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Featured Application: Choosing appropriate DFT methodology for periodic modeling of
porphyrin containing systems.

Abstract: Porphyrins are fascinating molecules with applications spanning various scientific fields.
In this review we present the use of periodic density functional theory (PDFT) calculations to study
the structure, electronic properties, and reactivity of porphyrins on ordered two dimensional surfaces
and in the formation of nanostructures. The focus of the review is to describe the application of
PDFT calculations for bridging the gaps in experimental studies on porphyrin nanostructures and
self-assembly on 2D surfaces. A survey of different DFT functionals used to study the porphyrin-based
system as well as their advantages and disadvantages in studying these systems is presented.
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1. Introduction

Porphyrins are tetrapyrrolic macrocycles withπ-conjugated electronic system that are ubiquitous in
nature and have numerous biological and technological applications. For example, porphyrins are found
in our body as prosthetic groups in hemeproteins. In plants, porphyrins are important components
of chlorophyll which is a pigment playing an essential role in photosynthesis. Porphyrins also have
numerous biomedical applications including photoimmunotherapy, photo diagnosis [1], biosensors [2],
cancer therapy, etc. Porphyrins also play an important role in organic synthesis of dendrimers [3],
metal-organic frameworks (MOFs) [4], biomimetic reactions [5], and as photo-catalysts [6] in numerous
oxidation/reduction reactions. Finally, porphyrins act as important components in various technological
applications like solar cells [7], chemical sensors [8], optoelectronics [9], spintronics [10], field effect
transistors (FETs) [11–14], and in nanotechnology like single molecule junctions [15], nanowires,
nanomotors [10], etc.

All the applications listed above are possible only due to the characteristic, yet tunable chemical
structure and properties of porphyrins [16]. The backbone of each porphyrin molecule is the porphine
group which constitutes four pyrrole groups linked with methine (-CH-) bridges, Figure 1a. Each
porphine group has 22 π electrons forming a conjugated system. Due to their large pi-conjugation,
porphyrins have strong absorption in the UV and visible regions forming colored compounds. In
addition, the large π-electron system is responsible for many properties of porphyrins including
optical [17,18], electronic [19], mechanical [20], and chemical [21,22] properties. Additionally,
porphyrins from many coordinate covalent complexes with transition metals (metalloporphyrins) and
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some non-metals at the center of the porphyrin core. In addition, the peripheral substituents at α,
β, and meso positions (Figure 1b) can be modified to yield tunable molecular and crystal properties
such as solubility, reactivity, conductivity, and photophysics. Metalloporphyrins tend to react with
ligands to form numerous (porphyrin)metal-ligand complexes [23] that are also useful for a variety
of applications.
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functional theory (DFT) [25], Moller-Plesset perturbation theory (MPn), configuration interaction 
(CI), coupled cluster (CC), and CASSCF/CASPT2 [26] methods. Among the many computational 
methods used, recent literature is flooded with DFT calculations of molecular porphyrin and its 
derivatives primarily to understand their frontier orbital configuration, electron occupancy [27], 
charge transfer, and excited state properties [25]. The DFT functionals used to study the porphyrin 
complexes include all the rungs of the “Jacob’s Ladder” [28] with variable approximations which 
include local density approximation (LDA), generalized gradient approximations (GGA), meta-
GGAs, hybrid, and hybrid-meta GGA functionals [29,30]. 
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Figure 1. Chemical structures of (a) freebase porphine/porphyrin, (b) metalloporphyrin. Three unique
peripheral substituent positions, alpha (Cα) at 2, 7, 12, 18; beta (Cβ) at 3, 8, 13, 18; and meso (Cm) at 5,
10, 15, 20 positions are shown the figure.

A broad scan of the literature of theoretical modeling of porphyrins showed that a variety of
computational methods were used to study porphyrins and their derivatives. A review by Shubina [24]
listed these computational methods, which ranged from linear combination of atomic orbitals (LCAO),
molecular mechanics, semi-empirical methods, through self-consistent field method (SCF) in the earlier
literature, to the modern day methods which include molecular dynamics (MD), density functional
theory (DFT) [25], Moller-Plesset perturbation theory (MPn), configuration interaction (CI), coupled
cluster (CC), and CASSCF/CASPT2 [26] methods. Among the many computational methods used,
recent literature is flooded with DFT calculations of molecular porphyrin and its derivatives primarily
to understand their frontier orbital configuration, electron occupancy [27], charge transfer, and excited
state properties [25]. The DFT functionals used to study the porphyrin complexes include all the rungs
of the “Jacob’s Ladder” [28] with variable approximations which include local density approximation
(LDA), generalized gradient approximations (GGA), meta-GGAs, hybrid, and hybrid-meta GGA
functionals [29,30].

While molecular DFT calculations of porphyrin complexes are prevalent, periodic DFT calculations
of porphyrins are relatively limited. Periodic DFT (PDFT) calculations [31] refers to the use of density
functional theory to describe the electronic structure of periodic systems. PDFT simulations are
performed on lattice structures, surfaces, interfaces, and molecules with a defined unit cell in real
and reciprocal spaces (k-space). The reciprocal space is obtained from the Brillouin zone of the unit
cell. A grid of k-points is used to sample the Brillouin zone by using Bloch’s theorem applied to the
Kohn-Sham wavefunctions. Optimization and single point calculations with PDFT are performed
using various self-consistent field (SCF) iteration schemes. While Gaussian basis sets can be used to
perform PDFT calculations, plane wave pseudopotential basis sets are computationally less intensive
and are used in many PDFT codes [32].

In this review we present a collection of DFT simulations of periodic systems containing porphyrins.
While we tried to include many PDFT studies of porphyrins in this review, these are not necessarily a
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complete collection in the literature. Omission of a particular citation is not a reflection on the quality
of that work.

Periodic DFT calculations of porphyrins can be broadly classified into two categories. First,
simulation of porphyrin crystals, supramolecular compounds, and nanostructures like nanorods,
nanowires, and nanosheets. Typical interests for these simulations involve understanding the
intermolecular or packing interactions of porphyrins and determining their electronic properties,
specifically band structure and density of states. The second category involves porphyrin interactions
with solid supports like metals, oxides, carbon, and silicon surfaces. PDFT simulations on surfaces
typically involve a molecule or monolayer of porphyrins or metalloporphyrins adsorbed on solid
supports to study the adsorption configuration, binding energies, molecule-surface interactions and
reactions, electronic structure using density of states (DOS) and band structure, chemical reactivity,
interfacial charge distribution, and magnetic properties. Some of the ab initio DFT codes used for
porphyrin PDFT simulations include VASP [33–35], Quantum Espresso [36], CP2K [37], CASTEP [38],
Dmol [39], SIESTA [40], CPMD [41], etc. Omission of any code is not a reflection of the quality of the
software for PDFT simulations. However, we note that codes involving plane-wave basis sets are more
popular than software that are based on Gaussian type orbital (GTO) and natural atomic orbital (NAO)
basis sets.

2. PDFT Simulations of Porphyrins in Nanostructures

Due to their rich chemistry, porphyrins can be synthesized though chemical bonding or
through self-assembly into multiple structural forms like crystals, needles, wires, rods, sheets, plates,
supramolecular frameworks, tubes, spheres, etc. PDFT simulations of these porphyrin structures
primarily involves studying the stacking and intermolecular interactions inside a given geometry and
their relation to its material properties. PDFT simulations of porphyrin nanostructures in the bulk were
performed either from an experimental crystal structure or a built model based on experimental data
and molecular structure. Most of these simulations aim to determine the electronic band structure and
density of states. In the following sections we have classified the PDFT simulations on the porphyrin
nanostructures based on their shape in the periodic structure.

2.1. Porphyrin Nanostructures Using Crystal Geometries

There are many known single crystal structures of porphyrins and metalloporphyrins in the
literature but PDFT simulations on lattice structures of porphyrins are seldom found. Single
crystal structures from x-ray crystallography of porphyrin nanostructures are even rare. Adinehnia
et al. [42] determined the first single crystal structure of ionic porphyrin nanorods involving
meso-tetra(N-methyl-4-pyridyl)porphyrin (TMPyP) and meso-tetra(4-sulfonatophenyl)porphyrin
(TSPP). Using various spectroscopic, diffraction, and imaging techniques, they reported the
structure-function relationship of TMPyP:TSPP nanorods. The crystal structure was correlated
to the morphology and photoconductive behavior of the nanorods, and PDFT calculations on the
crystal structure showed that the π-π stacking of TMPyP:TSPP is responsible for their conductivity.

Figure 2 shows the crystal structure and the corresponding band structure of TMPyP:TSPP
nanorods. The band structure was determined using optB88-van der Waals (vdW) GGA [43] functional
with projector augmented wave (PAW) [35,44] Perdew-Burke-Ernzerhof (PBE) [45] pseudopotentials.
The authors note that the band structure obtained with PDFT underestimates the band gap (0.90
eV) and extended Huckel tight binding (EHTB) was used to determine the band gap (1.3 eV) which
matches closer to experiment. Hybrid DFT functionals such as Heyd-Scuseria-Ernzerhof (HSE) [46,47]
have shown improved band gap prediction over GGA and LDA functionals. Although HSE can
improve band gap prediction, geometric optimizations showed little change in contrast to GGA and
LDA functionals. On the other hand, vdW-DF [43,48] functionals were more reliable for geometric
optimizations in systems with considerable dispersion interactions.
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Figure 2. On the left, crystal structure of meso-tetra(N-methyl-4-pyridyl)porphyrin (TMPyP):meso-
tetra(4-sulfonatophenyl)porphyrin (TSPP) nanorods in direction normal to the crystallographic b axis, 
showing the alternating cationic and anionic porphyrin tectons within the columns. Color codes: blue, 
N; gray, C; yellow, S; red, O. On the right is the projected density of states and band structure for the 
TMPyP:TSPP crystal computed from periodic density functional theory (PDFT). The Fermi level (Ef) 
is set as zero. The high symmetry points the Brillouin zone are as follows, G = (0,0,0), Z = (0,0,0.5), Y = 
(0,0.5,0), X = (0.5,0,0), A = (−0.5,0,0.5), E = (−0.5,0.5,0.5), B = (0,0,0.5). Reproduced from reference [42] 
published by The Royal Society of Chemistry. 
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density of states (pDOS) that showed that the top of the valence band is populated by the 
contributions from TSPP and the bottom of the conduction band is populated by the TMPyP with no 
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shows that PDFT calculations played a critical role in elucidating the photoconductive mechanism in 
TMPyP:TSPP nanorods. In the same study the authors reported that decreasing the porphyrin 
stacking distance would not necessarily change the band gap but would increase the dispersion in 
the band structure which would improve charge mobility in the nanorods. 

The work on TMPyP:TSPP nanorods has been expanded by Borders et al. [49], by selective 
metalation of TMPyP and TSPP porphyrin cores with Ni and Cu transition metals. A single crystal 
structure of H2TMPyP:NiTSPP nanorods was determined and it was shown that metalation of ionic 
porphyrins led to exhibition of dark conductivity at moderately high temperatures and that 
conductivity increases upon photoexcitation. Additionally, the photoresponse of the 
H2TMPyP:CuTSPP substituted crystals is significantly higher than that of the CuTMPyP:H2TSPP and 
the Ni-substituted crystals. To understand the reasons behind this discrepancy in the conductive 
behavior with different metalation, PDFT calculations were performed on H2TMPyP:(M)TSPP and 
(M)TMPyP:H2TSPP systems, where M = Ni, Cu. The crystal structure of H2TMPyP:NiTSPP was used 
to create the lattice structure of other metalated binary ionic porphyrins by changing the core 
substitution of the H2TMPyP:NiTSPP crystals and then optimizing the structure. The band structure 
of each H2TMPyP:(M)TSPP and (M)TMPyP:H2TSPP systems are shown in Figure 3. It was reported 
that adding a metal to the freebase porphyrins reduces the band gap of the corresponding nanorods. 
Additionally, it was shown that Ni and Cu metalation causes distinct changes in the frontier bands 
of porphyrin nanostructures. 

Figure 2. On the left, crystal structure of meso-tetra(N-methyl-4-pyridyl)porphyrin
(TMPyP):meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) nanorods in direction normal to the
crystallographic b axis, showing the alternating cationic and anionic porphyrin tectons within the
columns. Color codes: blue, N; gray, C; yellow, S; red, O. On the right is the projected density of states
and band structure for the TMPyP:TSPP crystal computed from periodic density functional theory
(PDFT). The Fermi level (Ef) is set as zero. The high symmetry points the Brillouin zone are as follows,
G = (0,0,0), Z = (0,0,0.5), Y = (0,0.5,0), X = (0.5,0,0), A = (−0.5,0,0.5), E = (−0.5,0.5,0.5), B = (0,0,0.5).
Reproduced from reference [42] published by The Royal Society of Chemistry.

In the case of TMPyP:TSPP, DFT calculations have been useful to predict the appropriate partial
density of states (pDOS) that showed that the top of the valence band is populated by the contributions
from TSPP and the bottom of the conduction band is populated by the TMPyP with no orbital
hybridization in the vicinity of the bandgap. This prediction was consistent with the experimental
data from UV-visible, diffuse reflectance and photoconductivity action spectra. This shows that PDFT
calculations played a critical role in elucidating the photoconductive mechanism in TMPyP:TSPP
nanorods. In the same study the authors reported that decreasing the porphyrin stacking distance
would not necessarily change the band gap but would increase the dispersion in the band structure
which would improve charge mobility in the nanorods.

The work on TMPyP:TSPP nanorods has been expanded by Borders et al. [49], by selective
metalation of TMPyP and TSPP porphyrin cores with Ni and Cu transition metals. A single crystal
structure of H2TMPyP:NiTSPP nanorods was determined and it was shown that metalation of ionic
porphyrins led to exhibition of dark conductivity at moderately high temperatures and that conductivity
increases upon photoexcitation. Additionally, the photoresponse of the H2TMPyP:CuTSPP substituted
crystals is significantly higher than that of the CuTMPyP:H2TSPP and the Ni-substituted crystals.
To understand the reasons behind this discrepancy in the conductive behavior with different metalation,
PDFT calculations were performed on H2TMPyP:(M)TSPP and (M)TMPyP:H2TSPP systems, where
M = Ni, Cu. The crystal structure of H2TMPyP:NiTSPP was used to create the lattice structure of
other metalated binary ionic porphyrins by changing the core substitution of the H2TMPyP:NiTSPP
crystals and then optimizing the structure. The band structure of each H2TMPyP:(M)TSPP and
(M)TMPyP:H2TSPP systems are shown in Figure 3. It was reported that adding a metal to the freebase
porphyrins reduces the band gap of the corresponding nanorods. Additionally, it was shown that Ni
and Cu metalation causes distinct changes in the frontier bands of porphyrin nanostructures.
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and shape of the FeTPP based nanocrystals. The calculations were performed using GGA-PBE [45] 
functional on predetermined crystal structures of FeTPPCl and FeTPPOH·H2O from the Cambridge 
Crystallographic Data Centre (CCDC) database. Krasnov et al. [51] performed a PDFT study of 
porphyrin:fullerene supramolecular compounds using models constructed from x-ray crystal 
structures determined by Boyd et al. [52]. The PBE functional [45] with Grimme DFT-D2 [53] 
dispersion interaction correction was used to optimize the models of porphyrin:fullerene 
compounds. The band structure and absorbance spectra of various optimized structures were 
determined using HSE [47] functional and DFPT [54] method, respectively. The HSE functional is a 
hybrid functional used for improved bang gap prediction. 

Figure 3. Projected density of states and the band structure for the H2TMPyP:NiTSPP, NiTMPyP:H2TSPP,
H2TMPyP:CuTSPP, and CuTMPyP:H2TSPP crystals computed from DFT. The Fermi level (Ef) is set
at zero. The high symmetry points of the Brillouin zone are as follows, G = (0,0,0), Z = (0,0,0.5), Y =

(0,0.5,0), X = (0.5,0,0), and R = (0.5,0.5,0.5). Reproduced from reference [49] published by The Royal
Society of Chemistry.

As mentioned earlier, PDFT studies of x-ray crystal structures of porphyrins are rare. Some of
the other studies include determination of surface free energy of different crystal faces of FeTPPCl
(TPP = tetra-phenyl porphyrin) and FeTPPOH·H2O nanocrystals by Tian et al. [50]. They used
PDFT calculated surface energies of {001}, {100}, {110}, {011} crystal faces to understand and tune
the growth and shape of the FeTPP based nanocrystals. The calculations were performed using
GGA-PBE [45] functional on predetermined crystal structures of FeTPPCl and FeTPPOH·H2O from
the Cambridge Crystallographic Data Centre (CCDC) database. Krasnov et al. [51] performed a PDFT
study of porphyrin:fullerene supramolecular compounds using models constructed from x-ray crystal
structures determined by Boyd et al. [52]. The PBE functional [45] with Grimme DFT-D2 [53] dispersion
interaction correction was used to optimize the models of porphyrin:fullerene compounds. The band
structure and absorbance spectra of various optimized structures were determined using HSE [47]
functional and DFPT [54] method, respectively. The HSE functional is a hybrid functional used for
improved bang gap prediction.
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2.2. Porphyrins in Organic Frameworks

Porphyrins are used to develop many supramolecular frameworks like metal organic (MOF),
covalent organic (COF), surface metal organic (SURMOF) frameworks with applications for gas
storage/separation, catalysis, drug delivery, photovoltaics, etc. Hence, PDFT calculations of porphyrin
organic frameworks have gained importance for understanding their electronic structure to tune their
applications. Hamad et al. [55], studied the electronic structure of porphyrin-based MOFs (PMOF) with
porphyrins connected through phenyl-carboxyl ligands and AlOH species to assess their suitability for
the photocatalysis of fuel production reactions using sunlight. They used the rhombohedral primitive
cell obtained from the orthorhombic crystal structure of Al-PMOF [56] and replaced the porphyrin
core with either hydrogens or various 3d transition metals and performed PDFT calculations of each
model. The calculations were performed with GGA-PBE [45] functional starting with optimization
of each lattice structure, followed by single point calculations for determination of DOS and band
structure with HSE06 functional [46,47]. A typical crystal structure of the PMOF unit cell is presented
in Figure 4a. From PDFT calculations, they reported that the bandgaps for PMOFs are in a favorable
range (2.0–2.6 eV) for efficient adsorption of solar light. Furthermore, it was shown that the MOFs’
band edges align with the redox potentials (Figure 4b) for water splitting and carbon dioxide reduction
with reactions that can occur at neutral pH. This study was followed up with another PDFT study
by Aziz et al. [4] by modifying the octahedral Aluminum metal center of the lattice structure with
Fe+3 metal to determine the changes in the band structure and electronic properties of PMOFs. It was
reported that adding Fe at the porphyrin core slightly raises the valence band edge, while Fe at the
octahedral node significantly lowers the conduction band edge. So, iron can be used as a good dopant
for band structure alignment in porphyrin-based MOFs.
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white = hydrogen, red = oxygen, blue = nitrogen, magenta = aluminum, green = transition metal. (c) 
Bandgaps and band edge positions of MOFs with respect to the vacuum level, as calculated with the 
HSE06 functional. Energy levels corresponding to redox potentials of water splitting and carbon 
dioxide reduction reactions producing methane, methanol, and formic acid at pH = 7 are also shown 
with dotted lines. Reproduced from reference [55] published by The Royal Society of Chemistry. 

PDFT calculations of porphyrin based SURMOFs has been reported by Liu et al. [57,58], who 
studied the photophysical properties of Zn(II)porphyrin-based SURMOFs. Using PDFT band 
structure with PBE functional [45] its was shown that a small dispersion of occupied and unoccupied 
bands in the Г-Z direction [57], which is the porphyrin stacking direction, leads to the formation of a 
small indirect band gap. In a follow up study [58], the effect of introducing an electron-donating 
diphenylamine (DPA) into Zn SURMOFs was studied and PDFT simulations showed that DPA 
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Figure 4. Perspective view of the porphyrin-based metal organic framework (MOF) investigated in
this study in (a) the protonated case, and (b) the metal-substituted case. Color code: gray = carbon,
white = hydrogen, red = oxygen, blue = nitrogen, magenta = aluminum, green = transition metal.
(c) Bandgaps and band edge positions of MOFs with respect to the vacuum level, as calculated with
the HSE06 functional. Energy levels corresponding to redox potentials of water splitting and carbon
dioxide reduction reactions producing methane, methanol, and formic acid at pH = 7 are also shown
with dotted lines. Reproduced from reference [55] published by The Royal Society of Chemistry.

PDFT calculations of porphyrin based SURMOFs has been reported by Liu et al. [57,58], who
studied the photophysical properties of Zn(II)porphyrin-based SURMOFs. Using PDFT band structure
with PBE functional [45] its was shown that a small dispersion of occupied and unoccupied bands in the
Γ-Z direction [57], which is the porphyrin stacking direction, leads to the formation of a small indirect
band gap. In a follow up study [58], the effect of introducing an electron-donating diphenylamine (DPA)
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into Zn SURMOFs was studied and PDFT simulations showed that DPA causes a shift in the charge
localization pattern in the valence band minimum. This charge shift was attributed to the DPA groups
which causes a shift of the optical absorption spectrum and the improved photocurrent generation
in Zn SURMOFs. PDFT simulations are also used to study the stability of the porphyrin-COFs upon
gas adsorption. Ghosh et al. used GGA-PW91 [59] and LDA-PZ [60] functionals to study hydrogen
storage in H2P-COF. The structural stability of COF upon introducing pyridine molecules to bridge the
interlayer gaps in porphyrin COFs is studied.

2.3. Porphyrins as Nano Wires, Sheets, Tubes, and Ladders

As mentioned earlier, porphyrins can form many structural shapes due to their mechanical
flexibility and rich chemistry. Hence, PDFT simulations were used to study the unique electronic
structures and their applications that are possible because of the multidimensionality of porphyrins.
Figure 5 shows typical shapes—various porphyrin nanowires, nanotubes, and nanosheets. Posligua et
al. [61] studied the band structures of porphyrin nano sheets and tubes formed through covalent linkers.
They used screened hybrid density functional theory simulations and Wannier function interpolation
to obtain accurate band structures. The structural optimizations were performed with PBE-D2 [45,53]
functional and single point calculations for band structure were obtained using the HSE06 [46,47]
functional. It was reported that the electronic properties exhibit strong variations with the number
of linking carbon atoms (C0 = no carbon atoms, C2 = two carbon atoms, C4 = four carbon atoms).
For example, all C0 nanostructures exhibit gapless or metallic band structures, whereas band gaps
open for the C2 or C4 structures. PDFT simulations showed that it is possible to design porphyrin
nanostructures with tailored electronic properties such as specific band gap values and band structures
by varying the type of the linkage used between each porphyrin units and the type of self-assembled
formations (linear chains, nanosheets, nanotubes, and nanorings). A previous study on porphyrin
nanotubes formed with acetyl linkers was done by Allec et al. [62] who reported large oscillations in
bandgaps of porphyrin nanotubes with increase in their size. The simulations were performed with a
variety of periodic DFT functionals which show similar oscillation trend in the band gaps irrespective
of the functional. Additionally, the authors report that the bandgap is a direct-bandgap which can be
observed with photoelectron spectroscopic experiments.
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Various porphyrin nanosheet structures with variable porphyrin core metals and substituents were
also studied extensively with PDFT calculations. Using the GGA-PBE functional [45], Singh et al. [63]
predicted the stable formation of a 2D ferromagnetic half-metal based on vanadium polyporphyrin
(PP). The stability of the 2D metal was determined by comparing the Curie temperature (Tc) and
phonon dispersion to other known 2D structures like manganese phthalocyanine (MnPc) and CrPP.
The authors also note that the predicted 2D VPP is quite suitable for use in flexible spintronic devices.
A similar study with Fe, Co, Li, Zn, and H2PPs was done by Zhu et al. [64] who reported that H2, Li,
and Zn PPs behave as direct bandgap semiconductors while Fe, and Co PP behave as half-metals.
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They also report that 2D PP systems behave like n-type semiconducting materials with strong electron
mobilities, which were obtained using PDFT combined with Boltzmann transport method with
relaxation time approximation. An interesting PDFT study of porphyrin nanosheets and nanowires
fused at meso-meso-, β-β-, and β-β-linked array (referred to as SA) and a directly β-fused array
(referred to as SB), was performed by Yamaguchi [65]. In this study it was reported that the bandgaps of
nanosheets is slightly lower than the nanowires and more importantly it was found that SA type linked
arrays have significantly lower bandgaps than SB type. Another example of fused polyporphyrins
(PP) with pyrazine linkage was performed by Kumar et al. [66] with transition metals Cr, Mn, Fe, Co,
Ni, Cu, and Zn at the porphyrin cores of the nanosheet. Using PDFT calculations with GGA-PBE [45]
and GGA+U [67,68] approaches, it was shown that metal PPs have excellent thermal stability with the
MnPP system having a ferromagnetic character and half-metallic behavior.

Instead of 2D polyporphyrin (PP) nanosheets, nanowires of 1D PPs were also studied using PDFT.
Some 1D porphyrins are also referred to as tape porphyrins in the literature. Gao et. al. [69] studied
the electronic structure of metal-polyporphyrin (MPP) and metal-polyhexaphyrin (MPHP) tapes
using GGA-PBE functionals. While different MPHP and MPHP (M = Co, Ni, Cu, Zn, and Ru) tapes
were studied for their conductive (metals/half-metals/semiconductors) behavior, it was reported that
doubly linked CoPHP, NiPHP, and double, triple-linked RuPP has half-metallic nature with potential
applications for spintronic devices. Zheng et al. studied 1D PP nanowires linked with acetyl linkers
with various transition metals (Cr, Mn, Co, Ni, Cu, and Zn) in the porphyrin cores using GGA-PBE [45]
and GGA+U [67,68] functionals. Of all the PPs, ZnPP and NiPP nanowires are nonmagnetic while the
rest are magnetic with magnetic moments like their corresponding monomer structures. Among all
the metal-PP nanowires with acetyl linkers, only MnPP nanowires exhibit half-metallic behavior.

3. PDFT Simulations of Porphyrins on Surfaces

Porphyrins have extended pi-electronic structures which makes them excellent candidates for
adsorption on surfaces. They can also bind covalently to substrates through selective meso, α, β,
peripheral substituents. PDFT simulations of porphyrins on surfaces are aimed to understand the
adsorption configurations, surface reactivity, binding energetics, charge distribution, and transport
at surfaces and interfaces and the corresponding magnetic and electronic properties (DOS and band
structure) when porphyrin bind to substrates. In this section we present a survey of various PDFT
simulations of porphyrins on surfaces based on the type of porphyrin, type of substrate, and application
of interest.

3.1. Conformational Studies of Meso-Substituted Porphyrins on Substrates

Meso-substituted porphyrins have multiple structural configurations due to the flexibility of the
porphyrin molecule [70]. When porphyrins adsorb on atomically flat conductive surfaces, scanning
tunneling microscopy (STM) is used as the preferred technique [71] to understand their surface
structures. The adsorption configuration of meso-substituted porphyrins cannot be easily obtained
from STM alone due to the limits of STM resolution and structural flexibility of meso-substituted
porphyrins. Figure 6 shows some typical confirmations of meso-substituted porphyrins on the surface.
Thus, PDFT simulations are complimentary to experimental studies of conformation of porphyrins on
substrates. One of the earlier PDFT studies of meso-substituted porphyrins on surfaces was performed
by Zotti et al. [72] who studied the adsorption of freebase tetrapyridyl porphyrin (TPyP) and FeTPyP on
Ag(111). The PDFT simulations were performed with GGA-PW91 [59] functional in conjunction with
STM experiments. It was reported that TPyP adsorbs in a flat geometry at 5.6 Å from the surface. The
dihedral angle of the pyridyl rings is found to be 70◦ with adlayer structure primarily directed by lateral
intermolecular interactions. Another PDFT study of MnTPyP on Cu(111) [73] with GGA-PBE [45]
showed that MnTPyP adsorbs in a saddle shape due to the rotation and inclination of the pyridyl
groups towards Cu adatoms, which stabilize the metal-organic chains.
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Metalated and non-metalated meso-substituted phenyl porphyrins are some of the extensively
studied porphyrins on surfaces [71]. Like the TPyP porphyrins, tetra-phenyl porphyrins (TPP) have
high degree of structural flexibility. Rojas et al. [75] studied the adsorption of freebase TPPs on Ag(111)
and Cu(111) metal substrates using GGA-HCTH functional [76,77]. They reported that TPPs form
a 2D network on Ag(111), driven by attractive intermolecular interactions, small migration barrier,
and minimal charge transfer. In contrast 2H-TPP/Cu(111) has significant charge transfer, resulting in
repulsive forces between the molecules that prevent molecular adlayer network formation. A similar
result was observed by Lepper et al. [78] who reported an inverted TPP on Cu(111) surface due to
coordination of the two iminic nitrogen atoms to the Cu(111) surface via their lone pairs and thus
significant charge transfer.

Extensive PDFT studies of adsorption of 3d transition metal (TM) TPP (TM = Co [79–82], Ni [83])
molecule on Ag and Cu substrates were done by various research groups. Both LDA and GGA
functionals were used to study the TM-TPP/substrate system. CoTPP on Ag(111) and Cu(111) surfaces
exhibited two adsorption properties: first, an asymmetric saddle deformation of CoTPP with an
enhanced tilting of the upwards bent pyrroles and second, a single adsorption site where the Co center
occupies a bridge position and one molecular axis aligned with the [1-10] substrate direction [79]. On
Cu(110) [81], CoTPP molecules adsorb at the short-bridge site with substantial chemical interaction
between the molecular core and the surface causing the porphyrin macrocycle to accommodate close
to the surface in a flat geometry, which induces considerable tilting distortions in the phenyl groups.
NiTPP [83] also has an asymmetric saddle deformation on Cu(111) with observed chemical shifts of Ni
2p3/2 caused by Ni 3d orbital interaction with Cu(111) substrate.

Due to their structural flexibility, meso-substituted porphyrin molecules interact with surface
adatoms on metallic substrates. Hötger et al. [84] studied the surface transmetalation of central metals
in TPP and TPyP molecules on Au(111) surface. They reported that Fe+2 cation of FeTPP can be
replaced by Co in a redox transmetalation-like reaction on Au(111) surface. Likewise, Cu can be
replaced by Co. The reverse reaction does not occur, i.e., Fe does not replace Co in the porphyrin.
The mechanism and energetics for the surface transmetalation reaction was determined using PDFT
calculations with GGA-PBE [45] functional and DFT-D3 [53,85] van der Waals (vdW) corrections.
They also report that while identical transmetalation in TPyP molecules were observed, they are not
prevalent as in TPP molecules. The reason for this is attributed to peripheral pyridyl groups offering
additional coordination sites for the metals, thus suppressing the metal exchange. Moreno-López et
al. [86], used PDFT studies with GGA-PBE [45] with DFT-D3 [53,85] and vdW-DF [43,48] functionals to
understand the adsorption and coupling of Cl4TPP molecules on Cu(111). Using DFT, they reported
two coupling reaction pathways: direct dechlorination and Cu adatom-mediated Ullmann coupling.
The latter is barrierless, whereas the former faces a barrier of about 0.9 eV for inverted Cl4TPP on
Cu(111). Adatoms of Au(111) also interact with H2TPP [87] forming different surface electronic
structures. These observations were confirmed by simulated STM images from PDFT calculations of
H2TPP on Au(111) in various configurations.

Tetraphenyl porphyrins on non-metallic substrates have also been studied using PDFT simulations.
Bassiouk et al. [88], studied the self-assembly of H2TPP, CoTPP, and NiTPP molecules on HOPG (highly
ordered pyrolytic graphite) surface using STM. It was reported that these TPP molecules only adsorb
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at surface defects due to weak pi-pi or vdW interactions between TPPs and HOPG. PDFT calculations
were performed to understand the TPP adsorption at the step edges and defects of HOPG. Simulations
with PW91 [59] LDA functional showed that the electronic structure is modified significantly at the
surface defects and edges of HOPG causing the adsorption and nucleation TPP molecules. TPP
molecules on SiC(110) substrate were studied by Catellani et al. [89] using PDFT with GGA-PBE [45].
The sensitization of SiC(110) substrate based on the adsorbed components of a TPP like pyrrole group,
phenyl group, and the whole TPP molecule was studied. It was reported that none of these molecules
changes the polarity of the SiC(110) substrate even with dispersion interactions. El Garah et al. [90], and
Boukari et al. [91], studied the adsorption if Cu-5,10,15,20-tetrakis(3,5-ditert-butyl-phenyl) porphyrin
(Cu-TBPP) on Si(111) and boron-defect Si(111)-B surfaces respectively using PDFT simulation and in
both cases the CuTBPP confirmations on the substrate were determined.

All the PDFT studies of meso-substituted porphyrins listed above involve aromatic substituents
in the meso positions. PDFT studies of meso-substituted porphyrins with tetra-alkyl groups were also
reported in the literature. Chin et al. [92] studied the adsorption of tetranonadecyl (C19H39) porphyrin
on HOPG using STM and DFT. While the structural optimization was carried with molecular DFT, the
authors used to determine the STM structure with PDFT simulations with GGA-PW91 [59] functional.
Due to long alkyl chains in the molecule, ONIOM [93] method with quantum mechanical simulations
on the porphyrin macrocycle and molecular mechanics simulations on alkyl substituents was used to
determine the optimized geometries. The STM simulation of the optimized structure matched with STM
experiments. In a later study, Reimers et al. [94], studied the adsorption of terta-alkyl porphyrins with
alkyl chain lengths (CnH2n+1 with n = 6–28) on HOPG using multiple computational methods. It was
reported that molecular QM/MM calculations and PDFT calculations with PBE-D3 method predicted
similar properties for the chain-length dependence of monolayer formation and polymorphism.

3.2. Conformational Studies of Non-Meso-Substituted Porphyrins on Substrates

Porphyrins without the meso substituents lack the structural flexibility of meso-substituted
porphyrins [70]. Octaethylporphyrins (OEP) are some of the commonly studied non-meso-substituted
porphyrins on substrates [71] using STM. Fanetti et al. [95] studied the adsorption of CoOEP on Ag(110)
surface and reported that CoOEP molecule bind to Ag(110) with a tilt angle of 15◦ with respect to the
substrate due to strong hybridization of the adlayer with the Ag substrate which the authors confirm
by PDFT simulations using GGA-PBE [45] functional. Kim et al. studied the adsorption of PtOEP
molecule on bare Au(111) and on NaCl/Au(111) surfaces using STM and PDFT with GGA-PBE [45]
functional and reported that the top of the valence band has a downward shift in NaCl/Au(111)
substrate relative to Au(111). In either of these studies, the adsorption energy of OEP molecules on
these substrates has not been reported.

A first comprehensive study of OEP on substrates using PDFT simulations was reported by
Chilukuri et al. [96]. It was reported that using standard GGA [45] and LDA [97] functionals
would significantly underestimate the adsorption energies of porphyrins on substrates compared to
calculations using van der Waals corrected DFT methods like vdW-DF [43,48] or DFT-D3 [53,85]. The
binding energies of CoOEP on Au(111) with GGA functional was reported to be −0.31 eV, while the
value is −4.34 eV with vdW-DF functional. On HOPG the binding energies are −1.18 and −2.42 eV
with LDA and vdW-DF functionals respectively. These results indicate that traditional LDA and GGA
functionals significantly underestimate dispersion energies with metallic substrates but to a lesser
degree with carbon supports. The authors also report the interfacial charge redistribution, DOS and
work function changes upon adsorption of CoOEP on substrates. They also reported the first PDFT
simulated bias dependent STM images (Figure 7) of OEP molecules on Au(111) and HOPG which
matches with experimental observations. The advantage of using dispersion DFT methods on OEPs is
further corroborated by Tada et al. [98], who reported that RhIII(OEP)(Cl) molecule would not have
bound to the basal plane of HOPG if not for dispersion corrected DFT functional.
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Iron based haem(b) porphyrin has tetraethyl and tetramethyl substituents in the non-meso
positions. Sena et al. [99], studied the adsorption of haem(b) porphyrin on Si(111):H substrate using
GGA-PW91 [59] functional and determined the STM images using Tersoff-Hamann approach [100].
The binding energy was estimated to be only 0.42 eV which is likely significantly underestimated
because they did not include dispersion interactions in their functional.

Non-substituted porphins (P) are also studied extensively using PDFT simulations. Hanke et
al. [101], used PDFT simulations with GGA-PW91 [59] and vdW-DF [43,48] functionals to determine
the surface configurations of H2P molecule on Cu(110) surface and the respective adatom interactions
were reported. A similar study was performed by Dyer et al. [102], using vdW-DF method who
reported that H2P is chemisorbed to the surface, caused by electron donation into down-shifted and
nearly degenerate unoccupied porphine π-orbitals accompanied with electron back-donation from
molecular π-orbitals. Miller et al. [103], reported the electronic and spin structure of FeP on Pt(111)
surface using multiple vdW-DF [43,48] and functionals with added Hubbard U term. They report that
vdW-DF-optPBE and vdW-DF-optB88 functionals found the same binding site to be the most stable
and yielded binding energies that were within ~20% of each other, whereas vdW-DF-revPBE functional
were substantially weaker. One of the earlier PDFT studies of porphine adsorption was done by Leung
et al. [104] using MnP and PdP porphins on Au(111). DFT+U [68] technique with PDFT simulations
using LDA [97] functionals were used to determine the face-on and side-on interactions of porphins
on Au(111) substrate. Buimaga-Iarinca et al. studied the effect of translation on binding energy for
transition-metal (V, Cr, Mn, Fe, Co, Ni) porphins adsorbed on Ag(111) surface using vdW-DF-cx [105].
They concluded that the bridge positions of Ag(111) are favorable for all transition metal porphins.

PDFT calculations of not porphyrins but porphyrin-based molecules are also studied in the
literature. For example, Zhang et al. studied the adsorption of Ni(Salophen) molecule on Au(111)
surface using vdW-DFT functionals and determined the adsorption energy to be 2.74 eV which is about
2/3 of the adsorption energy of similar porphyrin [96,106] molecules on Au(111). Gurdal et al. studied
the adsorption of pyrphyrin molecules on Au(111) [107] and Ag(111) [108] surfaces using various GGA
and vdW-GGA functionals. They reported the effect of surface herringbone reconstruction of Au(111)
surface on the adsorption dynamics of Co(Pyrphyrin) molecules. It was reported that the dominant
contribution to the adsorption energy are dispersion forces, followed by the interaction of the cyano
groups with the metal. The monolayer formation and geometrical configuration of the assembly are
mainly driven by the molecule/molecule interactions.

Surface adsorption of porphyrins as part of a multicomponent mixture were also studied using
PDFT simulations. Jahanbekam et al. [109], reported the competitive adsorption of CoOEP and coronene
molecules as a function of concentration at the 1-phenyloctane/Au(111) solution solid interface using
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STM. In this work, it was reported that CoOEP prefers to bind to the substrate unto a molar ratio of
more than 55:1 coronene:CoOEP. At 55:1 ratio, only coronene molecules are seen on the Au(111) surface
with STM. Using PDFT simulations of coronene, CoOEP, and coronene:CoOEP models, that authors
reported that the strong preference of CoOEP binding to Au(111) is that CoOEP has about ~1.8 times
larger binding energy than coronene on Au(111). vdW-DF functionals with PAW pseudopotential
basis sets were used to determine the adsorption energetics. Additionally, they report that the 1-1
coronene:CoOEP (A in Figure 8) structure is stable between 22:1 to 45:1 molar ratios because the ethyl
groups of the CoOEP molecule trap the coronenes on to the Au(111) surface until further changes
in the molar ratios. Additionally, the authors used PDFT calculations to determine the interfacial
charge distribution (B in Figure 8) and potential energy surfaces for adsorption of CoOEP and coronene
molecules on Au(111) surface and used these energies to determine the vibrational frequencies for
molecular desorption. It is important to note that coronene molecules exhibit cooperativity and
coverage dependency [110] when desorbing from Au(111) substrates.
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3.3. Porphyrins on Single Layer Substrates

Porphyrins can be used for functionalizing and tuning material properties of various single layered
substrates like graphene, carbon nanotubes (CNT) and boron nitride (BN) nanotubes. PDFT simulations
were used to study the binding and functional changes caused by porphyrins on such substrates.
Touzeau et al. [111], studied the adsorption of Metal (Fe, Zn, Mn, Ti) TPP and Zn tetraalkyl porphyrins
on graphene surface using PDFT with GGA-PBE [45] functional. The goal was to understand the effect
of the peripheral substituents and metal-centers of porphyrins on the functionalization of graphene.
PDFT simulations revealed that graphene functionalization with porphyrin-like molecule is suitable for
band-gap opening in graphene. They showed porphyrin adsorption on graphene is controlled by the
size of the atomic radii, the occupation of the metal 3d orbitals and the host porphyrin structure. Zeng
et al. [112], used PDFT simulations to study the spin filter characteristics metal (M = Cr, Mn, Fe, Co)
porphyrins functionalized to edges of graphene. Using LDA functional and non-equilibrium Green’s
functions (NEGF) [113], they determined that Mn-porphyrin bound to graphene exhibits an extremely
high spin polarization coefficient in a parallel magnetic configuration which plays a significant role in
making a high-performance spin filter.

Functionalization of single walled carbon nanotubes (SWCNT) with various metalloporphyrin
(M = Co, Ni, Cu, Zn) molecules using PDFT simulations was reported Zhao et al. [114]. The
authors used semiconducting (10,0) and metallic (6,6) SWNTs for functionalization studies using
the GGA-PBE [45] functional. DFT calculations indicate that porphyrins can be used to separate
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conducting vs. semiconducting in SWCNTs. This is due to hybridization and charge transfer between
porphyrins and CNTs. Additionally, metalloporphyrins were found to retain unpaired electrons during
functionalization which makes the porphyrin-CNT system a good candidate for optical and spintronic
devices. Correa et al. [115], determined the optical response from freebase, Zn-porphyrins/CNT
and phthalocyanine/CNT systems using PDFT simulations with vdW-DF [43,48] functionals. They
propose that CNT-porphyrins and CNT-phthalocyanines have variable absorption in the visible
region, thereby causing increased conversion energy efficiency in an optical device made with both
macrocycles. Another interesting study on functionalization of SWCNTs with porphyrins is conducted
by Ruiz-Tagle et al. [116], by comparing the effect of physisorption and chemisorption of FeP on metallic
and semiconducting SWCNTs. For physisorption studies, LDA [97] functional with vdW-DF [43,48]
formalism was used while only LDA [97] functional was used for chemisorption study. The results
showed that non-covalent functionalization caused the least change in the electronic and optical
properties of SWCNTs. On the other hand, covalent functionalization with metallic SWCNTs would
have better electrocatalytic properties than with semiconducting SWCNTs. Porphyrins were also
used for functionalizing boron nitride nanotubes (BNNT) similar to SWCNTs. Zhao and Ding [117]
performed a PDFT study of BNNT functionalized with metalloporphyrins (M = Fe, Co, Ni, Cu, Zn)
using GGA-PBE [45] functional. The authors found that metalloporphyrins energetically prefer to bind
the metal with the binding energies ranging from 0.17 to 0.91 eV.

3.4. Porphyrins on Oxide Supports

Porphyrins are widely used as dyes in dye sensitized solar cells where the solar energy trapped
by porphyrins is transferred into conductive oxide substrates like TiO2, ZnO, etc. In this section, we
present a collection of PDFT studies involving interactions of porphyrins with oxide supports used in
photovoltaic devices and in catalysis.

Gomez et al. [118], used PDFT simulations with GGA-PW91 [59] functionals to study the surface
interactions and charge transfer of [COOH-TPP-Zn(II)] porphyrin on TiO2(110) surface. Using PDFT
simulations they identified the stable binding site for the anchoring group (-COO−) to the TiO2

surface that facilitates electron injection. Using frontier orbitals and DOS from DFT simulations, the
authors report that Zn(II) porphyrin is capable of electron injection into TiO2, as has been shown from
experiments. A similar study was performed by Lin et al. [119], and they used PDFT simulations to
study the optical and charge transfer properties of Zn porphyrin adsorbed on the TiO2 surface. If the
TiO2(110) surface is hydroxylated, Lovat et al. [120], showed that the iminic nitrogens of free base
porphyrins (OEP, TPP, and tetra-butyl TPP) capture the hydrogen atoms from the TiO2(110) surface.
They used x-ray photoelectron spectroscopy (XPS) experiments combined with PDFT simulations
using GGA-PBE [45] functional and DFT-D corrections, and showed the favorable energetics and
mechanism for hydrogen capture by porphyrins.

In-situ metalation of TPP using Ni atoms adsorbed on TiO2(110) surface was studied by Wang et
al. [121] using STM. PDFT simulations were done with the DFT-FIREBALL [122] method. STM images
and currents were simulated using Keldysh-Green function formalism. The surface electronic structure
from STM experiments matched with the simulated STM images. PDFT simulations [123] are also used
to determine the band gap of porphyrin MOFs adsorbed on TiO2(110) surface, and it was found that
HSE06 functional [47] predicted the bandgap and TiO2 structure matching the experimental data. Xie
et al. [124], studied the effect of asymmetric modification of meso-substituents of TPPs on TiO2(110)
using PDFT simulations. Experiments have shown that asymmetric modifications can improve the
light-harvesting properties and enhance the electron distribution, but the surface adsorbed structure
was unknown. In this work, the authors used molecular and PDFT simulations with GGA-PW91 [59]
functional to optimize the adsorption geometries of various asymmetric meso-substituted porphyrins
on TiO2 and determine their electronic properties. While TiO2 is the extensively used oxide support for
many PDFT simulations involving porphyrin binding, supports like ZnO [125] and SiO2 [126] are also
studied. In the case of ZnO, the support was used as an alternative for TiO2 in dye sensitized solarcells
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and PDFT calculations were used to understand the charge transfer characteristics. SiO2-porphyrin [126]
studies are used to determine the binding strength for porphyrins to SiO2 support for application as a
trapping agent in petroleum industry.

3.5. PDFT Simulations of Substrate Bound Porphyrin Reactions and Catalysis

Porphyrins on solid substrates can act as active sites for various catalysis reactions. PDFT
simulations are typically used to determine the reaction mechanisms of catalytic reactions on surfaces.
Quinn et al. [127], used Cu porphyrin to functionalize the graphene surface for methane catalytic
reaction. Using PDFT simulations with GGA-PBE [45] functional, it was determined that the porphyrin
Cu metal center acts as an active site for the direct oxidation of methane to methanol. The PDFT
simulations elucidate the step-by-step reaction mechanism and energetics to understand the catalytic
reaction with CuP functionalized graphene at the atomic level. The reaction coordinate (Figure 9) and
corresponding geometries of the oxidation reaction was obtained using climbing image nudged elastic
band method [128,129] and charge analysis using Bader charges [130].
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On surface reactions of organic molecules with porphyrins supported on surfaces and monitored
by STM experiments has gained significant interest since the pioneering work by Grill et al. [131]. PDFT
simulations were used to understand the on-surface reaction mechanisms, energetics and dynamics
of porphyrin. Shi et al. [132] studied the Heck reaction of alkene attached aryl bromides to TPP
porphyrins on Au(111) surface. The surface structure of TPP changes upon the attachment of the aryl
group. The reactions was found to be catalyzed by Pd attached to Au(111) surface. PDFT simulations
using GGA-PBE [45] functional with DFT-D3 correction was used to determine the molecular surface
configurations during debromination and coupling of Hack reaction on Au(111). Shu et al. [133],
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studied the on-surface reactions of aryl-chloride and Cu(111) attached porphyrins. PDFT simulations
with GGA-PBE [45] functional and DFT-D3 correction was used to determine the surface reaction
dynamics and energetics of dehalogenation, cross coupling and cyclodehydrogenation reactions on
Cu(111) surface.

3.6. Magnetic Couplings in Substrate Bound Porphyrins

Porphyrins adsorbed on ferromagnetic substrates can act as excellent candidates for spintronic
devices. The ferromagnetic substrates typically involve Co or Ni films deposited on metallic substrates.
Mn, Fe, Co, Ni, and Cu porphyrins on Co and Ni substrates were studied to understand the magnetic
coupling between metalloporphyrins and metallic surfaces. PDFT simulations are especially helpful to
understand the magnetic properties of porphyrin/substrate systems. Wende et al. [134] studied the
adsorption of FeOEP on Ni and Co films bound to Cu(100) surface using X-ray absorption spectroscopy
(XAS) and X-ray magnetic circular dichroism (XMCD). The experiments were combined with PDFT
simulations of corresponding porphyrin/substrate systems using GGA-PW91 [59] functional and
DFT+U approach [68]. Binding energetics of ClFeOEP and FeOEP on Co and Ni substrates were
determined, and it was noted that the porphyrin loses Cl− upon adsorption. PDFT simulations
provided a deeper understanding of Fe-substrate exchange coupling from DOS, charge analysis and
magnetization densities. A similar study with free base and Fe porphyrins on Co substrate was carried
out by Oppeneer et al. [135] also using GGA-PW91 [59] functional and DFT+U approach [68]. The
PDFT simulations were used to understand the origins of the substrate induced magnetic ordering
of metalloporphyrins. It was demonstrated that FeOEP ferromagnetically exchange couples, while
ClFeOEP antiferromagnetic couples with the substrate. The same research group also studied the
magnetic coupling of FeOEP on c(2 × 2) oxygen reconstructed Co(100) surface [136] with the same
PDFT methodology as their earlier studies and showed that FeOEP couples antiferromagnetically with
oxygen reconstructed Co(100) surface.

Magnetic coupling with Mn porphyrins on Co substrates was studied by Ali et al. [137] using
GGA-PW91 [59] functional and DFT+U approach [68]. The authors reported that Mn porphyrins can
adsorb or chemisorb on the Co substrate with MnP-Co binding distances at 3.5 Å and 2.1 Å, respectively.
This variable surface binding caused distinct magnetic exchange interactions between porphyrin and
substrate, but it was found that Mn magnetic switching occurs at both binding distances. Chylarecka
et al. [138] showed that ClMnTPP porphyrin involves in indirect magnetic coupling with Co substrate
using PDFT and, STM, XAS, and XMCD studies. GGA-PBE [45] functional with Gaussian type orbitals
and with DFT+U approach were used to determine the surface DOS and magnetic properties of
ClMnTPP on Co substrate. It was found that if the chloride ion of the MnTPPCl molecule orients away
(Co-Mn-Cl) from the Co surface, a weak ferromagnetic molecule-substrate coupling is observed. PDFT
simulations with DFT+U approach were also used to understand the magnetic coupling interactions of
Co porphyrins on Ni [139] and graphene [140] substrates.

3.7. Porphyrin Molecular Junctions

Porphyrins and substituted porphyrins were widely studied in single molecule junctions [14].
These junctions typically involve a molecule covalently linking two electrodes. PDFT studies were
used to understand the binding and charge transport properties of the molecule and electrodes in
the junction. Lamoen et al. [141] performed one of the early studies of the covalently bound Pd
porphyrin to gold electrode. They studied the side on (hydrogens of one pyrrole) interactions of Pd
porphyrin on Au(111) using the LDA functional. Although this initial model is not a full Pd porphyrin
molecular junction (because only one gold electrode was used), the simulation was helpful to gain
atomic level understanding of rectifying behavior and charging effects associated with molecular
conduction via single-electron tunneling. Another study with the same Pd porphyrin in a one sided
junction with Al(111) electrode was performed by Picozzi et al. [142], with both LDA-PW [59] and
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GGA-PBE [45] functionals. The energy level alignments, binding energy, and DOS were calculated,
and it was reported that PdP/Al(111) interaction is weak yet rectifying.

PDFT study of a complete junction involving a porphyrin sandwiched between two gold electrodes
was conducted by Long et al. [143]. A nonequilibrium Green’s functions (NEGF) [113] approach with
PDFT was used to determine the electron transport properties of the porphyrin molecular junction.
The porphyrin molecule is linked to the gold electrodes through two (5,15)-meso-diphenyl substituents.
In addition, the role of electron donating and withdrawing substituent (at the 10-meso position)
on the electron transport properties was determined. The authors report a negative differential
resistance behavior from PDFT calculations which is a critical property for many molecular electronics
applications. In another PDFT study, An et al. [144] studied high efficiency switching in porphyrin
ethyne benzene/gold molecular junction using GGA-PBE functional. The electron transport properties
from PDFT simulations indicated that ethyne-bridged phenyl porphyrin molecules are good candidates
for molecular switching devices. The rotation of the phenyl substituent allows for high and low currents
due to change in orbital overlaps upon rotation. Additionally, placing amino and nitro substituents
caused high ON/OFF current ratios with larger substituent effect when entire porphyrin molecule is in
a co-planar geometry than in perpendicular configuration.

Liu et al. [145], developed an optimally-tuned range-separated hybrid (OT-RSH) functional [146]
using DFT+Σ method [147,148] and NEGF [113] approach for accurate description of molecular
conduction in junctions. The effect of central metal (M = 2H, Ni, Co, Cu) of porphyrins in the molecular
conductance between two gold electrodes was studied using PDFT simulations. It was reported that
changing the central metal can change the conductance by nearly a factor of 2. Cho et al. [149], studied
magnetic and charge transport properties of a metal (M = H2, Cr, Mn Fe, Co) porphyrin array (PA∞)
connected through thiol groups to two gold electrodes. PDFT simulations with GGA-PBE functional
and NGEF formalism was used to determine the conductance and band structure of metal porphyrin
junction. It was reported that CrPA∞ exhibits half-metallic behavior originating from the high spin
state of Cr which causes spin asymmetry of the conduction band in CrPA∞. Additionally, it was
reported that spin-filtering ability occurs with an array size of 2, Cr-PA2. Sedghi et al. [150] studied the
effect of the length of the substituent side chain in oligo porphyrin molecular wires on the long-range
electron tunneling and conductance properties in molecular junction. Three oligo-porphyrins with
oligomer length of 1, 2, 3 were sandwiched between gold electrodes and, PDFT simulations and
scattering theory were used to study the molecular conductance. It was reported that phase-coherent
tunneling occurs through the whole molecular junction.

Graphene and carbon nanotubes (CNT) were also used as electrodes in porphyrin molecular
junctions. Suárez et al. [151] studied the low voltage transport response of porphyrin molecular wires
bridging two graphene sheets via physisorption. They used the vdW-DF [43,48] functional to study the
Breit-Wigner molecular resonances as a function of translation of graphene sheets and porphyrin wires.
It was reported that the conductance values are dependent upon the sampling of k-points during
simulation. Li et al. used PDFT simulations to study the molecular conductance of porphyrin bridged
CNTs. Maximally localized Wannier functions (MLWF) in conjunction with NEGF formalism was used
to determine the conductance and quantum interference in the transport properties of porphyrin/CNT
junctions. Using molecular conductance data, they reported that tape porphyrins can act as molecular
size memory units with many-valued logic.

3.8. Ligand-Porphyrin Reactions on Surfaces

Central metals in metalloporphyrins can react with many axial ligands [152] forming
porphyrin-ligand complexes. These ligands can be mono or bi-axial leading to pentavalent and
hexavalent complexes. When metalloporphyrins bind to solid surfaces, the surface may act like an
axial ligand in the fifth coordination site [153–155]. In this section we present a collection of PDFT
studies on coordination of ligands to metalloporphyrins that are adsorbed to surfaces. Coordination of
gaseous molecules like CO [156], NO [155], O2 [157], etc. to porphyrins on surfaces were studied by
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various experimental techniques. PDFT simulations were used to understand the binding mechanism
of these ligands to substrate bound porphyrins.

Nandi et al. [106], used PDFT simulations with vdW-DF [43,48] functional to understand the
binding mechanism of imidazole (Im) ligand to Ni-octaethylporphyrin (NiOEP) bound on HOPG
surface. Using STM, solution-spectroscopy, and molecular DFT calculations the authors reported that
Im ligand does not bind to NiOEP in solution or in gas-phase but does bind when NiOEP is on the
HOPG surface. The reactivity of imidazole toward NiOEP adsorbed on HOPG is attributed to charge
donation from the graphite stabilizing the Im-Ni bond (Figure 10). This charge transfer pathway is
supported by molecular and periodic modeling calculations which indicate that the Im ligand behaves
as a π-acceptor. DFT calculations also show that the nickel ion in the Im-NiOEP/HOPG complex is
in a singlet ground state. This is surprising because the gas phase Im-NiOEP complex is found to be
stable in a triplet ground state. Integrated charge transfer data (Figure 10) from PDFT also showed that
HOPG donates the charge to Imidazole ligand via the NiOEP macrocycle, which indicates that the
porphyrin molecule only acts as a charge mediator.
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row (A2–D2) represent top-view (along c-axis). Element colors are carbon—gray, nitrogen—blue,
nickel—yellow (not visible). Hydrogens are masked for clarity. In the cross-section (A1–D1, top row)
the rainbow colors (blue to red) indicate charge with blue being highly negative and red being highly
positive. Reproduced from reference [106] published by the PCCP Owner Societies.

Binding of gaseous molecules to substrate bound porphyrins using PDFT were carried with
tetraphenyl-porphyrins and tape porphyrins. Hieringer et al. [155], reported the ‘surface trans effect’
of NO axial coordination to Co-porphyrin on Ag(111). GGA-PBE [45] functional with dispersion
corrections was used to model the NO/CoP/Ag(111) surface and the corresponding structural and
energetics were determined. They reported that competition effects, like the trans effect, play a central
role and lead to a mutual interference of the two axial ligands, NO and Ag, and their bonds to the
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metal center. Wäckerlin et al. [158], used PDFT simulations with DFT+U approach [68] and showed
that surface magnetization of porphyrin/ferromagnetic surfaces can be tuned via the choice of axial
ligands. NO (S = 1/2) and NH3 (S = 0) ligands were used to coordinate with FeTPP and MnTPP
porphyrins on Ni and Co ferromagnetic surfaces. PDFT simulations revealed that they reported that
the structural trans effect on the surface rules the molecular spin state, as well as the sign and strength
of the exchange interaction with the substrate. In another study, Janet et al. [159] compared DFT+U
approach and semi-local DFT simulations with GGA-PBE [45] functional using O2 coordination with
CoTPP/Au(111) interface. They reported that semi-local DFT simulations can optimize a structure but
DFT+U approach is better for charge and spin predictions in the system. It was also reported that O2

binding to CoTPP was over stabilized by GGA, while DFT+U predicted reliable energetics especially
with spin active systems. Ghosh et al. [160], used DFT+U approach to determine the spin states of CO,
NO and O2 bound to Mn porphyrin on Au(111). The PDFT simulations were used to demonstrate
reversible spin-switching of ligand bound porphyrin/Au(111) system by conformations changing of
porphyrin structure on the substrate. Ligand binding on porphyrin nanowires were also studied using
PDFT simulations. Binding of NO molecule to metal tape-porphyrins [161–163] with PDFT calculations
reveal molecular structure of metal tape-porphyrins has negligible change upon ligand binding but
considerable change in the electronic structure was observed. Additionally, a significant band gap
reduction has been observed upon NO ligand binding.

4. Summary

Periodic density functional theory (PDFT) calculations have been indispensable to bridge the
gaps between observable properties at the condensed phase and the electronic structure of the periodic
system. They led to fundamental understanding and tuning of the solid-state behavior of many
functional materials and interfaces. In this review, a collection of PDFT simulations of porphyrins
in nanostructures and on surfaces were presented. Porphyrins are important compounds used for
many have numerous biological and technological applications. While many reviews of porphyrins
and their derivatives are available in the literature, a review of periodic porphyrin structures has
never been reported to our knowledge. We organized the review based on applications of PDFT
simulations to understand specific structural, conformational, adsorption, electronic, magnetic, charge
transfer properties, and reactivity of porphyrins on surfaces. The typical properties calculated using
PDFT simulations include optimized geometries, binding energetics, density of states, band structure,
spin switching and magnetization, charge transport, STM images (local electronic structure), reaction
intermediates in catalytic reactions, etc. Hence, this review should be of great interest for the porphyrin
research community and to the broader audience performing PDFT simulations.

In our survey of periodic simulations on porphyrins with DFT, plane wave pseudopotential
basis sets were the predominant choice rather than Gaussian type orbital basis sets. Most of the early
simulations were performed with the bottom two rungs of the “Jacob’s ladder” which are the GGA and
LDA type functionals. The drawbacks of using these functionals include underestimation of electronic
bandgaps and weak dispersion interactions, especially with systems involving organic molecules like
porphyrins. LDA overestimates, while GGA underestimates the binding energies in condensed phase
systems like transition metal, metal oxides, carbon, and silicon crystals. Both functionals underestimate
interactions involving organic molecules like porphyrins.

Recently many PDFT studies were performed with dispersion corrected DFT functionals or with
empirical dispersion corrections. Inclusion of vdW interactions greatly improved the calculated binding
energies of porphyrins leading to data that better matched experiments. It was reported that dispersion
interactions are more important for porphyrins on metallic substrates than on non-metal substrates.
Within the last decade hybrid functionals like B3LYP and HSE were used for PDFT simulations of
porphyrins. These functionals improved the band gap and geometric optimizations of porphyrin
nanostructures and interfaces. Our review of the literature also found that DFT+U is the method of
choice for calculations involving magnetically coupled and spin active porphyrin systems. With the
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improvement of DFT functionals and computing capability more and more expensive calculations
were being performed for a fundamental understanding of porphyrin behavior in periodic systems.

Like many quantum mechanical calculations, PDFT calculations have limitations with respect
to the size of the modeled system and accuracy of the energies obtained from DFT calculations.
Additionally, choosing the right DFT functional for modeling a heterogeneous periodic system like
porphyrins is challenging and no single PDFT functional is deemed appropriate for all applications.
Based on the problem of interest like electronic structure, binding energies, excited state properties, etc.,
a variety of PDFT functionals were used to study bulkier systems like porphyrins and phthalocyanines.
Unlike molecular DFT functionals used for porphyrin based systems [24], the number of PDFT
functionals are limited especially for performing time-dependent or excited state systems. In addition,
simulations of larger periodic systems [110] with PDFT is computationally expensive, while ab initio
molecular dynamics (MD) simulations of larger systems are practically impossible.
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