,10], the credibility of an ML-based cyber–physical system depends on the predictive abilities of intelligent agents trained with a wide range of adversarial behavioral patterns, able to protect workloads against malicious activities. Indeed, data distribution has a great effect on the efficiency of different ML models [11,12]; thus, it is important to establish data-level strategies in the preprocessing and training stages. To deal with unbalanced datasets, two methods can be applied: resampling, which balances data by sample aggregation or deletion, and unbalanced learning [13] that seeks to improve the detection rate of minority classes. Data resampling can be performed in the following ways:




	
Oversampling: samples from minority classes are duplicated until the amount is compensated with those from majority classes.



	
Undersampling: samples belonging to majority classes are downsized at random until compensation with respect to the minority class is reached.



	
Hybrid sampling: a superset is created with samples replicated from minority classes up to the same volume of the majority-class samples.








Even though previous research has implemented various resampling techniques, this work focuses on a novel approach named Synthetic Minority Oversampling Technique (SMOTE), a combination of oversampling, undersampling, and K-Nearest Neighbor (KNN) procedures to create a balanced set by virtue of synthetic generation [14,15]. KNN randomly selects k-nearest neighbors according to the magnitude of a majority class towards a minority class, emerging with new synthetic samples between the minority class and its nearest neighbors.



Even though data adjustments are important to increase the sensitivity of the classification models, it is important to consider a level of complexity in relation to algorithm performance. In [16], the authors suggested that a key factor for an ideal level is by considering inherent hyperparameters in which algorithms are constrained. In ML, hyperparameters are internal configuration variables used to improve skills at the learning phase, helping to make better generalization of the input information. The conventional scope for hyperparameter tuning is known as the grid search, a brute-force-like procedure that divides hyperparameters into regular grids exploiting the training models until the best grid point for minimizing the cost function is found.



In contrast with other state-of-the-art experiments, in this work we developed a deep inspection of botnet- and IDS-related datasets, tackling the unbalancing issues that cause irregular learning rates, and optimizing the training criteria of a set of supervised-learning algorithms, producing strengthened models that can transform data points into actionable knowledge. To achieve this goal, data acquisition must meet the following considerations [17]:




	
Information ought to be from crude network flows as a main source of malicious-packet delivery;



	
incorporation of a considerable collection of bot-based malware attacks obtained through environments closest to near-real contexts;



	
data should cover requirements from operating cycles found in production deployments (working hours); and



	
the proportion of more benign traffic packets must outnumber that of malicious ones since, in near-real-time conditions, only a slight portion of packets arise from infected sources.








This article is organized as follows. Section 2 provides an overview of several works related to botnet and intruder detection, the used algorithms, and the proposed balancing techniques for dealing with unbalanced datasets. Section 3 describes the proposed methodology for the following steps: data acquisition and examination, balancing minority-class samples via SMOTE, feature extraction and selection and grid search (hyperparameter tuning) techniques for a proposed algorithm portfolio. Section 4 details the obtained experiment results. Section 6 exemplifies the results discussion Finally, Section 5 concludes this work.




2. Related Work


A network comprising bot-based malware and persistent intrusion attacks can cause extensive harm in a short period of time if cybersecurity consultants are not ceaselessly aware of what is going through their endpoints. Inspecting botnets and IDS network captures is not a trivial task; classical defensive tactics include honey-based detection, a helpful tool when computational resources are limited, and evasive rules can be quickly written from specific honeynets qualified to analyze malicious entries. Honey-based sensing is prone to be bypassed by advanced cyber-attacks, directly affecting scalability and practical responses from the net. IDS-based detection is mostly achieved by security policies triggered by the real-time monitoring of network activity; nevertheless, this kind of recognition cannot properly dissect the anomalous characteristics of malicious attacks, failing to perform persuasive mitigation [18]. As a consequence, botnet and IDS data analysis has attracted alternative areas of research, for instance, ML-based solutions. Prominent ML approaches facilitated the disclosure of underlying patterns of traffic flows, pointing out the importance of feature engineering (feature extraction and selection) and evaluating malicious traces with different assessments to reach higher accuracy in real implementations [19]. The authors in [20] addressed botnet and IDS detection relying on two notable ML ramifications, Supervised (SL) and Unsupervised Learning (UL). SL aims to acquire knowledge by mapping malicious and benign samples into a predefined set of labels, learning from intrinsic features and producing a classification model ready to predict incoming samples [21]. In contrast, UL employs a more rigorous exploration of similar patterns on underlying structures without labeling or categorizing samples, allowing the in-depth scrutiny of similarities between different kinds of samples. The methodology of the present work is arranged by SL techniques, and related works are further described [22].



Because of the increasing number of types and characteristics of botnet and IDS records, classification remains a challenging research topic. According to the input metrics detailed in [23], malicious network flows can be outlined in four principal categories (Login, Inputs, Downloads and Geo-location), depending on specific missions for attackers. In general, well-known SL algorithms, including Logistic Regression (LG) [24], Support Vector Machine (SVM) [25], Artificial Neural Networks (ANN) [26], Decision Trees (DT) [27], Random Forest (RF) [27], Bayesian Networks (BN) [28], and Deep Learning (DL) Networks [29] have been fitted to overcome different menaces that directly depend on the conditions, circumstances, and settings in which botnet and IDS attacks are monitored and framed. Remarkable evidence is taken from IRC connections, P2P bots, DNS queries, anomalous traffic footprints, blacklisted IP addresses, irregular or malformed packet lengths, and abnormal intervals of multiple requests and responses over various network protocols [22]. Even so, some authors [30] agreed that given the nature of raw traffic flows, data are susceptible to balancing deficiencies between benign and malicious samples [31]. In an extensive set of trials, the authors in [32] considered that oversampling techniques are preferable over undersampling controls, since the resizing of large network flows can produce significant improvements in accuracy–sensitivity inter-relations, also highlighting SMOTE as the most suitable algorithm to conduct data-balancing measures.



In [15], a portion of malicious footprints were resampled via SMOTE, and tests proved that classification performance can be reinforced with the introduction of some level of noise to compensate for the merge of newly crafted observations. Similarly, in [33], random sampling fixed an offset between the number of minority classes by random generation, enabling a better detection ratio. The authors in [34] discussed that the repeated production and mixing of oversampled instances can create some disturbance in the original data distribution; instead, a series of SMOTE-based adaptations were adopted:




	
Borderline-SMOTE1: only concentrates on edges of the smaller class; then, it crafts, calculates, and compares new synthetic samples around the distribution of the majority class to reconstruct the overall distribution of class samples.



	
K-means SMOTE: identifies the area of the minority class and creates new instances on the basis of a seed pattern over the input space.



	
Safe-level SMOTE: builds overall distribution upon a sale level of synthetic samples, using the nearest neighbor of minority instances.



	
C-SMOTE: establishes a mean value center from the minority class samples as a basis, combining an interpolation algorithm to create and cluster new synthetic samples.



	
CURE-SMOTE: provides synthetic samples by enhancing representative clusters from the original SMOTE distribution.








In [10], the authors said that malware-based datasets are for the most part constituted by benign samples, requiring a feasible structure that considers the degree of the belongingness of each minority class, a decisive factor to properly balance a dataset. As part of the methodology, a set of algorithms (DT, RF, Naive Bayes-NB, SVM, and AdaBoost-AB) were trough-fed preprocessed inputs under a fuzzy-theory-based SMOTE technique, reducing misclassification costs to a large extent [35].



The scalability constraints regarding the volume of data adjacent to Big Data (BD) security appliances, the inherent complexity of data centers work flows [36] and the properties of nonstructured information [37] are attainable by implementing appropriate preprocessing stages, especially if SL algorithms only consider overall accuracy without taking into account relative class distribution. Random Oversampling for Big Data (ROS-Big Data), Random Undersampling for Big Data (RUS-BigData), and Map Reduce (MR) are some methods responsible for resampling extensive concentrations of evenly distributed data. As the authors described in [37], such techniques were applied by unifying a SMOTE variation for BD, obtaining, at its best, a favorable number of synthetic samples, avoiding some overgeneralization shortcomings to which SL are susceptible when handling a vast number of observations. Analogously, in [38], SMOTE was optimized by three major adjustments:




	
SMOTE-TomekLinks: substantial feature examination is performed on most class samples, eliminating those that present an unbalancing factor against minority-class samples.



	
SMOTE-ENN: aimed to weigh minority-class samples on the edge by employing Nearest Edited Neighbors (NEN).



	
Borderline -SMOTE2: majority-class instances are oversampled, taking as reference their edge and inner-weighting factors.








Filtering and selecting inherent parameters in winch SL algorithms may be constrained are important steps to strengthen classification models. In order to construct a robust methodology for classifying botnets and IDS data covering a full domain, it is important to establish a medium to choose settings that maximize the full potential of the selected algorithm. Positions and quantization levels can be determined by a well-known optimization technique known as grid search (GS), in which all regions of a defined space are searched, exhausting all possible combinations of values enclosed in a parameter. Little is known about improvements done to ML-based detection systems by optimizing a pool of algorithms. In early works [39], a support vector machine was tested by various kernel functions to detect massive intruder behaviors; furthermore, in [40], a first attempt using GS demonstrated that several algorithms can enhance predictive competencies for a series of malware families.




3. Proposed Methodology


The workflow of the proposed methodology is depicted in Figure 1. First, in the Data Acquisition block, a comprehensive search for datasets related to botnet and IDS traffic flows is conducted by collecting those that resemble real backgrounds, but with balancing issues. Furthermore, in the Feature Examination and Labeling block, datasets are subjected to an examination process aiming to exploit features that are considered useful by most authors in several state-of-the-art approaches [41,42,43,44]. Once data are normalized into a set of unique features, each sample is labeled as benign or malicious depending on the structure stated from the original data. During the Synthetic Minority Oversampling block, the percentage of minority-class samples from the training set are inspected to serve as a basis to oversample the data via synthetic production, resulting in a fully balanced training set. Subsequently, datasets are merged and split into training and testing sets. Therefore, in the Feature Extraction and Selection block, the balanced training set is preprocessed using Principal Component Analysis (PCA) [45] as the algorithm to extract and select the most informative and relevant features in a new dimensional subspace. In the Supervised Machine-Learning Classification Algorithms block, a portfolio of widely used algorithms is proposed to train the fully balanced set, thus enhancing the classification ratio through grid search, exhaustively tuning preconceived hyperparameters. Finally, the resulting classification models are evaluated by scoring the classification outcomes (predictions) from a testing set in terms of the following performance metrics: Accuracy, Recall, and F1-Score.



3.1. Data Acquisition


The significant number of threats against network-based information services and the resilience of critical infrastructures constantly overlap. Profiling suspicious activities and taking prompt actions to evade or mitigate the possibility of an impact on security are a still big challenge. In an effort to provide robust and acute-sensing ML-based implementation, a meaningful portion of features must be directly reflected on the size and diversity of the collected observations. SL algorithms aim to make sense of the information provided by an external source; in this regard, a proper collection of samples is required to generalize the most important aspects to which data are exposed. In particular, a dataset extracted from real networks must reflect the innate behavior of adversaries attempting an attack. Therefore, it is not affordable to simulate the attack surface using simulated or mathematical models that can directly influence the usual state of the environment [17,44]. In this work, data acquisition was performed by examining specific datasets that reported new threats, authentic botnet and intruder footprints, regular traffic generated by benign applications alongside genuine network packets mirroring working-hour scenarios. The datasets used to accomplish the proposed methodology are described below:




	
ISCX-Bot-2014: Provided by The Canadian Institute for Cybersecurity in which 16 different types of botnets are reported. These are, Neris, Rbot, Menti, Sogou, Murlo, Virut, NSIS, Zeus, SMTP Spam, UDP Storm, Tbot, Zero Access, Weasel, Smoke Bot, Zeus Control (C and C), and ISCX IRC bot. A total size of 5.3 GB of packet captures is formed by benign and malicious network traffic. As advised, 43.92% of overall network captures were identified as potentially malware-based. ISCX-Bot-2014 was built upon the consolidation of three main collections:



	
ISOT dataset [46]: integrates various projects, particularly the Honeynet Project [47], Ericsson Research [48], and Lawrence Berkeley National Laboratory Research [49], each containing malicious traces from well-identified botnets like Flow Storm and Zeus. As for non-malicious connections, sources primarily came from game packages, HTTP traffic, and P2P applications.



	
ISCX 2012 IDS Dataset [50]: crafted to be realistic, i.e., to include benign (HTTP, SMTP, SSH, IMAP, POP3, and FTP) and malicious (Botnet ISCX IRC) traffic produced by real devices.



	
Malware Capture Facility Project [51]: the design of this dataset aims to generate and capture various traces of botnets, and it incorporates eight different kind of botnets (Neris, Rbot, Virut, NSIS, Menti, Sogou, and Murlo).






	
CIDDS-001 - Coburg Intrusion Detection: provided by the University of Coburg in Germany, it was designed to gather real evidence of network intruders on the basis of anomaly-detection records and logs. Data mostly comprise network flows from small-business environments, including several email clients between rogue web-based modules and abnormal responses from multiple attacks, such as ping scanning, port scanning, brute force, and DoS.









3.2. Data Examination and Class Labeling


In Section 3.1 datasets were briefly introduced. As part of the initial examination of useful features, each dataset was explored for statistics regarding its composition. Because network traffic is mostly assembled in Packet Capture (PCAP) formats, the tool employed to dissect and replay the packets was Tshark [52], broadly used traffic-analyzer software. Then, data were submitted into a controlled sandboxed environment where malicious traces were monitored in depth. With regard to the ISCX-Bot-2014 dataset, Table 1 provides the percentage of different botnet flows captured on-the-fly.



By large-scale observing the replay of the ISCX-Bot-2014 dataset, suspicious connections were identified in accordance with incoming and outgoing connections from IP addresses mapped to anomalous behaviors. The report is depicted in Table 2.



With the information presented above and by scrutinizing ISCX-Bot-2014 author specifications, useful features were determined in terms of the abnormal presence of packets during the request and responses from malicious sources, as shown in Table 3.



The CIDDS-001 dataset is presented in plain-text format and was provided by prebuilt attributes. However, some values were missing or had insufficient information, yielding a large amount of noise. Manual inspection preceded to normalize the number of features and delete disproportional samples. Table 4 details each feature after the removal of noisy elements.



Consequently, samples tagged with discrete or numerous categorical values were standardized into malicious and benign classes. For the CIDDS-001 dataset, a total of 49,554 samples were labeled as benign and 105,530 as malicious, while in ISCX-Bot-2014 benign samples were over 119,287, and 56,572 were malicious.




3.3. Synthetic Minority Oversampling


After feature examination, the number of benign samples was greater than that of malicious ones, a condition described on Section 1 and Section 2 upon which flows generated by botnets or intrusion attacks can be masked within the network. As a consequence, the aforementioned security appliances were unable to correctly record their activity, leading to insufficient proof of malicious activity. As an example, benign traces clearly prevailed in a great part of the observations owing to large connections between safe client-server architectures. Conversely, the malicious ones were not frequently spotted, requiring more thorough inspection. This is explained by unusual botnets and C and C conversations, odd targeted attacks exploiting some vulnerability, passive scanning, unfamiliar Denial of Service attempts, and brute-force attacks that are rarely experienced. Eventually, this problem sometimes causes ML-based sensors to deteriorate in learning potential, tending to mislead the detection of suspicious objects. To tackle the absence of malicious patterns, this works pursued to resample previously studied datasets by applying SMOTE; in this section, we describe the steps considered develop the technique.



Consider each dataset as representation of n samples   X ∈  R  n × m     mapped with    y i  ∈  1 , 2 , ⋯ , C    labels. The unbalanced subsets are defined as    X  m i n   ⊂ X   for minority-class samples and    X  m a j   ⊂  X  t r a i n     for majority observations, respectively; so,    X  m i n   ∪  X  m a j   = X ; ∀  X  m i n   <  X  m a j    . Depending upon the amount of oversampling based on the extent of   X  m a j   , synthetic data are generated by pointing to a space of similar features between instances belonging to    x i  ∈  X  m i n     from a certain neighborhood. Then, k-nearest neighbors are computed by considering the smallest Euclidean distance between the neighbor and the rest of   X  m i n    instances; the closest k neighbors serve as reference points to create new in-between samples. The interpolation of those observations is described in Equation (1):


   X  s y n   = X +  (  X k  − X )  · e ,  



(1)




where    X k  ∈  X  m i n     is one of K-nearest neighbors   ( k = 1 , 2 , 3 , ⋯ , K )   from selected samples   x i  , e is a random number belonging to the range of   [ 0 , 1 ]   that represent the number of instances between   x i   and   X k  , and   X  s y n    is the new synthetic sample. In this way, SMOTE balanced both datasets as follows:




	
CIDDS-001: comprised 248,134 samples, where 50% corresponded to benign and the rest to malicious.



	
ISCX-Bot-2014: comprised 133,226 samples, where 50% corresponded to benign and the rest to M malicious,








Finally, datasets were divided into training   X  t r a i n    and test   X  t e s t    subsets with a random split of samples of 80% of the overall data for training purposes and 20% for testing the resulting models.




3.4. Feature Extraction and Selection


As indicated in the literature [53,54,55,56,57], it is essential to strengthen evidence provided by the features described on each dataset as this positively influences SL training routines by capturing maximum variability of the inputs and expanding the capacity of inference to the resulting models. If at some point ISCX-Bot-2014 and CIDDS-001 features produce correlation effects, this downgrades the computation of the algorithm. With the incorporation of dimensionality reduction, features that produce wrong variability are discarded, and the remaining inputs are represented in a new subspace of lower dimension based on their variability. In this proposal,    X t  r a i n   was preprocessed via Principal Component Analysis (PCA) [45], a dimensionality reduction used to describe features in a new set of noncorrelated variables.



Principal component   z 1   is defined as the linear combination of the original features with maximum variation. Values in this first component are represented in Equation (2):


   z 1  = O  a 1  ,  



(2)




where n is the number of samples, O is the matrix of observations with zero mean, and   a 1   is the vector that maximizes variance   var ( z )  , as formulated in Equation (2).


   1 n   z 1 ′   z 1  =  1 n    a 1  ′   O ′  O  a 1  =   a 1  ′  S  a 1  ,  



(3)




where  S  is the matrix of variances and covariances from the observations. In order to solve Equation (3), constraint     a 1  ′   a 1  = 1   must be established using a Lagrange multiplier:


  M =   a 1  ′  S  a 1  − ω  (   a 1  ′   a 1  − 1 )  ;  



(4)




maximizing Equation (4) implies deriving it with respect to the components of   a 1   until zero:


    ∂ M   ∂  a 1    = 2 S  a 1  − 2 ω  a 1  = 0  



(5)







Equation (5) results in   S  a 1  = ω  a 1   , where   a 1   is an eigenvector of  S , and  ω  the corresponding eigenvalue.



Ultimately, a new subspace is given by the two main components for both datasets, representing new variables with 89% of captured relevance for ISCX-Bot-2014 and 94% for CIDDS-001.




3.5. Supervised Machine-Learning Algorithms


An algorithm portfolio was constructed by a set of supervised machine-learning algorithms; then, each algorithm is trained using identical set   X  t r a i n   . Therefore, the resulting classification models are subjected to rigorous evaluation against test set   X  t e s t    with different performance metrics; the model with the best score can be selected as a candidate to solve the initial classification problem. In order to build a portfolio, the following assumption must summarize the proposed goal:



Assumption 1.

There must be a set of algorithms   a ∈ A   with a P classification problem that makes it easier to identify given a selection process S, in which each algorithm can be optimally performed given set of features f on the same environment [58].





To solve S, the following criteria were taken into account:




	
Define supervised classification algorithms to use in a specific context;



	
optimize each algorithm by means of hyperparameter tuning;



	
evaluate each algorithm in isolation from its performance metrics;



	
evaluate each algorithm in parallel in the same environment; and



	
compare the performance of each algorithm with those used in the literature.








As mentioned in Section 2, the set of algorithms reported in the state of the art [59,60,61,62,63] for botnet and Intruder detection [64] were selected to construct the algorithm portfolio:




	
K-Nearest-Neighbor (KNN);



	
Support Vector Machine (SVM);



	
Logistic Regression (LR);



	
Decision Trees (DT); and



	
Random Forest (RF).









3.6. Grid Search


Grid Search (GS) or hyperparameter search [16] is the process of iterating a set of hyperparameters  λ  contained in a machine-learning algorithm   a ∈ A   to identify optimal subset   λ *   that maximizes the performance of resulting model M and minimize loss function   L (  X  t r a i n   , M )  . Equation (6) computes the main idea behind grid search.


      λ *     =  argmin λ   { L  ( a ,  X  t r a i n   , λ )  }           =  argmin λ   { F  ( L  ( a ,  X  t r a i n   , λ )  )  }      ,  



(6)




where L indicates the loss function,   X  t r a i n    is the training set, a is the chosen algorithm,  λ  is the set of hyperparameters to be optimized, and F is an objective function aimed to test the performance of new set of tuned hyperparameters   λ *  .



Table 5 indicates used hyperparameters  λ  in algorithm portfolio A and their corresponding values.





4. Experiment Results


This section presents the experiment results using finest hyperparameters   λ *   of each classification model resulting from A.   X  t r a i n    was submitted to an isolated trial-validation test using K-fold cross-validation (10 folds per trial) [65]. This provided better generalization in the learning process, monitoring the average results of each trial. Then, the final models were scored using each testing set   X  t e s t    for the balanced ISCX-Bot-2014 and CIDDS datasets in terms of the following performance metrics: Accuracy, Recall, and F1-score. In order to compare the results of the improvements of the proposed methodology (SMOTE + GS), ISCX-Bot-2014 and CIDDS-001 were tested with the same algorithm portfolio but without any balancing or hyperparameter0optimization techniques. Table 6, Table 7, Table 8 and Table 9 show the performance scores of each dataset.



The efficiency of each model was determined by Receiver Operating Characteristic Area Under the Curve, which measures performance by indicating the ability of the model to distinguish classes; the higher the AUC is, the better the prediction of the model. Figure 2 and Figure 3 depict each tuned classification model.




5. Results and Discussion


The experiment results for the botnet and IDS datasets using SMOTE + GS demonstrated significant improvement for the prediction of malicious samples in highly unbalanced datasets as compared to what the authors in [66,67] achieved by means of resampling techniques. Indeed, there was a lack of meticulous inspection with reference to sampling engineering, and an absence of algorithm evaluation regarding optimization and future assessment. Even though in [66] the performance of some SL models reached high accuracy rates, it was not explained if some extraordinary scores were the product of overfitting conditions mainly caused by a balancing factor and the employed type of resampling. In our approach, it is emphasized that by employing SMOTE and supervising forthcoming model, K-fold cross-validation overfitting can be significantly avoided; in this way, during the learning stage,   X  t r a i n    was split into a validation set of equal size of training data, making it possible to correctly verify average accuracy in different trials. As demonstrated in the results, feature extraction and selection played an important role since manual inspection was not sufficient to exploit the inherent values of each feature, but is also indispensable for a better outlook on data representations that maximize variability in a feature space. Moreover, algorithms are by default constrained by inner parameters, so that in the learning process they must be put through rigorous search to find optimal values, enhancing a more favorable sensing ratio. To present the improvements of the present work, similar proceedings are compared in Table 10.



In addition, another significant factor for the improvement of the classification models created in this work in both datasets was the fact that they were a configuration that was external to the model and whose value could not be estimated from the learned patterns, but from the performance of the algorithm in itself during the training stage (Figure 1), helping to improve the classification performance of the model, i.e., for each iteration of the hyperparameters in each algorithm of the proposed portfolio, the best were found to be their combinations, strengthening the predictions of each suggested model, as shown in the table above.



The hyperparameters for the KNN algorithm of the CIDDS-001 dataset with the best performance used four neighbors because the algorithm that calculates the closest proximity between neighbors (Ball Tree) and the function weight (Distance) used in the prediction showed that all evaluation metrics oscillated by 98% in their results. In the case for the SVM, the penalty parameter (C) showed that with a margin of error of 0.001, a linear kernel and the form-decision function (o-v-r) taking into account the number of samples and the number of classes for this study, binary classes generated results in 90% average. For the LR algorithm, penalty rule   ℓ 1   showed a very efficient regularization force (0.0001) and, with the help of the LBFGS optimization algorithm, evaluation metrics reached above 70%. With a depth of nine nodes for the DT, considering the best division for each was 12, in addition to showing favorable results in the metrics (average of 98%), reduced memory consumption, complexity, and tree size for the produced classifier model. Finally, in RF, in the same way as in DT, the depth of its nodes and the best division in the trees were nine and 12, respectively, because it is a DT derivative. By having a fully balanced dataset, sampling of features to be considered for the best division in each tree was disabled (Bootstrap = False) so that its construction took into account the whole set. Only two samples were enough to form a leaf (binary class) inside the tree, achieving results above 98%.



For the hyperparameters of the ISCX-Bot-2014 dataset, the algorithm in KNN (Ball Tree) calculated that the optimal number of nearest neighbors was four because the function weight (Distance) was taken into account to determine them, achieving results of more than 96% in its evaluation metrics. The form-decision function (o-v-r) in SVM, the kernel type (Linear), and the penalty parameter of 0.01 had a positive impact when generating the predictive model, reaching metrics above 80% in the classification of botnet samples. Evaluations in the performance metrics of the predictive model with LR were the lowest of all the algorithms of the used portfolio (below 79% in the classification) despite having good regularization force (0.0001); the penalty rule (  ℓ 1  ) affected the results due to the optimization algorithm used (LBFGS). In DT, in the same way as in the CIDDS-001 dataset, the depth of the nodes was nine and their best divisions were 12 because this led to the creation of the best tree with an average performance of 97%. As already mentioned, RF is a derivative of DT, so the depth of its nodes was 9, while its best divisions were seven, taking into account the function to measure its quality (GINI) because counting in unique values is favored and therefore better classification (average of 97%). This being a binary classification problem, leaves were composed of only two samples and a single tree.



In future work, a real-time ML-based implementation of SMOTE + GS is proposed by considering the suggestions adopted in [68]. First, a specialized host is indispensable to filter, examine, and transform network packages into useful features; then, a labeling process must map samples through a botnet or intruder category and store them in a knowledge-based database. Furthermore, observations must be trained in an offline fashion for an amount of time; consecutively, an actuator layer is responsible for establishing the ML module to inspect the communication network and force to identity the type of transmitted package. Finally, a handler must decide to mitigate the identified threat, send an alarm to network administrators, or execute a defense mechanism. An important factor for the reproduction of the proposed in real applications is also to gather samples over a four-week timespan because, on average, inactive threats exhibit their functionality.




6. Conclusions


Currently, new and sophisticated techniques are developed by malicious actors (intruders) to evade detection (strong encryption in their transmitted packets, constant injection of packets that generate noise, and abnormal responses between bots and their C and C) mechanisms within security appliances, resulting in an important security concern in the fact that embedded solutions base their strength on limited actions established by signatures, anomaly recognition, and heuristic behaviors, flawed in adopting an efficient perspective for timely and accurate detection. Instead, ML-based implementations are being considered to tackle classical applications; however, a limitation occurs when the construction of datasets is prone to unbalanced information, leading to downgrading the learning stages of classification algorithms and causing a bad interpretation of malicious patterns. For this reason, we proposed in this work a data resampling technique known as SMOTE to subject to two datasets that closely resembled real botnet and IDS information (CIDDS-001 and ISCX-Bot-2014) and create a fully balanced dataset via synthetic generation. Experiment results proved that by testing different supervised-learning algorithms via the grid-search hyperparameter-optimization technique with a balanced training set, the performance of the final classification models could be substantially improved. As compared with other state-of-the-art approaches with the same set of algorithms, SMOTE + GS reached better results in terms of accuracy (KNN: 98.72%, SVM: 97.35%, LR:97.89%, DT: 98.65%, and RF:98.84%).
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Figure 1. Workflow of proposed methodology. 
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Figure 2. Receiver Operating Characteristic (ROC) for balanced subset CIDDS-001. 
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Figure 3. Receiver Operating Characteristic (ROC) for balanced subset ISCX-Bot-2014. 
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Table 1. Distribution of different botnets used in dataset.
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	Botnet
	Type
	Flow Portion





	Neris
	IRC
	25,967 (5.67%)



	Rbot
	IRC
	83 (0.018%)



	Menti
	IRC
	2878 (0.62%)



	Sogou
	HTTP
	89 (0.019%)



	Murlo
	IRC
	4881 (1.06%)



	Virut
	HTTP
	58,576 (12.80%)



	NSIS
	P2P
	757 (0.165%)



	Zeus
	P2P
	502 (0.109%)



	SMTP Spam
	P2P
	21,633 (4.72%)



	UDP Storm
	P2P
	44,062 (9.63%)



	Tbot
	IRC
	1296 (0.283%)



	Zero Access
	P2P
	1011 (0.221%)



	Weasel
	P2P
	42,313 (9.25%)



	Smoke Bot
	P2P
	78 (0.017%)



	Zeus Control (C and C)
	P2P
	31 (0.006%)



	ISCX IRC bot
	P2P
	1816 (0.387%)
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Table 2. List of malicious IPs on ISCX-Bot-2014 dataset.
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	Botnet
	IP Addresses Ranges





	IRC
	192.168.2.112 -> 131.202.243.84



	
	192.168.5.122 -> 198.164.30.2



	
	192.168.2.110 -> 192.168.5.122



	
	192.168.4.118 -> 192.168.5.122



	
	192.168.2.113 -> 192.168.5.122



	
	192.168.1.103 -> 192.168.5.122



	
	192.168.4.120 -> 192.168.5.122



	
	192.168.2.112 -> 192.168.2.110



	
	192.168.2.112 -> 192.168.4.120



	
	192.168.2.112 -> 192.168.1.103



	
	192.168.2.112 -> 192.168.2.113



	
	192.168.2.112 -> 192.168.4.118



	
	192.168.2.112 -> 192.168.2.109



	
	192.168.2.112 -> 192.168.2.105



	
	192.168.1.105 -> 192.168.5.122



	Neris
	147.32.84.180



	RBot
	147.32.84.170



	Menti
	147.32.84.150



	Sogou
	147.32.84.140



	Murlo
	147.32.84.130



	Virut
	147.32.84.160



	IRCbot and black hole1
	10.0.2.15



	Black hole 2
	192.168.106.141



	Black hole 3
	192.168.106.131



	Tbot
	172.16.253.130, 172.16.253.131



	
	172.16.253.129, 172.16.253.240



	Weasel
	Botmaster IP: 74.78.117.238



	
	Bot IP: 158.65.110.24



	Zeus (zeus samples 1, 2 and 3, bin_zeus)
	192.168.3.35, 192.168.3.25



	
	192.168.3.65, 172.29.0.116



	Osx_trojan
	172.29.0.109



	Zero access (zero access 1 and 2)
	172.16.253.132, 192.168.248.165



	Smoke bot
	10.37.130.4
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Table 3. Features examined in ISCX-Bot-2014 dataset.
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	Feature
	Description





	1
	Src_ip
	Source IP Address



	2
	Src_port
	Source Port



	3
	Dst_ip
	Destination IP Address



	4
	Dst_port
	Destination Port



	5
	Out_packets
	Number of output packets



	6
	Out_bytes
	Output byte number



	7
	Income_packets
	Number of input packets



	8
	Income_bytes
	Number of input bytes



	9
	Total_packets
	Total number of transmitted packets



	10
	Total_bytes
	Total number of transmitted bytes



	11
	Duration
	Flow duration










[image: Table] 





Table 4. Features used in CIDDS-001 dataset.
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	Feature
	Description





	1
	Src ip
	Source IP Address



	2
	Src port
	Source Port



	3
	Dest ip
	Destination IP Address



	4
	Dest port
	Destination Port



	5
	Duration
	Duration of the flow



	6
	Bytes
	Number of transmitted bytes



	7
	Packets
	Number of transmitted packets



	8
	Class
	Class label (normal, attacker, victim, suspicious, or unknown)
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Table 5. Algorithms with their inherent hyperparameters and values.
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Algorithm (a)

	
   λ   

	
Values/Ranges






	
KNN

	

	
Ball tree,




	
Algorithm used to compute nearest neighbors

	
KD tree,




	

	
Brute Force




	
No. of neighbors to use

	
{1, 50}




	
Weight function used in prediction

	
Uniform,




	

	
By distance




	
SVM

	
Penalty parameter C of error term

	
{0.0001, 0.001, 0.01, 0.1}




	
Decision function of shape

	
One-vs-one,




	

	
One-vs-rest




	
Kernel type to be used in algorithm

	
Polynomial,




	

	
Linear,




	

	
RBF




	
LR

	
Inverse of regularization strength of term C

	
{0.0001, 0.001, 0.01, 0.1}




	
Norm used in penalization function

	
  ℓ 1  ,




	

	
  ℓ 2  ,




	
Algorithm to use in optimization problem

	
Linear




	

	
LBFGS *




	

	
SAG    †  ,




	

	
SAGA    ‡  




	
DT

	
Maximum tree depth

	
{1, 30}




	
No. of features to consider for best split

	
{1, 100}




	
Strategy used to choose split at each node

	
Sqrt,




	

	
Log   2  




	

	
Best,




	

	
Random




	
RF

	
Use bootstrap samples when building trees

	
True, False




	
Function to measure split quality

	
Entropy, GINI    §  




	
Max tree depth

	
{1, 30}




	
No. of features to consider for best split

	
{1, 30}




	
Min. no. of samples required to be at leaf node

	
{1, 30}




	
Min. no. of samples required to split internal node

	
{1, 30}




	
No. of trees in forest

	
{1, 10}








* Limited-memory BFGS;    †   Stochastic Average Gradient;    ‡   Fast Incremental Gradient Method;    §   GINI Index.
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Table 6. Unbalanced CIDDS-001 scores.
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	Algorithm
	Precision
	Recall
	F1-Score





	KNN
	0.9949
	0.9968
	0.9958



	SVM
	0.8648
	0.8968
	0.8762



	LR
	0.7002
	0.7012
	0.7049



	DT
	0.9958
	0.9928
	0.9906



	RF
	0.9970
	0.9922
	0.9915
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Table 7. Unbalanced ISCX-Bot-2014 scores.
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	Algorithm
	Precision
	Recall
	F1-Score





	KNN
	0.9936
	0.9954
	0.9915



	SVM
	0.7832
	0.7907
	0.7826



	LR
	0.6861
	0.6944
	0.6895



	DT
	0.9947
	0.9929
	0.9932



	RF
	0.9930
	0.9951
	0.9947
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Table 8. CIDDS-001 (SMOTE + GS) scores.
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	Algorithm
	Precision
	Recall
	F1-Score
	Best Hyperparameter/Value





	KNN
	0.9812
	0.9817
	0.9815
	Algorithm used to compute nearest neighbors: Ball tree



	
	
	
	
	No. of neighbors to use: 4



	
	
	
	
	Weight function used in prediction: By distance



	SVM
	0.8961
	0.9344
	0.9091
	Penalty parameter C of error term: 0.001



	
	
	
	
	Decision function of shape: One-vs-one



	
	
	
	
	Kernel type to be used in the algorithm: Linear



	LR
	0.7208
	0.7188
	0.7196
	Inverse of regularization strength of term C: 0.0001



	
	
	
	
	Norm used in penalization function:   ℓ 1  



	
	
	
	
	Algorithm to use in optimization problem: Linear



	DT
	0.9816
	0.9836
	0.9826
	Maximum tree depth: 9



	
	
	
	
	No. of features to consider for best split: 12



	
	
	
	
	Strategy used to choose split at each node: Best



	RF
	0.9814
	0.9833
	0.9823
	Use bootstrap samples when building trees: False



	
	
	
	
	Function to measure split quality: GINI



	
	
	
	
	Max tree depth: 9



	
	
	
	
	No. of features to consider for best split: 12



	
	
	
	
	Min. no. of samples required to be at leaf node: 2



	
	
	
	
	Min. no. of samples required to split internal node: 9



	
	
	
	
	No. of trees in forest: 1
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Table 9. ISCX-Bot-2014 (SMOTE + GS) scores.
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	Algorithm
	Precision
	Recall
	F1-Score
	Best Hyperparameter Value





	KNN
	0.9677
	0.9676
	0.9676
	Algorithm used to compute nearest neighbors: Ball tree



	
	
	
	
	No. of neighbors to use: 4



	
	
	
	
	Weight function used in prediction: by distance



	SVM
	0.8152
	0.8261
	0.8117
	Penalty parameter C of error term: 0.01



	
	
	
	
	Decision function of shape: One-vs-one



	
	
	
	
	Kernel type to be used in the algorithm: Linear



	LR
	0.7836
	0.7789
	0.7816
	Inverse of regularization strength of term C: 0.0001



	
	
	
	
	Norm used in penalization function:   ℓ 1  



	
	
	
	
	Algorithm to use in optimization problem: LBFGS



	DT
	0.9797
	0.9800
	0.9799
	Maximum tree depth: 9



	
	
	
	
	No. of features to consider for best split: 12



	
	
	
	
	Strategy used to choose split at each node: Best



	RF
	0.9796
	0.9799
	0.9798
	Use bootstrap samples when building trees: False



	
	
	
	
	Function to measure split quality: GINI



	
	
	
	
	Max tree depth: 9



	
	
	
	
	No. of features to consider for best split: 7



	
	
	
	
	Min. no. of samples required to be at leaf node: 2



	
	
	
	
	Min. no. of samples required to split internal node: 9



	
	
	
	
	No. of trees in forest: 1
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Table 10. Comparative analysis between related works for CIDDS-001 and ISCX-Bot-2014 datasets.






Table 10. Comparative analysis between related works for CIDDS-001 and ISCX-Bot-2014 datasets.





	Methodology
	Dataset
	Algorithm
	Accuracy





	Verma A. et al. [66]
	CIDDS-001
	KNN
	93.87%



	SMOTE+GS
	CIDDS-001
	KNN
	98.72%



	Bijalwan A. et al. [67]
	ISCX-Bot-2014
	KNN

DT

Bagging with KNN

Ada-Boost with DT

Soft voting of KNN and DT
	93.87%

93.37%

95.69%

94.78%

96.41%



	SMOTE + GS
	ISCX-Bot-2014
	KNN

SVM

LR

DT

RF
	98.72%

97.35%

97.89%

98.65%

98.84%
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