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Abstract: A novel technique is proposed for the analysis and modeling of timbre perception features,
including a new terminology system for evaluating timbre in musical instruments. This database
consists of 16 expert and novice evaluation terms, including five pairs with opposite polarity.
In addition, a material library containing 72 samples (including 37 Chinese orchestral instruments, 11
Chinese minority instruments, and 24 Western orchestral instruments) and a 54-sample objective
acoustic parameter set were developed as part of the study. The method of successive categories
was applied to each term for subjective assessment. A mathematical model of timbre perception
features (i.e., bright or dark, raspy or mellow, sharp or vigorous, coarse or pure, and hoarse or
consonant) was then developed for the first time using linear regression, support vector regression, a
neural network, and random forest algorithms. Experimental results showed the proposed model
accurately predicted these attributes. Finally, an improved technique for 3D timbre space construction
is proposed. Auditory perception attributes for this 3D timbre space were determined by analyzing
the correlation between each spatial dimension and the 16 timbre evaluation terms.

Keywords: feature extraction; timbre modeling; auditory perception; timbre space

1. Introduction

The subjective perception of sound originates from three auditory attributes: loudness, pitch,
and timbre [1]. In recent years, researchers have established relatively mature evaluation models for
loudness and pitch [2,3], but a quantitative calculation and assessment of timbre is far more complicated.
Studies have shown that timbre is a critical acoustic cue for conveying musical emotion. It also provides
an important basis for human recognition and classification of music, voice, and ambient sounds [4].
Therefore, the quantitative analysis of timbre and the establishment of a parameterized model are of
significant interest in the fields of audio-visual information processing, music retrieval, and emotion
recognition. The subjective nature of timbre complicates the evaluation process, which typically relies
on subjective evaluations, signal processing, and statistical analysis. The American National Standards
Institute (ANSI) defines timbre as an attribute of auditory sensation in terms of which a listener can
judge that two sounds similarly presented and having the same loudness and pitch are dissimilar [5],
making it an important factor for distinguishing musical tones [6].

Timbre evaluation terms (i.e., timbre adjectives) are an important metric for describing timbre
perception features. As such, a comprehensive and representative terminology system is critical for
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ensuring the reliability of experimental auditory perception data. Conventionally, timbre evaluation
research has focused on the fields of music and language sound quality, traffic road noise control,
automobile or aircraft engine noise evaluation, audio equipment sound quality design, and soundscape
evaluation. Among these, research in English-speaking countries is relatively mature, as shown in
Table 1. However, differences in nationality, cultural background, customs, language, and environment
inevitably affect the cognition of timbre evaluation terms [7–11]. In addition, Chinese instruments
differ significantly from Western instruments in terms of their structure, production material, and
sound production mechanisms. The timbre of Chinese instruments is also more diverse than that of
Western instruments and existing English timbre evaluation terms may not be sufficient for describing
these nuances. As such, the construction of musical timbre evaluation terms is of great significance to
the study of Chinese instruments.

Table 1. Previous studies on timbre evaluation terms.

Author Year Objects of Evaluation Evaluation Terms

Solomon [12] 1958 20 different passive sonar sound 50 pairs

von Bismarck [13] 1974 35 voiced and unvoiced speech sounds,
musical sounds 30 pairs

Pratt and Doak [14] 1976 Orchestral instrument (including string,
woodwind, and brass) 19

Namba et al. [15] 1991 4 performances of the Promenades in
“Pictures at an Exhibition” 60

Ethington and Punch [16] 1994 Sound generated by an
electronic synthesizer 124

Faure et al. [17] 1996 12 synthetic Western traditional
instrument sounds 23

Iwamiya and Zhan [9] 1997 24 music excerpts from CDs on the market 18 pairs

Howard and Tyrrell [18] 1997 Western orchestral instruments, tuning fork,
organ, and softly sung sounds. 21

Shibuya et al. [19] 1999
“A” major scale playing on the violin

(including 3 bow force, 3 bow speed, and 3
sounding point)

20

Kuwano et al. [20] 2000 48 systematically controlled synthetic
auditory warning sounds 16 pairs

Disley and Howard [21] 2003 4 recordings of different organs 7

Moravec and Štepánek [22] 2003 Orchestra instrument (including bow, wind,
and keyboard) 30

Collier [23] 2004
170 sonar sounds (including 23 different

generating source types, 9 man-made, and
14 biological)

148

Martens and Marui [24] 2005 9 distorted guitar sound (including three
nominal distortion types) 11 pairs

Disley et al. [25] 2006

12 instrument samples from the McGill
university master samples (MUMS) library

(including woodwind, brass, string,
and percussion)

15

Stepánek [26] 2006 Violin sounds of tones B3, #F4, C5, G5, and
D6 played using the same technique 25

Katz and Katz [27] 2007 Music recording work 27
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Table 1. Cont.

Author Year Objects of Evaluation Evaluation Terms

Howard et al. [28] 2007

12 acoustic instrument samples from the
MUMS library, 3 from each of the 4
categories (including string, brass,

woodwind, and percussion).

15

Barbot et al. [29] 2008 14 aircraft sounds (including departure
and arrival) 90

Pedersen [30] 2008

Stimuli may be anything that evokes a
response; such stimuli may stimulate one or

many of the senses (e.g., hearing, vision,
touch, olfaction, or taste)

631

Alluri and Toiviainen [31] 2010

One hundred musical excerpts (each with a
duration of 1.5 s) of Indian popular music,
including a wide range of genres such as

pop, rock, disco, and electronic, containing
various instrument combinations.

36 pairs

Fritz et al. [32] 2012 Violin sound 61

Altinsoy and Jekosch [33] 2012
Sounds of 24 cars in 8 driving conditions

from different brands with different
motorization to the participants

36

Elliott et al. [34] 2013

42 recordings representing the variety of
instruments and include muted and vibrato

versions where possible (included
sustained tones at E-flat in octave 4)

16 pairs

Zacharakis et al. [35] 2014

23 sounds drawn from commonly used
acoustic instruments, electric instruments,

and synthesizers, with fundamental
frequencies varying across three octaves

30

Skovenborg [36] 2016

70 recordings or mixes ranging from
project-studio demos to commercial

pre-masters, plus some live recordings, all
from rhythmic music genres, such as

pop and rock

30

Wallmark [37] 2019
Orchestral instruments

(including woodwind, brass, string,
and percussion)

50

Timbre contains complex information concerning the source of a sound. Humans can perform a
series of tasks to recognize objects by listening to these sounds [38]. As such, the quantitative analysis and
description of timbre perception characteristics has broad implications in military and civil fields, such
as instrument recognition [39], music emotion recognition [40], singing quality evaluation [41], active
sonar echo detection [42], and underwater target recognition [43]. Developing a mathematical model
of timbre perception features is vital to achieving a quantitative description of timbre. Two primary
methods have conventionally been used to quantify timbre perception features. The first is the concept
of psychoacoustic parameters [6]. That is, by analyzing the auditory characteristics of the human ear, a
mathematical model can be established to represent subjective feelings, such as sharpness, roughness,
and fluctuation strength [44]. Since most of the experimental stimulus signals in these experiments
were noise, the calculated value for the musical signal differed from the subjective feeling, which is both
limited and one-sided. Another technique combines subjective evaluation experiments with statistical
analysis. In other words, the experiment is designed according to differences in perceived features from
sound signals, from which objective parameters can be extracted. The correlation between objective
parameters and perceived features is established through statistical analysis or machine learning, which
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is then used to develop a mathematical model of the perceived features. This approach has been
widely used in the fields of timbre modeling [45,46], music information retrieval [47], instrument
classification [48], instrument consonance evaluation [49], interior car sound evaluation [50], and
underwater target recognition [42]. However, the experimental materials in these studies were Western
instruments or noise. Chinese instruments are unique in their mechanisms of sound production and
playing techniques, producing a rich timbre variety. As such, it is necessary to use Chinese instruments
as a stimulus to establish a more complete timbre perception model.

Timbre is an auditory attribute with multiple dimensions, which can be represented by a continuous
timbre space. This structure is of great importance to the quantitative analysis and classification of
sound properties. The semantic differential method was used in early timbre space research [12,13].
Recently, multidimensional scaling (MDS) based on dissimilarity has been used to construct these
spaces. For example, Grey used 16 Western instrument sound samples to create a three-dimensional
(3D) timbre space [51]. McAdams et al. studied the common dimensions of timbre spaces with
synthetic sounds used as experimental materials, establishing a relationship between the dimensions
of a space and the corresponding acoustic parameters [52]. Martens et al. used guitar timbre to study
the differences in timbre spaces constructed under different language backgrounds [53,54]. Zacharakis
and Pastiadis conducted a subjective evaluation and analysis using 16 Western musical instruments,
proposing a luminance–texture–mass (LTM) model for semantic evaluation. In this process, six semantic
scales were analyzed using principal component analysis (PCA) and multidimensional scaling (MDS)
to produce two different timbre spaces [55]. Simurra and Queiroz used a set of 33 orchestral music
excerpts that were subjectively rated using quantitative scales based on 13 pairs of opposing verbal
attributes. Factor analysis was included to identify major perceptual categories associated with tactile
and visual properties, such as mass, brightness, color, and scattering [56]. Multidimensional scaling
requires the acquisition of a dissimilarity matrix between each sample. However, existing methods
use a paired comparison technique for the subjective evaluation experiment. This approach not only
involves a large experimental workload, it also imposes a higher professional requirement, making
the evaluation scale difficult to control. This paper proposes a new indirect model for constructing
timbre spaces based on the method of successive categories. In this system, the dissimilarity matrix is
calculated based on experimental data from the method of successive categories. This reduces the
workload and increases the stability and reliability of the data.

The remainder of this paper is organized as follows. Section 2 introduces the timbre library
construction process and Section 3 develops the timbre evaluation terminology. Section 4 introduces
the perception feature model, and the timbre space is constructed in Section 5. Section 6 concludes the
paper. The research methodology for the study is presented in Figure 1.
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2. Timbre Database Construction

2.1. Timbre Material Collection

A high-quality database of timbre materials was constructed by recording all materials required
for the experiment in a full anechoic chamber, with a background noise level of −2 dBA. The equipment
included a BK 4190 free-field microphone and a BK LAN-XI3560 AD converter. The performers were
teachers and graduate students from the College of Music. Recordings consisted of musical scales
and individual pieces of music. The Avid Pro Tools HD software was used to edit the audio material.
The length of each clip was between 6–10 s, the sampling rate was 44,100 Hz, the quantization accuracy
was 16 bits, and all audio was saved in the wav format. Previous studies on timbre used Western
instruments as stimulus materials. However, the variety of timbre samples needed to be as rich as
possible to increase the accuracy of timbre perception features. The timbre variety was enriched by
using a collection of 72 different musical instruments, including 36 Chinese orchestral instruments, 12
Chinese minority instruments, and 24 Western orchestral instruments. The names and categories of
the 72 instruments are listed in Appendix A. A timbre library containing 72 audio files was constructed
from the data.

2.2. Loudness Normalization

In accordance with the definition of timbre, the influence of pitch and loudness are often excluded
from timbre studies. However, previous research has shown that timbre and pitch are not independent
in certain cases [57]. As such, timbre perception features presented in this paper include pitch as a
factor. In order to eliminate the influence of loudness, a balance experiment was used to normalize the
loudness of the timbre materials based on experimental results [58].

3. Construction of the Timbre Subjective Evaluation Term System

A timbre evaluation glossary including 32 evaluation terms was constructed and a subjective
timbre evaluation experiment was conducted, based on a forced selection methodology (experiment A).
Sixteen representative timbre evaluation terms were selected by combining the results of a clustering
analysis. Finally, correlation analysis was used to calculate the correlation of these 16 evaluation terms.
Six terms with a coefficient larger than 0.85 were removed. The remaining 10 terms were paired into
five groups with opposite polarity (the absolute value of the correlation coefficient was greater than
0.81). These five pairs were used for timbre evaluation experiments based on the method of successive
categories (experiment B), as well as the parametric modeling of timbre perception features.

3.1. Construction of the Thesaurus for Timbre Evaluation Terms

A thorough investigation of timbre evaluation terms was conducted under conditions of equivalent
sound. A total of 329 terms were collected from the literature and a survey. Five people with a
professional music background then deleted 155 of these terms (e.g., polysemy, ambiguous meaning,
compound terms, etc.) that were, in their opinion, not suitable for a subjective experiment. A group of
21 music professionals listened to audio clips of the remaining 174 terms and judged whether they
were suitable for describing the sound. The 32 most frequent evaluation terms were selected and a
lexicon containing 32 timbre metrics was produced (Table 2). These terms completely describe all
aspects of timbre dynamics, but they do include some redundant information, which needed to be
assessed further using statistical analysis.
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Table 2. A lexicon of 32 timbre evaluation terms in their original language (Chinese), with an accompanying
English translation.

暗淡 (Dark) 饱满 (Plump) 纯净 (Pure) 粗糙 (Coarse)

丰满 (Full) 干瘪 (Raspy) 干涩 (Dry) 厚实 (Thick)

尖锐 (Sharp) 紧张 (Intense) 空洞 (Hollow) 明亮 (Bright)

生硬 (Rigid) 嘶哑 (Hoarse) 透亮 (Clear) 透明 (Transparent)

粗涩 (Rough) 单薄 (Thin) 低沉 (Deep) 丰厚 (Rich)

厚重 (Heavy) 浑厚 (Vigorous) 混浊 (Muddy) 尖利 (Shrill)

清脆 (Silvery) 柔和 (Mellow) 柔软 (Soft) 沙哑 (Raucous)

温暖 (Warm) 纤细 (Slim) 协和 (Consonant) 圆润 (Fruity)

3.2. Experiment A: A Subjective Evaluation Experiment Based on a Forced Selection Methodology

A subjective evaluation experiment was conducted in a standard listening room with a reverberation
time of 0.3 s, which conforms to listening standards [59]. A total of 41 music professionals (21 males)
participated in the experiment. Their ages ranged between 18 and 35 and they had no history of
hearing loss. A forced selection methodology was employed in which audio clips from the material
library were played in turn and subjects determined whether a given evaluation term was suitable
for describing the audio clip. Clustering analysis and correlation analysis were then used to assess
the experimental data (as discussed below), producing a music expert timbre evaluation term system
(including 16 evaluation terms) and an ordinary timbre evaluation term system (including 5 pairs of
evaluation terms with opposite polarity).

3.3. Data Analysis and Conclusion of Experiment A

A multidimensional scale was used to analyze the distance relationships for 32 evaluation terms
in the two-dimensional space. The distance relationship between the 32 terms is shown in Figure 2.
It is evident from Figure 2 that the distance between terms was small in some regions, indicating a
high degree of correlation. In order to reduce the workload of subsequent timbre perception feature
modeling, cluster analysis was used to further reduce the dimensionality of the evaluation terms.
Figure 3 shows a cluster pedigree diagram calculated using a system clustering method. Using this
diagram and the selection frequency obtained previously, the 32 terms were combined to produce 16
timbre evaluation terms (see Table 3). These 16 terms constituted the music expert timbre evaluation
system used in the modeling of timbre spaces (experiment C).

Table 3. A musical expert timbre evaluation term system, including 16 timbre evaluation terms in their
original language (Chinese) and the corresponding English translations.

暗淡 (Dark) 尖锐 (Sharp) 协和 (Consonant) 纯净 (Pure)

粗糙 (Coarse) 清脆 (Silvery) 纤细 (Slim) 单薄 (Thin)

丰满 (Full) 混浊 (Muddy) 柔和 (Mellow) 干瘪 (Raspy)

厚实 (Thick) 明亮 (Bright) 嘶哑 (Hoarse) 浑厚 (Vigorous)

A common timbre evaluation terminology system was then developed by calculating the Pearson
correlation coefficient (PCC) for these 16 terms. The 6 terms with the highest correlation (PCC > 0.85)
were excluded, resulting in a correlation matrix for the remaining 10 terms (Table 4). Terms with
negative PCCs or large absolute values were selected from this matrix to form evaluation pairs with
opposite meanings. These 10 terms were then combined to form five pairs (Table 5), constituting
an ordinary timbre evaluation system. These pairs were used for the timbre evaluation experiment
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based on the method of successive categories (experiment B) and the parametric modeling of timbre
perception features.
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Table 4. A correlation matrix for 10 timbre evaluation terms.

Bright Dark Sharp Vigorous Raspy Coarse Hoarse Consonant Mellow Pure

Bright 1.00 −0.99 0.90 −0.93 0.24 −0.48 −0.31 0.13 −0.27 0.47
Dark −0.99 1.00 −0.89 0.93 −0.20 0.49 0.33 −0.17 0.26 −0.48
Sharp 0.90 −0.89 1.00 −0.93 0.58 −0.14 0.06 −0.24 −0.57 0.17

Vigorous −0.93 0.93 −0.93 1.00 −0.43 0.31 0.09 0.06 0.37 −0.28
Raspy 0.24 −0.20 0.58 −0.43 1.00 0.61 0.74 −0.83 −0.82 −0.51
Coarse −0.48 0.49 −0.14 0.31 0.61 1.00 0.89 −0.82 −0.55 −0.92
Hoarse −0.31 0.33 0.06 0.09 0.74 0.89 1.00 −0.86 −0.62 −0.83

Consonant 0.13 −0.17 −0.24 0.06 −0.83 −0.82 −0.86 1.00 0.79 0.75
Mellow −0.27 0.26 −0.57 0.37 −0.82 −0.55 −0.62 0.79 1.00 0.51

Pure 0.47 −0.48 0.17 −0.28 −0.51 −0.92 −0.83 0.75 0.51 1.00

Table 5. An ordinary timbre evaluation term system including five pairs of evaluation terms in their
original language (Chinese) and the associated English translations.

Name Correlation Coefficient

明亮–暗淡 (Bright–Dark) −0.99
干瘪–柔和 (Raspy–Mellow) −0.82
尖锐–浑厚 (Sharp–Vigorous) −0.93
粗糙–纯净 (Coarse–Pure) −0.92

嘶哑–协和 (Hoarse–Consonant) −0.86

4. Construction of a Timbre Perception Feature Model

Objective acoustic parameters were extracted from audio samples in 166 dimensions. The method
of successive categories was then used to conduct a timbre perception evaluation experiment
(experiment B), as well as reliability and validity analysis for the resulting data. Linear regression,
support vector regression, a neural network, and a random forest algorithm were used to construct a
timbre perception feature model. The accuracy of this model was then evaluated and it was used to
predict timbre perception features for new audio materials.

4.1. Construction of the Objective Acoustic Parameter Set

Timbre is a multidimensional perception attribute that is closely related to the time-domain
waveform and spectral structure of sound [60]. In order to establish a timbre perception feature model,
an objective acoustic parameter set was constructed using 54 parameters extracted from the timbre
database. Objective acoustic parameters refer to any values acquired using a mathematical model
representing a normal sound signal in the time and frequency domains. These 54 parameters can be
divided into 6 categories [61]:

(1) Temporal shape features: calculated from the waveform or the signal energy envelope (e.g., attack-
time, temporal increase or decrease, and effective duration).

(2) Temporal features: auto-correlation coefficients with a zero-crossing rate.
(3) Energy features: referring to various energy content in the signal (i.e., global energy, harmonic

energy, or noise energy).
(4) Spectral shape features: calculated from the short-time Fourier transform (STFT) of the signal

(e.g., centroid, spread, skewness, kurtosis, slope, roll-off frequency, or Mel-frequency cepstral
coefficients).

(5) Harmonic features: calculated using sinusoidal harmonic modeling of the signal (e.g., harmonic/

noise ratio, odd-to-even and tristimulus harmonic energy ratio, and harmonic deviation).
(6) Perceptual features: calculated using a model of human hearing (i.e., relative specific loudness,

sharpness, and spread).
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4.2. Calculation Method

The acoustic parameters were calculated as follows. The spectral centroid for the magnitude
spectrum of the STFT [60] is given by:

Ct =

N∑
n=1

Mt[n] × n

N∑
n=1

Mt[n]
, (1)

where Mt[n] is the magnitude of the Fourier transform at frame t and frequency n. This centroid is
a measure of the spectral shape, where higher centroid values indicate “brighter” sounds. Spectral
slope was calculated using a linear regression over spectral amplitude values. It should be noted that
spectral slope is linearly dependent on the spectral centroid as follows [62]:

slope(tm) =
1

K∑
k=1

ak(tm)

×

K
K∑

k=1
fk · ak(tm) −

K∑
k=1

fk ·
K∑

k=1
ak(tm)

K
K∑

k=1
f 2
k − (

K∑
k=1

fk)
2 , (2)

where slope(tm) is the spectral slope at time tm, ak is the spectral amplitude at k, and fk is the frequency
at k. Tristimulus values were introduced by Pollard and Jansson as a timbral equivalent to color
attributes in vision. The tristimulus comprises three different energy ratios, providing a description of
the first harmonics in a spectrum [63]:

T1(tm) =
a1(tm)

H∑
h=1

ah(tm)

,

T2(tm) =
a2(tm)+a3(tm)+a4(tm)

H∑
h=1

ah(tm)

,

T3(tm) =

H∑
h=5

ah(tm)

H∑
h=1

ah(tm)

,

(3)

where H is the total number of partials and ah is the amplitude of partial h.
Spectral flux is a time-varying descriptor calculated using STFT magnitudes. It represents the

degree of variation in a spectrum over time, defined as unity minus the normalized correlation between
successive ak terms [64]:

spectral flux = 1−

K∑
k=1

ak(tm−1)ak(tm)√
K∑

k=1
ak(tm−1)

2

√
K∑

k=1
ak(tm)

2

. (4)

Inharmonicity measures the departure of partial frequencies fh from purely harmonic frequencies
hf 0. It is calculated as a weighted sum of deviations from harmonicity for each individual partial [62]:

inharmo(tm) =
2

f0(tm)

H∑
h=1

( fh(tm) − h f0(tm))a2
h(tm)

H∑
h=1

a2
h(tm)

, (5)
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where f 0 is the fundamental frequency and fh is the frequency of partial h.
Spectral roll-off was proposed by Scheirer and Slaney [65]. It is defined as the frequency fc(tm)

below which 95% of the signal energy is contained:

fc(tm)∑
f=0

a2
f (tm) = 0.95

sr/2∑
f=0

a2
f (tm), (6)

where sr/2 is the Nyquist frequency and af is the spectral amplitude at frequency f. In the case of
harmonic sounds, it can be shown experimentally that spectral roll-off is related to the harmonic or
noise cutoff frequency. The spectral roll-off also reveals an aspect of spectral shape as it is related to the
brightness of a sound.

The odd-to-even harmonic energy ratio distinguishes sounds with a predominant energy at odd
harmonics (such as the Guan) from other sounds with smoother spectral envelopes (such as the Suona).
It is defined as:

OER(tm) =

H/2∑
h=1

a2
2h−1(tm)

H/2∑
h=1

a2
2h(tm)

. (7)

Twelve time-varying statistics were calculated for the 54 parameters, including the maximum,
minimum, mean, variance, standard deviation, interquartile range, skewness coefficient, and kurtosis
coefficient, producing an objective acoustic parameter set containing 166 dimensions (see Table 6). In this
paper, Timbre Toolbox [62] and MIRtoolbox [66] were used for feature extraction. The corresponding
acoustic parameters were extracted from materials in the timbre database and the acquired data were
used to construct a timbre perception feature model.

4.3. Experiment B: A Timbre Evaluation Experiment Based on the Method of Successive Categories

A subjective evaluation experiment was conducted in a standard listening room with a reverberation
time of 0.3 s, which conforms to listening standards [59]. A total of 34 subjects (16 males) with a
professional music background participated in the experiment. Their ages ranged from 18 to 35 and
they had no history of hearing loss. The experimental subjective evaluation process was conducted
as follows. Material fragments were played, and the subjects judged the psychological scale of the
piece for each timbre perception feature (evaluation term) in sequence, scoring it on a nine-level scale.
All experimental materials were played prior to the formal experiment to familiarize subjects with
the samples in advance. This was done to assist each subject in mastering the evaluation criteria and
scoring scale, reducing the discretization of evaluation data for the same sample. Each piece was played
twice with an interval of 5 s and a sample length of 6–10 s. Each evaluation term was tested for 10 min,
with a 15-min break every half hour.

The validity and reliability of data from these 34 samples were analyzed to calculate a correlation
coefficient between the scores for each subject. The Euclidean distance between the evaluation terms was
calculated using cluster analysis to identify the two subjects with the largest difference in each group.
Some subjects may not have had a sufficient understanding of the purpose of the experiment. Data
from these subjects were excluded and not used for subsequent timbre perception feature modeling.
The method of successive categories was used to conduct a statistical analysis of the experimental data [67].
The theoretical basis for this approach assumes the psychological scale to be a random variable, subject
to a normal distribution. The boundary of each category was not a predetermined value, but a random
variable identified from the experimental data. The Thurstone scale was then used to process the data and
produce a psychological scale for all timbre materials and each perception feature for modeling purposes.
Figure 4 shows the resulting scale for 72 musical instruments in 5 timbre evaluation dimensions. In each
image, the dotted line represents the average value of each instrument in the corresponding dimension.
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Table 6. Acoustic parameters.

Feature Name Quantity Feature Name Quantity

Temporal Features Harmonic Spectral Shape

Log Attack Time 1 Harmonic Spectral Centroid 6

Temporal Increase 1 Harmonic Spectral Spread 6

Temporal Decrease 1 Harmonic Spectral Skewness 6

Temporal Centroid 1 Harmonic Spectral Kurtosis 6

Effective Duration 1 Harmonic Spectral Slope 6

Signal Auto-Correlation Function 12 Harmonic Spectral Decrease 1

Zero-Crossing Rate 1 Harmonic Spectral Roll-off 1

Energy Features Harmonic Spectral Variation 3

Total Energy 1 Perceptual Features

Total Energy Modulation 2 Loudness 1

Total Harmonic Energy 1 Relative Specific Loudness 24

Total Noise Energy 1 Sharpness 1

Spectral Features Spread 1

Spectral Centroid 6 Perceptual Spectral Envelope Shape

Spectral Spread 6 Perceptual Spectral Centroid 6

Spectral Skewness 6 Perceptual Spectral Spread 6

Spectral Kurtosis 6 Perceptual Spectral Skewness 6

Spectral Slope 6 Perceptual Spectral Kurtosis 6

Spectral Decrease 1 Perceptual Spectral Slope 6

Spectral Roll-off 1 Perceptual Spectral Decrease 1

Spectral Variation 3 Perceptual Spectral Roll-off 1

MFCC 12 Perceptual Spectral Variation 3

Delta MFCC 12 Odd-to-Even Band Ratio 3

Delta Delta MFCC 12 Band Spectral Deviation 3

Harmonic Features Band Tristimulus 9

Fundamental Frequency 1 Various Features

Fundamental Frequency Modulation 2 Spectral Flatness 4

Noisiness 1 Spectral Crest 4

Inharmonicity 1 Total Number of Features 166

Harmonic Spectral Deviation 3

Odd-to-Even Harmonic Ratio 3

Harmonic Tristimulus 9

It is evident from Figure 4 that the distribution of timbre values for Chinese instruments differed
significantly from Western instruments. For example, raspy/mellow and hoarse/consonant exhibited
drastically different scales. This suggested the timbre database containing Chinese instruments had a richer
variety of timbre types than a conventional Western instrument database. In addition, the distribution
of timbre samples in the five timbre evaluation scale pairs was relatively balanced. This suggested
the proposed evaluation terminology was representative of multiple timbre types and could better
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distinguish the attributes of different instruments. These factors could help to improve the accuracy of
timbre perception feature models.
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Figure 4. A psychological scale of 72 musical instruments, including (a) bright/dark, (b) raspy/mellow,
(c) sharp/vigorous, (d) coarse/pure, and (e) hoarse/consonant. The blue squares represent Western
orchestral instruments, the yellow triangles represent Chinese minority instruments, and the red circles
represent Chinese orchestral instruments. The dotted blue line represents the mean value of the Western
orchestral instruments, the dotted yellow line represents the mean value of the Chinese minority
instruments, and the dotted red line represents the mean value of the Chinese orchestral instruments.

4.4. Construction of a Prediction Model

In this study, multiple linear regression, support vector regression, a neural network, and a random
forest algorithm were used to correlate objective parameters and subjective evaluation experimental
data to construct a mathematical model of timbre perception features. Stepwise techniques were
used for variable entry and removal in the multiple linear regression algorithm [68], and radial basis
functions were selected as kernels for support vector regression [69]. A multi-layer perceptron was
adopted in the neural network, which included a hidden layer [70]. Random forest is a common
ensemble model consisting of multiple CART-like trees, each of which grows on a bootstrap object
acquired by sampling the original data cases with replacements [71].

Before modeling, feature selection was conducted for the target attribute to be predicted. This process
consisted of three steps:

(1) Screening: removes unimportant or problematic predictors and cases.
(2) Ranking: sorts remaining predictors and assigns ranks; this step considers one predictor at a time

to determine how well it predicts the target variable.
(3) Selecting: identifies the important subset of features to use in subsequent models.

During the modeling phase, 80% of the data were used for training and the remaining 20% were
used for validation. The input to the model was a 166-dimensional objective parameter set and the
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output was the value of the five perception dimensions (bright/dark, raspy/mellow, sharp/vigorous,
coarse/pure, and hoarse/consonant). Correlation coefficients were used to evaluate the accuracy of the
model and represented the results of the correlation analysis between the model prediction data and
subjective evaluation data, with higher coefficients representing a more accurate model.

The accuracy of prediction results for the four algorithms across the five perception dimensions
are shown in Table 7. Figure 5 provides a histogram of the prediction accuracy in different dimensions.
These experimental results suggested that the proposed technique provided valid predictions in each
of the five dimensions. The algorithm exhibiting the best performance exceeded 0.9 for bright/dark,
sharp/vigorous, coarse/pure, and hoarse/consonant sound types. The averaged results indicated that
the neural network (0.915) and random forest (0.864) outperformed multiple linear regression (0.665)
and support vector regression (0.670). The neural network was particularly accurate in its predictions
of the five perception dimensions.

Table 7. A comparison of the accuracies achieved by four algorithms.

Multiple Linear Regression Support Vector Regression Neural Network Random Forest

Bright/Dark 0.706 0.696 0.913 0.856
Raspy/Mellow 0.573 0.571 0.858 0.813
Sharp/Vigorous 0.859 0.852 0.952 0.945

Coarse/Pure 0.481 0.518 0.928 0.827
Hoarse/Consonant 0.705 0.711 0.922 0.877

Average 0.665 0.670 0.915 0.864
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5. The Construction of Timbre Space

Multidimensional scaling (MDS) was used to construct a 3D timbre perception space to represent
the distribution of 37 Chinese instruments more intuitively. Unlike many common analysis methods,
MDS is heuristic and does not require assumptions about spatial dimensionality [72]. It also offers
the advantages of visualization and helps to identify potential factors affecting the similarity between
terms. The construction of a timbre space includes three steps:

(1) Subjective evaluation experiment based on sample dissimilarity: where a dissimilarity matrix between
samples was obtained using a subjective evaluation experiment. Existing research has conventionally
paired up samples in the material database to score the dissimilarity. The process was simplified in
this study, which reduced the workload.
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(2) Dimension reduction of distance matrix based on MDS: where the MDS algorithm was used to
calculate the dissimilarity matrix such that sample distances in high-dimensional spaces can be
represented in low-dimensional spaces (usually two or three dimensions).

(3) Attribute interpretation of each dimension of timbre space: where the correlation between each dimension
and the timbre perception features was analyzed using a statistical method. Interpretable attributes
for each dimension were then acquired from this space.

The performance of multidimensional scaling algorithms depends on the sample dissimilarity
matrix. In previous studies [51,52], this matrix was acquired using a subjective evaluation experiment
that compared and scored the dissimilarity of any two samples. A total of n2/2 experiments must
be conducted for n samples. This quadratic relationship significantly increases the computational
complexity and runtime, which makes quantifying the dissimilarity more difficult. This paper presents
an improved methodology in which a set of evaluation indicators were selected (as complete as
possible) and all samples were successively scored with each indicator. These results constituted the
feature vector for the sample and the distance to each vector was calculated to obtain the dissimilarity
of all samples. The 16 timbre evaluation terms shown in Table 3 were used to assess the attributes of
each dimension during the analysis phase.

The method of successive categories was then used to conduct a subjective evaluation experiment on
timbre materials for 37 Chinese instruments (experiment C). Grade 9 was performed on 16 perception
dimensions in Table 3 and the reliability and validity of the experimental data were analyzed. The Euclidean
distance of the feature vectors was calculated, producing a dissimilarity matrix for 37 Chinese instruments.
The MDS algorithm was used to process the timbre dissimilarity matrix and construct a 3D timbre
perception space.

5.1. Experiment C: Subjective Evaluation Experiment Based on Sample Dissimilarity

Three factors were considered during sample selection to prepare the sound data needed in the
subjective evaluation experiment [73]:

(1) The appropriate number of samples: The number of samples must be sufficiently large to ensure
the accuracy of the MDS algorithm and impose sufficient constraints on the model. In practice,
however, it is difficult to establish precise rules for determining these data. However, empirical
solutions do exist. In most MDS-based timbre studies, at least 10 sound samples are required
for two-dimensional spaces and at least 15 sound samples are needed for three-dimensional
spaces [51,74,75]. In this paper, 37 kinds of Chinese instruments were used as experimental
materials, which ensured that sufficient constraints were provided to the MDS model.

(2) The range of timbre variation: The range of timbre varies depending on the subject of the study, with
larger instrumental variety (i.e., orchestral music) providing better data [34]. Models constructed
in this way can be applied more broadly to new timbre samples. In this study, 37 kinds of Chinese
instruments were selected. As can be seen from Figure 4, compared with Western instruments,
Chinese instruments had a wider distribution range in terms of their timbre evaluation scale.
As such, the Chinese instrument samples selected in this paper ensured a diverse range of
timbre samples.

(3) The uniformity of timbre sample distributions: The distribution of sound samples in each timbre
perception attribute should be as uniform as possible. Timbre spaces are continuous perceptual
spaces and a uniform distribution sample set is beneficial to the construction of continuous
timbre spaces. Non-uniform sample distributions can degrade solutions to the MDS equations,
preventing the structures between classes from being fully displayed [76]. As seen in Figure 4,
the samples selected in this study covered a broad range of timbre attributes and they were
distributed at varying psychological scales, providing a uniform distribution.

Subjective evaluation of the experimental environment and the subjects was conducted as in
experiment B. The process was as follows: while playing each experimental sample, the subjects judged
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the psychological scale of the sample on 16 timbre perception features (timbre evaluation terms) in
turn, scoring each on a 9-point scale.

5.2. The Construction of the 3D Timbre Space Using MDS

The reliability and validity processing method applied to the experimental data was the same
as in experiment B. The processed data were averaged and the mean score for all subjects on each
evaluation term was calculated for each sample. These data were then used to calculate the timbre
dissimilarity, expressed in the form of a distance matrix. The MDS algorithm was adopted in this
paper [77], which considers individual differences between subjects and assigns a corresponding
weight to each score. This approach considers terms in every dimension and more fully utilizes the
experimental data. Multidimensional scaling is based on dissimilarity analysis for two samples in a
timbre attribute space, which can be expressed using a distance matrix as follows:

di
jk =

√√√ R∑
r=1

wir · (x jr − xkr)
2, (8)

where di
jk represents the dissimilarity evaluation score for subject i assessing sounds j and k, wir

represents the weight of subject i in the rth dimension, and xkr represents the coordinates of sample k
in the rth dimension.

Equation (8) was used to calculate the distance for 37 timbre feature vectors and the dissimilarity
distance matrix for 37 samples. This matrix was used as input into the MDS algorithm. The number
of timbre space dimensions was determined by referring to previous research results [51,52].
The timbre space dimension was determined in three dimensions using Kruskal’s stress function [78].
The coordinates of each sound sample in 3D timbre space were acquired by using MDS to reduce the
dimensionality of the dissimilarity distance matrix (Figure 6).
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5.3. Perception Attribute Analysis of the Timbre Space Dimension

The correlation between 16 timbre perception attributes was calculated to analyze the auditory
attributes of each dimension in the timbre space. The coordinates of the samples were projected into
three dimensions to obtain the spatial distribution of the data. Pearson correlation coefficients were
calculated between each dimension and the 16 timbre perception attributes (Table 8). Further analysis
suggested dimension 1 was positively correlated with the “bright” perception attribute and negatively
correlated with “vigorous.” As such, dimension 1 could be defined as “bright/vigorous.” Dimension 2
was positively correlated with “hoarse” and negatively correlated with “consonant.” However, the
correlation of dimension 3 was not as obvious, as it was only slightly correlated with “full/mellow.”
Figure 6 suggests that different types of instruments were distributed at different positions in the
timbre space, which could be used to categorize individual timbres.

Table 8. The results of correlation analysis in 3D timbre space.

Attribute Dimension 1 Dimension 2 Dimension 3

纤细 (Slim) 0.97 −0.13 −0.11
明亮 (Bright) 0.97 −0.17 0.15
暗淡 (Dark) −0.96 0.19 −0.14
尖锐 (Sharp) 0.95 0.23 0.14
浑厚 (Vigorous) −0.99 −0.05 0.11
单薄 (Thin) 0.94 0.26 −0.10
厚实 (Thick) −0.97 0.00 0.22
清脆 (Silvery) 0.96 −0.22 0.04
干瘪 (Raspy) 0.39 0.87 0.02
丰满 (Full) −0.83 −0.38 0.33
粗糙 (Coarse) −0.35 0.89 −0.06
纯净 (Pure) 0.34 −0.82 0.11
嘶哑 (Hoarse) −0.15 0.93 −0.13
协和 (Consonant) −0.02 −0.96 0.00
柔和 (Mellow) −0.38 −0.80 −0.37
混浊 (Muddy) −0.91 0.26 −0.16

6. Conclusions

This study presented a novel methodology for the analysis and modeling of timbre perception
features in musical sounds. The primary contributions can be summarized as follows:

(1) A novel method was proposed for constructing two sets of timbre evaluation terminology systems
in a Chinese context. Experimental results from a subjective evaluation showed that these terms
could successfully distinguish timbre from different instruments.

(2) A timbre material library containing 72 musical instruments was constructed according to relevant
standards. A subjective evaluation experiment was conducted using the method of successive
categories. The psychological scales of the subjects were acquired using five pairs of perceptual
dimensions. A mathematical model of timbre perception features was then developed using
multiple linear regression, support vector regression, a neural network, and the random forest
algorithm. Experimental results showed that this constructed model could predict perceptual
features for new samples.

(3) An improved method for constructing 3D timbre space was proposed and demonstrated using
the MDS algorithm applied to 37 Chinese instruments. Auditory perceptual attributes were
determined by analyzing the correlation between the 3 dimensions of the timbre space and 16
perceptual attributes.

In future research, we will focus on the following three aspects of this study. First, supplemental
sample materials will be acquired based on the existing timbre database. We will attempt to expand
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the variety and quantity of the data to improve the consistency and robustness of the model. Second,
a subjective evaluation experiment, statistical analysis, and other techniques will be used to select
timbre evaluation terms that accurately reflect the essential attributes of timbre to provide support
for the construction of simple and effective timbre spaces. Third, the machine learning algorithm
will be improved by including more subjective evaluation data. Additional correlation algorithms
will also be tested to improve the accuracy of the model predictions. Finally, mathematical modeling
will be implemented for each dimension in the timbre space. The distribution of other (i.e., Western)
instruments will be compared to that of Chinese instruments to identify common patterns.
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Appendix A

The timbre materials mentioned in Section 2.1 contains 72 instruments, including 37 Chinese
orchestral instruments, 11 Chinese minority instruments, and 24 Western orchestral instruments
(Table A1). The names of the Chinese orchestral instruments and Chinese minority instruments are
given in their original languages (Chinese), with an accompanying English translation.

Table A1. Instrument list.

Category Type Name of the Instrument

Chinese Orchestral
Instruments (37)

Bowed
Instrument (7)

高胡
(Gaohu)

二胡
(Erhu)

中胡
(Zhonghu)

革胡
(Gehu)

低音革胡
(Bass Gehu)

京胡
(Jinghu)

板胡
(Banhu)

Wind
Instrument (17)

梆笛
(Bangdi)

曲笛
(Qudi)

新笛
(Xindi)

高音笙
(Soprano Sheng)

中音笙
(Tenor Sheng)

低音笙
(Bass Sheng)

高音唢呐
(Soprano Suona)

中音唢呐
(Alto Suona)

次中音唢呐
(Tenor Suona)

低音唢呐
(Bass Suona)

高音管
(Soprano Guan)

中音管
(Alto Guan)

低音管
(Bass Guan)

倍低音管
(Doublebass Guan)

埙
(Xun)

箫
(Xiao)

巴乌
(Bawu)

Plucked
Instrument (10)

小阮
(Soprano Ruan)

中阮
(Alto Ruan)

大阮
(Bass Ruan)

柳琴
(Liuqin)

琵琶
(Pipa)

扬琴
(Yangqin)

古筝
(Guzheng)

古琴
(Guqin)

箜篌
(Konghou)

三弦
(Sanxian)

Percussion
Instrument (3)

编钟
(Bell chimes)

编磬
(Bianqing)

云锣
(Yunluo)

Chinese Minority
Instruments (11)

Bowed
Instrument (4)

艾捷克
(Ejieke)

四胡
(Sihu)

马头琴
(Matouqin)

潮尔
(Chaoer)

Wind
Instrument (4)

朝鲜唢呐
(Chaoxian Suona)

葫芦笙
(Hulusheng)

葫芦丝
(Hulusi)

大岑
(Dacen)

Plucked
Instrument (3)

热瓦普
(Rewapu)

都塔尔
(Dutaer)

伽琴
(Gayageum)
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Table A1. Cont.

Category Type Name of the Instrument

Western Orchestral
Instruments (24)

Bowed
Instrument (4) Violin Viola Cello Double bass

Woodwind
Instrument (6)

Piccolo Flute Oboe Clarinet

Bassoon Saxophone

Brass
Instrument (4) Trumpet Trombone French horn Tuba

Keyboard
Instrument (4) Piano Harpsichord Organ Accordion

Plucked
Instrument (1) Harp

Percussion
Instrument (5)

Celesta Vibraphone Chimes Xylophone

Marimba
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