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Abstract: Single-crystal iron oxide nanorings have been proposed as a promising candidate for
magnetic hyperthermia application because of their unique shape-induced vortex-domain structure,
which supports good colloidal stability and enhanced magnetic properties. However, the synthesis of
single crystalline iron oxide has proven to be challenging. In this article, we showed that chemically
synthesized multigrain magnetite nanorings disfavor a shape-induced magnetic vortex-domain
structure. Our results indicate that the multigrain Fe3O4 nanorings with an average outer diameter of
~110 nm and an inner to outer diameter ratio of ~0.5 do not show a shape-induced vortex-domain
structure, which was observed in the single-crystal Fe3O4 nanorings of similar dimensions. At 300 Ks,
multigrain magnetite nanorings showed an effective anisotropy field of 440 Oe, which can be attributed
to its high surface area and intraparticle interaction. Both calorimetric and AC loop measurements
showed a moderate inductive heating efficiency of multigrain magnetite nanorings of ~300 W/g at
800 Oe. Our results shed light on the magnetic ground states of chemically synthesized multigrain
Fe3O4 nanorings.

Keywords: multigrain; nanorings; magnetic vortex-domain; hyperthermia

1. Introduction

Spinel ferrite nanoparticles, MFe2O4 (M = 3 − d transition metal) have attracted considerable
attention in the past few decades due to their potential biomedical applications, for example in targeted
drug delivery, diagnostics, and magnetic separation [1–13]. Spinel ferrite nanoparticles have been
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mostly studied because of their unique size- and shape-dependent tunable magnetic properties [14–18].
For biomedical applications, iron oxide (magnetite or maghemite) has been considered as the most
attractive material because of its intrinsic biocompatibility and chemical stability [19–21]. Large surface
to volume ratio, size- and shape-tunable magnetic properties, and high biocompatibility make iron
oxide nanoparticles appropriate nanocarriers for magnetic resonance imaging, magnetic hyperthermia,
and targeted drug delivery [22–30].

Magnetic hyperthermia has emerged as a promising alternative to the currently used cancer
treatment methods, such as chemotherapy and radiotherapy, which have severe side effects [22–30].
When iron oxide nanoparticles are exposed to an external alternating current (AC) magnetic field,
they convert the electromagnetic energy into thermal energy [22–30]. Magnetic nanoparticles act as
nanometric heating centers that one can use to target a specific tumor area and deliver toxic doses of heat
to the tumor area without affecting the neighboring healthy tissues, thus making magnetic hyperthermia
a less aggressive and more effective method of targeted cancer treatment. Magnetic hyperthermia
using superparamagnetic iron oxide nanoparticles is currently being implemented in combination
with chemotherapy or radiotherapy, allowing a reduction of the chemotherapeutic drug dose needed,
and yielding several encouraging outcomes in cancer treatment [31–33]. However, the low heating
efficiency of these nanoparticles presents serious concerns about the dose of nanoparticles necessary for
an effective cancer treatment [34]. The heating efficiency (estimated by specific absorption rate, SAR) of
magnetic nanoparticles depends on their intrinsic properties, including the saturation magnetization
and magnetic anisotropy [27–30]. Size reduction has been reported to alter the saturation magnetization
and magnetic anisotropy due to poor crystallinity, which could negatively impact the heating efficiency
of the nanoparticles [27–30]. Additionally, the SAR value of the nanoparticles highly depends on the
colloidal stability or inter-particle interaction of the nanoparticles. To overcome these limits, different
strategies have been proposed, such as tuning the shape and size of these nanoparticles. In this regard,
single-crystalline iron oxide nanorods [27] and nanotubes [28] have recently been synthesized, which
have shown excellent magnetic hyperthermia properties. Single-crystalline iron oxide vortex nanorings
with high saturation magnetization and negligible remanence and coercivity have also been reported to
show excellent magnetic hyperthermia response [35,36]. However, control over the synthesis of these
single-crystalline iron oxide vortex nanorings is a challenging task, raising serious doubt about their
practical application [35–41]. Electron beam lithography and chemical methods have been employed
to fabricate single-crystalline vortex nanorings, but a large-scale controlled synthesis of high-quality,
defection-free single-crystalline iron oxide nanorings has not been achieved yet [35,36]. Multigrain iron
oxide nanorings are easy to form chemically. A full understanding of the magnetic and hyperthermia
responses of these multigrain iron oxide nanorings will provide important insights into the magnetic
vortex nature and the large SAR of the single-crystalline vortex iron oxide nanorings.

In this study, we have chemically synthesized multigrain magnetite nanorings with an average
outer diameter ~120 nm and an inner to outer diameter ratio of ~0.3–0.5. At room temperature,
the multigrain Fe3O4 nanorings showed typical characteristics of a ferromagnetic system. Both
calorimetric and AC loop measurements yielded moderate SAR values for all magnetite nanoring
samples investigated. Our study pinpoints that it is the formation of the multigrain structure that
disfavors the formation of a magnetic vortex and causes the reduction of the heating efficiency in
magnetite nanorings.

2. Experimental Section

2.1. Synthesis of Fe3O4 Nanorings

Fe3O4 nanorings were synthesized using a previously reported two-step method [35,36,42–44].
First, α-Fe2O3 nanorings were synthesized using hydrothermal reaction of FeCl3 with NaH2PO4 and
Na2SO4. Then, the α-Fe2O3 nanorings were reduced to form Fe3O4 nanorings. In a typical reaction,
specific amounts of FeCl3·6H2O (0.27 g), NaH2PO4·2H2O (0.014 g), and Na2SO4 (0.0195 g) are added to
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35 mL of water and stirred at room temperature for 30 min. Afterwards, the reaction mixture is poured
into a Teflon-lined stainless steel autoclave and heated at 220 ◦C for various amounts of time. After
letting the autoclave cool down naturally to room temperature, the red colored precipitate is washed
three times using a mixture of ethanol and water. The reduction of as-synthesized dried α-Fe2O3

nanoring powder was done in the presence of hydrogen/argon (7% hydrogen) at 300 ◦C for 5 h to
produce Fe3O4 nanorings.

2.2. Characterization

The crystal structure of the nanoparticles was characterized using a Bruker AXS D8 X-ray
diffractometer (XRD). The morphology of the nanoparticles was characterized with a FEI Morgagni
268 transmission electron microscope (TEM) operating at 60 kV. Magnetic hysteresis loops and
magnetization vs. temperature curves were recorded using a vibrating sample magnetometer (VSM)
attachment for Quantum Design, Physical Property Measurement System (PPMS). Calorimetric
hyperthermia measurements were performed using a 4.2-kW Ambrell Easyheat Li3542 system (glass
vial of 16 × 50 mm), with (AC) fields in the range of 0–800 Oe at a frequency of 310 kHz. The dynamic
hysteresis loops in the range of 0–400 Oe were measured using a homemade AC magnetometer setup
at a frequency of 302 kHz [45].

3. Results and Discussion

The phase purity and crystallinity of the nanorings were examined by XRD. Figure 1 shows the
representative XRD spectra of α-Fe2O3 after 5 h of reaction and reduced Fe3O4 nanorings. Both the
as-synthesized and annealed samples display sharp peaks, which can be indexed to α-Fe2O3 and
Fe3O4, respectively. The sharp XRD peaks, evidence of high crystallinity, provide an advantage to
the Fe3O4 nanorings, as this ensures improved magnetic property, and thus better inductive heating
efficiency. The full width at half maxima (FWHM) of all the diffraction peaks of Fe3O4 nanorings (5 h
of reaction) are relatively large, suggesting a small crystallite size of the Fe3O4. The average crystallite
size of Fe3O4 (5 h of reaction) as calculated using the Debye–Scherrer formula is 15 nm.
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Figure 1. X-ray diffraction (XRD) pattern of as-synthesized (α-Fe2O3) and reduced (Fe3O4) nanorings
after 5 h of hydrothermal reaction. The lower patterns with blue and black squares are the JCPDS data
for bulk α-Fe2O3 and Fe3O4, respectively [21,27,28].

To further study the microstructure and morphology of Fe3O4 nanorings, TEM imaging of the
annealed samples was performed. We have shown earlier that the morphology and size of the α-Fe2O3

nanoparticles does not change with annealing [28]. TEM images in Figure 2 showed that the annealed
Fe3O4 nanoparticles obtained after hydrothermal reaction at 220 ◦C exhibit ring morphology and their
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size is relatively polydispersed. The annealed sample obtained after 5 h of hydrothermal reaction
(Figure 2a,b) yielded nanorings with an average outer diameter of ~110 nm and an inner to outer
diameter ratio of ~0.55. As can be seen from the TEM image in the inset, the Fe3O4 nanorings seem to
consist of many semispherical Fe3O4 nanoparticles of around 20 nm, which are self-assembled to form a
multigrain nanoring. This supports the observation of broad XRD peaks on the Fe3O4 nanoring, which
had a crystallite size of 15 nm. To understand the effect of hydrothermal reaction time on the evaluation
of nanoring morphology and dimensions, we varied the reaction time while keeping other reaction
parameters unperturbed. TEM images of the annealed multigrain Fe3O4 nanorings obtained after 8
and 12 h of hydrothermal reaction (Figure 2c,d) yielded particles with average outer diameter of ~110
and 105 nm, respectively, and an inner to outer diameter ratio of ~0.5. The average outer diameter and
an inner to outer diameter ratio of all the nanorings can be seen in Table 1. The time-dependent studies
of hydrothermal reaction suggest that the nanoring morphology and dimensions remain almost the
same from 3 to 12 h of reaction. TEM images of the reduced Fe3O4 nanorings after 12 h of hydrothermal
reaction (Figure 2d) indicated that prolonging the reaction time causes agglomeration and breaking
of the multigrain nanorings. This was also observed in the case of nanotubes, where we showed
breakdown of nanotubes after 24 h of reaction [28].
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Table 1. Crystallite size, dimensions, magnetic parameters including saturation (MS) and coercive field
(HC), and specific absorption rate (SAR) at 300 K for Fe3O4 nanorings.

Reaction
Time (h)

Crystallite
Size (nm)

Outer Diameter
(nm)

Inner to Outer
Diameter Ratio

(β)

MS
(emu/g) HC (Oe) SAR in Water at

800 Oe (W/g)

3 15 100 0.5 52 150 155
5 15 110 0.55 54 130 262
8 17 110 0.5 55 140 342
12 18 105 0.5 57 155 186

Magnetic hysteresis loops measured at 300 K in multigrain Fe3O4 nanorings after different
hydrothermal reaction times of 3, 5, 8, and 12 h are shown in Figure 3a. The saturation magnetization
(MS) and coercive field (HC) values at 300 K of the Fe3O4 nanorings of different hydrothermal reaction
times are summarized in Table 1. In Figure 3a, all the multigrain Fe3O4 nanoring samples show
similar behavior at 300 K. Despite having small crystallite sizes, the presence of notable HC in all
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the samples could be due to presence of defects, along with large intra- and inter-particles dipolar
interaction of multigrain rings. The HC values of all the samples are almost the same. The shape
of the loop and the presence of remanence and coercivity in the magnetic hysteresis (M-H) loops of
multigrain Fe3O4 nanoring samples indicate a typical soft ferromagnetic character. It has been shown
that the single-crystalline Fe3O4 nanoring samples with similar dimensions possess a shape-induced
vortex-domain structure [35]. However, in the present case, we did not observe onion–vortex–onion
or onion-to-onion structured ground states, despite the theoretical phase diagram suggesting the
formation of a vortex-domain structure [37–41]. This result clearly indicates that the microstructure
of rings play an important role in determining their magnetic ground state. Theoretically, it was
predicted that even if the dimension of a nanorings falls in the vortex state in the ground state phase,
it might get trapped in a metastable state because of defects or inter-particle distance [37–41]. The
absence of a shape-induced vortex-domain structure in multigrain Fe3O4 nanorings could be related to
these effects. The values of MS in the Fe3O4 nanoring samples increased gradually with the increase
in reaction time. The MS values are in the range of 55 emu/g for all the Fe3O4 nanoring samples
and are smaller than the theoretical magnetization value of bulk magnetite at room temperature
(~92 emu/g). The small variation of the MS at 300 K with the change in hydrothermal reaction time can
be attributed to the variation in size and crystalline quality of the nanorings. The zero-field-cooled
(ZFC) magnetization vs. temperature curve for all the samples (not shown here) showed a sharp drop
in magnetization below 120 K, which can be attributed to the Verwey transition linked with the metal
insulator transition in Fe3O4 [27,28]. Due to poor crystalline quality, non-stoichiometric effect and
defects, this transition—which is related to the crystal structure of Fe3O4—often gets suppressed in
nanoparticles [46,47]. The occurrence of the Verwey transition in the Fe3O4 nanorings indicates the
realization of high crystalline quality and single phase Fe3O4 nanostructures.
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reaction times, measured at 300 K. (b) Representative bipolar transverse susceptibility (TS) curves taken
at 300 K for multigrain Fe3O4 nanorings after 8 h of reaction. Inset of (a) shows the low-field region of
the hysteresis loops.

The occurrence of the Verwey transition confirms the high crystalline quality of the multigrain
Fe3O4 nanorings. The high coercivity, the ring shape, and strong inter- and intra-particle interactions
of the samples indicate the high effective magnetic anisotropy of the multigrain Fe3O4 nanorings.
The estimation of the effective magnetic anisotropy of the Fe3O4 nanorings was done using radio
frequency (RF) transverse susceptibility (TS). We have established the TS method as a precise tool for
investigating the anisotropic magnetic properties of a variety of systems, single crystals, thin films,
and nanoparticles [48–51]. For a Stoner–Wohlfarth particle with its magnetic hard axis aligned parallel
to the DC field, TS spectra should display peaks at the anisotropy fields (±HK) and switching fields
(±HS) as the DC field is swept from positive to negative saturation [52].
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Bipolar TS curves taken at 300 K for multigrain Fe3O4 nanorings after 8 h reaction are displayed
in Figure 3b. We obtained no variation in the HK values for multigrain Fe3O4 nanorings after different
hydrothermal reaction time of 3, 5, 8, and 12 h, so we have presented the results for multigrain Fe3O4

nanorings after 8 h of reaction. We have noted that for the Fe3O4 nanorings, the switching peak was
merged with the anisotropic peak, resulting in a difference in the positive and negative HK values,
along with a slight difference in the peak height (Figure 3b). Here, we have used a positive HK

value. The presence of distinct HK peaks at 300 K in the TS spectra indicates high effective anisotropy
in the Fe3O4 nanorings. In nanoparticles, the thermal fluctuations dominate anisotropy energy at
room temperature; thus, sustaining magnetic anisotropy at room temperature in nanostructures is
challenging [53]. The value of effective HK at 300 K for multigrain Fe3O4 nanorings after 8 h reaction
was found to be 440 Oe, which is higher than the HC value of 140 Oe. The effective magnetic anisotropy,
HK, roughly corresponds to the coercive field in the non-interacting system of nanoparticles. The
higher value of HK of multigrain Fe3O4 nanorings compared to HC could be due to the strong intra-
and inter-nanoring interactions. Our recent reported works have revealed that the heating efficiency
of magnetic nanostructures can be enhanced by increasing the saturation magnetization (MS) or the
shape and magnetic anisotropy (HK) of the nanostructures [27,28].

To estimate the heating efficiency (SAR) of the multigrain Fe3O4 nanorings, the SAR values
were calculated using both calorimetric and dynamic hysteresis loop measurements. For calorimetric
measurements, the heating curves as a function of time were recorded for all the multigrain Fe3O4

nanorings at a concentration of 1 mg/mL, both in water and agar (random and aligned). By dispersing
the nanorings in a 2% weight agar solution, we constrained the Brownian motion of the nanorings
using the higher viscosity of 2% weight agar solution, and also fixed their orientation. A 2% weight
agar solution also imitates the characteristics of the cell cytoplasm and extra cellular matrix, which
is critical for in vivo testing of magnetic hyperthermia [54]. The heating efficiency of the nanorings
was calculated using the initial slope method. In this method, the SAR of the nanoparticles can be
calculated using the following equation:

SAR =
∆T
∆t

Cp

]ϕ
(1)

where ∆T
∆t represents the initial slope of the heating curves, Cp is the specific heat capacity of the liquid

medium (4.186 J/g ◦C for water), and ϕ is the mass of magnetic material per unit mass of liquid.
In Figure 4a, we plotted the SAR values as a function of AC magnetic field strength when the

nanorings samples were randomly dispersed in water at a concentration of 1 mg/mL. As can be
seen from Figure 4a, with a 200 Oe applied field, the SAR values of all the samples were very small,
which could be due to the fact that the effective HK values of the samples were close to 400 Oe. With
the increase in the field above the effective HK values of the samples, the SAR values showed an
enhancement, which further increased with increasing applied field. The heating efficiencies are almost
the same for all the samples, except at 800 Oe. At the maximum applied field level, we can observe a
noticeable increase in the SAR value for the 8 h sample. The slight variation of the SAR values at lower
applied fields scan be attributed to the small variation in MS, effective HK, and the crystalline quality
of the nanorings, but something different occurred for the 8 h sample with increasing applied field.
The Néel and Brownian (physical rotation) processes contributed to the SAR values of the magnetic
nanoparticles. To decouple the contribution from Néel and Brownian processes towards the SAR
values, measurements were done by dispersing the nanorings in 2% weight agar. The high viscosity of
the 2% weight agar confines the physical motion (Brownian relaxation) of the nanorings. The results
showed that the heating efficiency of the randomly dispersed samples in agar was slightly reduced
compared to the water-dispersed samples (Figure 4b). This showed that most of the contribution to the
heating efficiency of these nanorings comes from the magnetic and not the physical rotation, which is
important for clinical hyperthermia application, since physical rotation of the nanoparticles tends to
be highly suppressed in the tumor environment [55]. The only exception to this trend was again the
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8 h sample, which conserved nearly the same SAR values that were exhibited in water. In our earlier
study on Fe3O4 nanorods and nanotubes, we observed a large enhancement in heating efficiency of
the nanostructures when they were oriented in agar solution using a DC magnetic field compared
to randomly oriented samples [27,28]. This was attributed to the improved magnetic anisotropy of
the one-dimensional nanostructures when aligned. To study the effect of nanoring alignment on the
heating efficiency, the samples were aligned in agar solution using a DC magnetic field. As can be
seen from Figure 4c, the heating efficiency of all the samples at fields ≥ 400 Oe improved in aligned
samples as compared to the randomly dispersed ones in agar. At 200 Oe (below the coercive field of
the samples), the SAR values of all the samples remain almost constant in water and agar (random and
aligned), because the applied field is lower than the anisotropy field, HK. As the magnitude of the AC
magnetic field was increased, the SAR values of the agar (aligned) samples increased compared to
the water and agar (random) samples. An enhancement in SAR of up to 40% was witnessed in the
2% weight agar-aligned samples at the applied field range of 400–800 Oe compared to random agar
samples. Moreover, all samples reached this time with very similar SAR values, including for the
8 h sample. This suggests that differences previously observed in the SAR values of the 8 h sample
compared to the rest can be related to a better alignment or assembly of this sample, which allowed it
to maximize the SAR value. The fact that the 8 h sample exhibits similar SAR values, independent
of the medium and the conditions, may suggest that the magnetic nanorings in this sample have a
tendency to assemble well [56], even in the absence of a magnetic field. This is probably due to a
desirable combination of inter-particle or inter-nanoring interactions, morphology, or other factors.
It is also worth mentioning that the 8 h sample exhibited increased SAR values as compared to the 12 h
sample. If this was due to effect of the increased reaction time (i.e., increased grain size, saturation
magnetization, etc.), one would expect to observe a larger SAR value for the 12 h sample, which did
not happen in our case. A possible explanation is that as compared to the 8 h sample, the iron oxide
nanorings, as we saw in TEM images (Figure 2), tend to degrade and agglomerate at 12 h, which would
hinder their magnetic response at low fields, as indicated by the dynamic hysteresis loops in Figure 5.
Nevertheless, further study is needed to fully understand this phenomenon, which is beyond the scope
of the present paper. In addition, our results demonstrated that the SAR values of the multigrain Fe3O4
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From the calorimetric measurements, it was observed that the SAR values of the nanoring samples
are relatively small at AC fields lower than the effective magnetic anisotropy. To understand the
nature of heating in multigrain Fe3O4 nanorings at low fields, we performed the AC magnetometry
measurements at fields < 400 Oe for the Fe3O4 nanorings (8 h and 12 h). Figure 5a–d show the SAR
values and dynamic hysteresis loops in the range of 0-400 Oe at 302 Hz. The heating efficiency and
SAR values of the nanoring samples were calculated from the hysteresis loop area (SAR = area ×
frequency) [28]. Figure 5c,d shows that at low fields the hysteresis loop resembles Rayleigh loops, and
area of the loops are quite small. As the field was increased, the loop area showed a rapid increase [28].
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From Figure 5a–d, it can be seen that the area of the hysteresis loop and the SAR values almost
remained unchanged until reaching an AC field of ~200 Oe, and showed a steep increase when the AC
field was increased above 200 Oe. It can be seen that for the 8 h sample, this increase is steeper and
reaches higher SAR values, as was observed in calorimetric measurements. It should be noted that
both the calorimetric and AC magnetometry measurements showed very similar SAR values. The AC
magnetometry measurement results can be elucidated considering the ratio of the anisotropy field
(HK) to the applied AC field. Depending on the HK of the nanostructures, the dynamic hysteresis
loop shows two regions. At low field levels, when H < 0.5 HA, since the power absorption is mainly
caused by viscous losses in the system, a minor loop is obtained. Conversely, when the field H >

0.5 HA, the hysteresis losses dominate, maximum heat power is transferred to the nanostructures,
and the hysteresis loop area increases. Below the applied field of 200 Oe, which is ~0.5 of HK of the
nanorings (Figure 3b), the hysteresis loop area and the SAR values are negligible, while with the
increase in the field, the hysteresis loop area and the SAR values showed a rapid increase. However,
since the maximum AC applied field is still lower than HK, the AC loop area is not maximized,
and higher fields would be needed to saturate the AC loops [57]. Therefore, AC magnetometry
measurements shed light on the low-field heating response of the nanorings that cannot be inferred
from the calorimetric measurements.
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4. Conclusions

Highly crystalline, multigrain Fe3O4 nanorings were synthesized using a simple hydrothermal
method. Systematic magnetic measurements indicated that the multigrain magnetite nanorings of
an average outer diameter of ~110 nm and an inner to outer diameter ratio of ~0.5 showed typical
characteristics of a ferromagnetic system at room temperature, unlike the predicated vortex-domain
structure. Our experiments revealed that unlike the single-crystal Fe3O4 nanorings, the multigrain Fe3O4

nanorings did not show a shape-induced vortex-domain structure, despite having similar dimensions
and morphology. The corroborative results of both calorimetric and AC loop measurements of the
multigrain Fe3O4 nanorings showed moderate inductive heating efficiency. Interestingly, alignment
of the nanorings with the applied field allowed them to maximize their SAR values. Our results
demonstrated the possibility of using Fe3O4 nanorings for dual-purpose applications in localized
magnetic hyperthermia therapy and controlled drug delivery because of their highly effective anisotropy
and hollow morphology.
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