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Abstract: With the accelerated development of medical imaging equipment and techniques, image 
fusion technology has been effectively applied for diagnosis, biopsy and radiofrequency ablation, 
especially for liver tumor. Tumor treatment relying on a single medical imaging modality might 
face challenges, due to the deep positioning of the lesions, operation history and the specific 
background conditions of the liver disease. Image fusion technology has been employed to address 
these challenges. Using the image fusion technology, one could obtain real-time anatomical imaging 
superimposed by functional images showing the same plane to facilitate the diagnosis and 
treatments of liver tumors. This paper presents a review of the key principles of image fusion 
technology, its application in tumor treatments, particularly in liver tumors, and concludes with a 
discussion of the limitations and prospects of the image fusion technology. 
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1. Introduction 

Medical imaging equipment has developed rapidly in the last decade, with widespread usage 
in clinical diagnosis and treatment. Two main imaging modes are employed that utilize different 
principles and equipment. The first is the anatomical imaging mode that mainly provides anatomical 
information with high resolution. The X-ray-based method, computed tomography (CT), which falls 
into the category of anatomical imaging, is the first technique developed for the noninvasive 
acquisition of images within the human body. CT is particularly effective for imaging tissues with 
large differences in density. At present, whole-body scans can be performed with the latest generation 
of CT systems, including multi-slice detectors that allow precise visualization, even for very small 
vessels. Magnetic resonance imaging (MRI) uses radio waves and magnets to generate body tissue 
images. Compared to CT, MRI uses nonionizing electromagnetic radiation, and appears devoid of 
exposure-related hazards. The technique employs radiofrequency (RF) radiation in the presence of 
carefully controlled magnetic fields to produce high-quality, cross-sectional images of the body in 
any plane. Using MRI, high spatial resolution can be effectively used to identify soft tissue within the 
human body [1,2]. 

The functional imaging mode mainly provides functional metabolic information. One such 
method is single photon emission computed tomography (SPECT). SPECT imaging instruments 
provide three-dimensional (tomographic) images of the distribution of radioactive tracer molecules 
introduced into the body which is generated from multiple 2D images of the body at different angles 
[3]. Another widely used method in this mode is positron emission tomography (PET). PET is a 
nuclear medicine functional imaging technique used to observe metabolic processes in tissue of 
organs, as an aid to disease diagnosis [4].  
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The main difference between SPECT and PET is the decay mechanism of the radiotracers used: 
while SPECT measures photons of Gamma decay from a tracer nuclide, the PET scan uses 0.511-kev 
annihilation photons that are created when positrons, which are emitted from radiotracers, come to 
rest and meet with free electrons in organs. At a relatively low resolution, both SPECT and PET can 
be applied to reflect functional and metabolic information. Ultrasonography (US), which also falls 
into this category, is a technique for detecting the scattering and reflection of sound at an ultra-
frequency level that allows the effective imaging of muscle, soft tissue, blood vessel and bone 
surfaces. US equipment is easy to use, and produces real-time images. However, the depth 
penetration of US is limited by several factors, such as the medium through which the ultrasound 
travels. 

All these available image techniques have different strengths and weaknesses. Therefore, an 
optimal combination of these methods can allow a simultaneous expression of information from 
various aspects of the human body within a single image. Such an image can accurately reflect 
internal structure and function, in turn providing physiological and pathological information. These 
image-gathering and analysis procedures compose the medical image fusion process. The current 
review presents a chronicle of available studies on the application of image fusion in malignant tumor 
diagnosis, with particular focus on liver cancer. Various methods exist for a comprehensive liver 
cancer treatment, including surgical resection, radiofrequency ablation, tumor embolization, etc. In 
clinical practice, an individualized treatment plan is established, relying on patient information such 
as the localization of lesions, and is highly dependent upon imaging technology. On the basis of 
Ultrasonography, CT, MRI, PET and other imaging technologies, the key for optimizing 
multidisciplinary treatment for liver cancer is to improve and combine existing medical imaging 
technologies, which would allow the clear visualization of tumor lesions along with their 
characteristic indicators, such as tumor size, margin, the absence of vascular invasion, adjacent 
structure involvement, lymph node metastasis and distant spread. 

The remainder of this article is divided into five sections. Section 2 discusses the imaging 
methods commonly used in liver tumor diagnosis and treatment; Section 3 provides a brief 
introduction of the general procedure used for medical image fusion; Section 4 presents several image 
fusion algorithms; Section 5 describes the application of image fusion in liver tumor imaging; and 
Section 6 covers our Conclusion and suggestions for further research. 

2. Medical Imaging Methods 

2.1. CT 

An X-ray beam is used to scan internal organs up to a certain thickness. In this technique, a 
detector receives X-ray attenuation values of the organs in different directions on this plane, followed 
by obtaining the digital matrix of the tissue attenuation coefficient of a scanning layer after data 
transformation. The values in the matrix are converted and displayed on the fluorescent screen with 
different grayscale in black and white to generate CT images [5]. CT plays a critical role in clinical 
diagnosis and the treatment of liver cancer. 

2.2. MRI 

By applying a certain radiofrequency pulse to an organ in a static magnetic field, H protons in 
the organ tissue are excited, leading to the phenomenon of magnetic resonance. Upon termination of 
the radiofrequency pulse, H protons induce magnetic resonance signals during the relaxation 
process. After receiving magnetic resonance signals, spatial coding and image reconstruction, 
magnetic resonance images are generated [6]. MRI images achieve an excellent soft tissue resolution 
of liver and other organs, with a clear display of anatomical structures, such as vascular and biliary 
systems and lesion morphology, and provide valuable multi-orientation and multiparameter 
information, such as diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and MR 
spectra.  
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These data aid in determining the spatial location of the anatomical structure, and are beneficial 
for the metabolic analysis of liver tumors, leading to improved diagnostic value. However, the image 
can be affected by gastrointestinal gas and respiratory movement, and the location, puncture and 
ablation of lesions under the guidance of MRI all require special instruments and devices. Based on 
the same mechanics as MRI in terms of atomic physics, function MRI (fMRI) generates images of the 
metabolic activities within the anatomic structures generated by MRI scans [2].  

2.3. PET 

A positron that is emitted from a radionuclide-labeled compound (commonly 18FDG) 
annihilates with an electron resulting in two 0.511-kev photons. These two photons are emitted in 
nearly opposite directions (180-degree angle apart, at one particular location in liver), and are 
registered simultaneously by the ring detector around the patient, so that the PET can accurately 
locate, analyze and quantify the distribution of radioactively-labeled drugs in the body. After 
computer reconstruction, three-dimensional human body images are obtained [5]. Changes in the 
physiological and biochemical levels of liver cancer and normal liver tissue cells can be determined 
noninvasively, quantitatively and dynamically in vitro through C, N, O, F and other nuclide markers 
of glucose required for tissue metabolism, with the aim of evaluating the distribution and activity of 
liver cancer cells in patients. Therefore, PET is a functional molecular imaging technique with high 
sensitivity, and can effectively aid in characterizing the metabolism of liver cancer, detecting 
recurrence and evaluating the outcome of radiofrequency or microwave ablation therapy. 

2.4. Ultrasonography and Contrast-Enhanced Ultrasonography 

Ultrasonography is an important tool widely used in the study of the anatomy and morphology 
of the liver. Ultrasonography can be used to obtain sonograms of every section of the organ, which 
allows the detection of morphological and histological changes of organs or lesions to facilitate 
diagnosis. Furthermore, by injecting contrast agent (e.g., microbubbles) into patients, the contrast-
enhanced ultrasonography (CEUS), in which the contrast of structures or fluid within the patient can 
be further enhanced, is often applied for the diagnosis of liver lesions. But, due to the operator 
dependence and the difficulty in detecting the lesion at the top of the liver, and small liver cancer is 
sometimes missed, so it needs to be integrated with other imaging methods. 

All these imaging technologies provide quantitative information from different aspects of tumor 
lesions. The geometrical parameters of tumors, such as lesion size, capsule integrity, lesion blood 
flow and other morphological features, are dependent on Ultrasonography, CT or MRI imaging. On 
the other hand, 18F-FDG PET is the main medical imaging technology used to study the characteristics 
of tumor metabolism. However, limited information is available from a single method. For example, 
ultrasound and contrast-enhanced ultrasound have high diagnostic efficacy in detecting intrahepatic 
lesions and they allow dynamic visualization of lesions from multiple sections, with particular utility 
in the detection of small lesions less than 1 cm, but they could not generate data on the spatial 
structure of lesions and their spatial relationship with the surrounding hepatic artery and portal vein 
system. Whereas, CT or MRI provide information on the relationship between the spatial location of 
lesions and the surrounding structure, but do not allow dynamic observation of liver lesions from 
multiple angles. Therefore, the application of integrated information from a fusion of different 
medical imaging technologies in clinical diagnosis not only achieves the cross-validation of data from 
different imaging methods, but also improves the detection of tumor lesions, facilitating early 
diagnosis and the development of effective treatment plans. 

3. General Procedure of Medical Image Fusion 

Image fusion technology is mainly applied to solve the limitations of single-modal image 
guidance, including optical, medical and electromagnetic tracking imaging [7]. The medical fusion 
method contains two stages: image registration and the fusion of relevant features from the registered 
image.  
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Registration of different imaging modals is performed using external sensor coils, internal 
references, or anatomical markers [8]. The registration of the images requires a method to correct the 
spatial misalignment between the multimodal images that often results from scale changes, rotations 
and translations. This step matches the input images using their characteristics in order to facilitate 
the image fusions. The next stage is to find some rules to integrate multiple input images into one 
comprehensive image. The medical image can be fused by each pixel, feature extraction, region 
segmentation and marker point determination of anatomical structure or lesion condition. After 
fusion is complete, the operator interface often displays with original and overlapping cross-sectional 
images side-by-side. The fused image can help doctors to make accurate decisions for various 
diagnoses. For the efficient treatment of liver tumors, information on tumor size, location and number 
can be obtained by the fusion method accurately. Compared with ultrasound technology used 
previously, the development of new image fusion technology has greatly improved diagnostic 
accuracy [9]. For instance, image fusion guidance technology has been widely used in thermal 
ablation therapy in which two-dimensional Ultrasonography does not clearly show liver cancer 
lesions. This method uses high-contrast CT/MRI along with real-time guidance and the evaluation of 
ablation borders via Ultrasonography to demonstrate clear liver cancer lesions. More examples of 
medical image fusion applied in liver tumor diagnosis and treatment will be further discussed in 
Section 5. 

In these procedures, image registration across modalities is important, and could highly impact 
the qualities of image fusion. As a result, we briefly introduce the medical image registration which 
mainly contains four steps: 

1. Feature extraction: The first step of image registration is to extract image features (feature 
descriptor), such as feature points/edges/contours/areas/structures, from input images. 

2. Feature matching: The second step of image registration is feature matching. It is used to find 
the correspondence between the extracted features from Step 1. 

3. Determination of geometric transformation parameters: This is the most important step in the 
image registration procedure. Based on the correspondence between the extracted features from 
Step 2, a suitable geometric transformation model is selected. Then, based on a certain 
measurement function, the geometric transformation parameters are determined. The 
commonly used geometric transformation models are: 

• Rigid transformation, which is mainly a transformation for rotation and translation. 
• Similarity transformation, which is mainly a transformation for translation, rotation and 

scaling. 
• Affine transformation, which is mainly a transformation for translation, rotation, scaling 

and shearing 
• Projective transformation, which is a combination of transformations, such as translation, 

rotation, scaling and shearing.  

4. Image resampling and registration: Then, with appropriate interpolation function, a floating 
image is mapped to the reference image’s coordinate space to finish the image registration 
(floating and reference images are defined as the input images to be registered). 

Among the above steps, the optimization of geometric transformation parameters in Step 3 is 
crucial for the quality of image registration. A function is often used to measure the similarity 
between the floating and reference images. Common functions are root mean square (rms), 
correlation, normalized cross-correlation, gradient cross-correlation, gradient difference, image 
entropy, mutual information, normalized mutual information, etc. Then, this function is maximized 
by optimizing the transformation parameters. This converted the problem to multiparametric and 
multipeak optimization problems. Traditional optimization methods include the gradient descent 
method, conjugate gradient method and genetic algorithm, etc. 

Recently, deep learning has become more and more popular for image fusions and registration 
[10]. One approach of deep learning used for image registration is to drive iterative optimization 
using deep learning.  
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In such a method, instead of using a traditional feature descriptor, we train deep learning to 
learn the feature descriptor to guide the fusion of the image. For instance, a deep learning algorithm, 
the convolutional autoencoder, is often used to extracted features from the images for the registration 
[11]. Then by optimization methods such as gradient descent, the measurement function is 
maximized and the image is registered. In the medical field, this kind of method has been used in the 
registration and fusion of CT/MR [12,13] and MR/US [14–16]. However, such iterative method often 
requires a long time, and has a difficulty to achieve efficient real-time registration. 

The second approach is to pretrain the deep learning network to directly obtain the 
transformation parameters for the image registration. Such a deep learning network can be further 
divided into two categories: supervised learning and unsupervised learning. Supervised learning has 
been applied to register/fuse CT/US [17] and MR/US [18–21]. The training of the supervised learning 
network requires the ground truth. Two kinds of ground truth are generally used: ground truth data 
from the traditional registration method, as shown in above (i.e., step 1 to step 4) [22,23] and 
simulated ground truth data. For example, Eppenhof and Pluim generated image pairs using random 
transformations and obtained ground truth data for the image registration of CT images [24]. Similar 
ground truth generation methods are used for the fusion of MR images [25]. 

For unsupervised learning, the deep learning network is trained without the need of ground 
truth data. The most widely used network is Voxelmorph. This framework, which was proposed by 
Balakrishnan et al.[26], trains the network using a metric that quantifies image which are similar to 
input images. In the medical field, unsupervised learning has been used for the registration/fusion of 
CT/MR [27–29] and US/MRI [30]. 

4. Imaging Fusion Algorithms 

There are three levels of image fusion: the pixel level, feature level and decision level. Pixel level 
fusion is the most basic image fusion method, which directly acts on the pixels in the image and does 
not need to extract features, but requires strict image registration. Feature level fusion requires 
extracting features in the image, such as size, edge, shape, texture information and other details. 
Decision-level fusion is able to extract, identify and classify valuable objects in the fusion image, and 
perform fusion at a higher level. For medical image fusion, both the pixel level and feature level are 
usually applied. Due to the particularity of liver imaging, it is necessary to combine several methods 
to achieve image fusion. The following are the commonly used image fusion methods. 

4.1. Arithmetic Combination 

The fastest fusion method is the arithmetic combination. Simple weighted fusion, also known as 
‘Weighted Averaging’, is of the most simple and straightforward methods in arithmetic combination. 
The principle of the weighted average image fusion algorithm is to take pixel values of the original 
images directly and perform weighted averaging to obtain the pixel value of the fused image. 
Similarly, in the Simple Maximum/Minimum Method, the resultant fused image is obtained by 
selecting the maximum/minimum intensity of corresponding pixels from the input images. 
Arithmetic combination has the advantages of easy implementation and fast calculation speed. 
However, detailed information within the image cannot be captured, image contrast is reduced, and 
the edge of the image is altered with this technique, resulting in unsatisfactory fusion effects in most 
applications. Furthermore, due to this method requiring strict registration in advance, the fusion 
effect of noisy image is no ideal. 
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4.2. IHS 

A color image can be represented by a three-primary red-green-blue (RGB) color system. 
However, this system does not conform to the human understanding of color. Another method of 
understanding color utilizes hue H, saturation S and intensity I. The hue H is determined by the 
dominant wavelength of the spectrum, saturation S characterizes the portion of the dominant 
wavelength of the spectrum and intensity I represents the brightness of the spectrum. In RGB space, 
three-spectral coordinate (R, G and B) coupling is strong, and changes in any component of the 
spectral information will alter the entire spectrum. As a result, image processing in RGB space is 
difficult. On the other hand, in IHS space, main spectral information is reflected in hue and saturation, 
while changes in intensity have a very limited effect on the spectral information, and are easy to 
process. The main objective in processing high resolution and multispectral images is to add details 
of high-resolution images while retaining spectral information. Consequently, it is easier to conduct 
image fusion in IHS space. Examples of transformation from RGB values to IHS values are shown in 
Equations (1)–(3). In the medical field, IHS is useful for the fusion of Pseudocolor image processing 
and fusion. Pseudocolor image converts the grayscale values to the RGB values. Its aim is to better 
present the details on the medical image in order to obtain a clear visualization of the images. A good 
example of such an image is the Pseudocolor-PET images, which images are widely used for liver 
lesion detection [31,32]. The fusion of Pseudocolor-PET and MRI medical image, which utilize fusion 
methods, such as IHS-PCA [31], IHS-wavelet transformation-based method [33,34] and IHS-salient 
features extraction [35], has shown to be useful for both human visualization and the objective 
evaluation of lesions. 𝐼𝜈𝜈 = 1/3−√2/61/√2  1/3−√2/6−1/√2 1/32√2/60 𝑅𝐺𝐵 , (1) 

H = 𝑡𝑎𝑛 ( ), (2) S = 𝜈 + 𝜈 , (3) 

here, 𝜈  and 𝜈  are the translation values. 

4.3. Principal Component Analysis 

Principal component analysis (PCA) is a technique for dimensionality reduction for a large 
dataset. PCA is mathematically defined as an orthogonal linear transformation method that 
transforms data to new coordinate systems, such that the greatest variance by a scalar projection of 
data lies on the first coordinate, and so on [36]. In this manner, PCA [37–39] helps to reduce the noise 
and redundant information and highlight the key feature in the dataset. PCA is widely used in 
various applications, including image compression, image enhancement, image coding, random 
noise signal removal and image rotation. For image fusion, PCA can extract the key features of the 
images, which highlights the similarities and differences between the input images, while reducing 
the noise level at the same time. Then, based on these key features, we can find the optimal weights 
for transferring the input image information to fused images. Here, we present an example from Miao 
et al. [40] We define elements of matrices 𝐼  and 𝐼  representing the gray level or color of each pixel 
in the input images A and B, respectively. First, the wavelet-based method is used to decompose the 
input images to low and high frequency components. Secondly, by using PCA, the eigenvectors of 
image A and B could be obtained as (XA, XB)T. Thirdly, the weight values of image A and B, w  and w , for the low frequency part, are obtained as: 𝑤 = ; 𝑤 = , (4) 

Fourthly, the low frequency fusion is completed as: 𝐼 = 𝑤 𝐼 + 𝑤 𝐼  (5) 
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At last, the high frequency fusion is achieved by maximum weight method: 𝐼 = max {𝑎𝑏𝑠(𝐼 ), 𝑎𝑏𝑠(𝐼 )} (6) 

Then, the fused image is obtained by combination of the new high frequency and low frequency 
images. In the medical field, PCA has been applied in the fusion of MRI, CT, PET and US [41–43]. 
PCA can also combine with decomposition methods, such as IHS, the pyramid method, Discrete 
wavelet transform [44], the Curvelet transform, Contourlet transform [45] and Non-Subsampled 
Contourlet transform [31,46–56]. 

4.4. Pyramid Method 

The principle of the pyramid method is to decompose individual images within the fusion into 
a multiscale pyramid image sequence (i.e., reduce the resolution of the image in a pyramid sequence 
shown in Figure 1). The low-resolution image is in the upper layer and high-resolution image in the 
lower layer, with the upper layer image being 1/4 of the previous layer image size. The pyramid of 
all the images is fused to the corresponding layer using a specific rule. The synthetic pyramid 
obtained is reconstructed according to the inverse process of pyramid generation. Based on this 
theory, multiple pyramid fusion algorithms (e.g., Gaussian pyramid and Laplacian Pyramid) have 
been proposed with different pyramid decomposition structures, fusion rules and reconstruction 
methods. In the medical field, the pyramid method has been applied in fusing multimodal medical 
images, such as MRI/CT, PET/MRI and SPECT/MRI [57–59]. 

 
Figure 1. Representation of an image pyramid with four levels. 

4.5. Wavelet Transformation Based Methods 

In the field of image fusion, the wavelet transform-based method, which was initially developed 
for signal processing [60], is widely used as high-pass filtering. The detailed image is the result of 
high contrast corresponding to high values in the frequency domain. The detail of image is the result 
of high contrast, which corresponds to high values in the frequency domain. By DWT, we can detect 
these details in the image, using functions that are localized in both space and frequency. For image 
fusion, these detailed pieces of information from input images can then be extracted and fused into a 
new image using certain fusion rules, such as maximum selection, weighted average and PCA. The 
low frequency part of the images can then be fused in a similar way. 

DWT has been widely used in CT/MRI and MRI/PET medical image fusion [61–68]. However, 
DWT is known to be sensitive to the translation/shift of input signals, and therefore, translation 
among signals may exert a negative impact on effectiveness. Contourlet transform is a two-
dimensional image representation based on wavelet multiscale analysis known as Pyramidal 
Directional Filter Bank (PDFB) [69]. Compared with DWT, its basis functions are characterized by 
multiscale features, directionality, anisotropy and locality.  
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Such basis functions effectively represent edge and curve singularity, and allow the efficient 
extraction of geometric and texture information in the image to obtain a better fusion effect. The 
multiscale geometric analytical tool used in Contourlet transform demonstrates the excellent spatial 
and frequency domain localization properties of wavelet analysis, as well as the bonus of 
multidirectional and multiscale characteristics, good anisotropy and suitability to describe the 
geometric characteristics of an image [70,71]. However, for the Contourlet transform, shift invariance 
is lost as a result of its subsampling scheme for the multiscale partition. To overcome this difficulty, 
researchers have introduced the improved version of Contourlet transform, the Non-Subsampled 
Contourlet transform (NSCT) [72]. In the medical field, the Contourlet transform and the NSCT have 
also been to fuse MRI/PET and CT/MRI [70,73,74]. Another deficit of wavelet transformation is the 
lack of ability to represent edges and geometric structures of the image. Curvelet transform [75–77], 
a multiresolution and multi-direction pyramid that can preserve geometric regularity along edges 
[78], has been proposed to overcome this difficulty. Ali et al. [79] proposed a Curvelet transform 
(CVT)-based method for the combination of CT and MRI. However, as highlighted in other studies 
[80], CVT is not built directly in the discrete domain, and thus does not provide a multiresolution 
representation of geometry. Shearlet transform (ST) and non-subsampled Shearlet transform (NSCT) 
[81–84] are other sets of state-of-the-art tools with optimal use in sparse directional image 
representation. Based on composite wavelets, an optimal approximation of 2D functions is obtained. 
Compared to the Contourlet method, these methods have the advantage of directional selectivity and 
computational efficiency. Due to no restrictions on the number of directions for shearing, ST is used 
for the fusion of 2D and 3D medical images [82,83] and NSST has application in CT/MRI image fusion 
[85,86].  

4.6. Pulse-Coupled Neural Network 

For image fusion, a pulse-coupled neural network (PCNN) is often used as a feature extraction 
method [87,88]. As shown in Figure 2, the PCNN adopts a single layer, two-dimensional and laterally-
connected neural network. The neurons are connected with the pixels in the input images directly. 
So, the size of PCNN is equal to the size of images. Each of the neurons is also connected with 
neighboring neurons, as shown in Figure 2. Image feature extraction using PCNN is an iteration 
process. At each iteration, each neuron receives the corresponding pixel’s color intensity as an 
external stimulus. The outputs of its neighboring neurons from the previous iteration are treated as 
an internal stimulus and are combined with the external stimulus. When the total stimulus exceeds a 
threshold, the neuron will pulse (or fire) to have an output intensity equal to one at the corresponding 
location in the output image. The threshold at the neuron will significantly increase its value after 
firing and it decays exponentially until the neuron fires again. 

 
Figure 2. Representation of an image pyramid with four levels [89]. 

Through iterative computation, PCNN neurons produce a series of pulse outputs, which contain 
different features (e.g., high frequency features, low frequency features or edges) of the input images, 
and can be used for various image processing applications. Multichannel PCNN is proposed to 
process multiple feature images with a single/multiple PCNN to fuse these images [90].  
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Nevertheless, PCNN has its shortcomings, such as numerous parameters and the complex 
process of setting parameters. To date, several novel algorithms to optimize the PCNN parameters 
have been introduced to improve calculation speed [91,92]. In image fusion, PCNN has also been 
used as fusion rule for wavelet transform-based methods, such as DWT [93–96], Contourlet transform 
[97–100], NSCT [101–105], ST [106–109] and NSST [110]. In medical imaging, PCNN is widely applied 
to fuse CT/MRI [94,111–113], MRI/PET [94], MRI/SPECT [113,114], US/SPECT [111] and 
multiparametric MR images [84]. 

4.7. Fuzzy Logic Based Methods 

Fuzzy Logic is a multivalued logic that allows intermediate values to be defined between 
conventional evaluations, such as true/false, yes/no, high/low. Fuzzy systems refer to those that are 
directly related to fuzzy logic. These systems are mainly composed of fuzzification, knowledge bases, 
fuzzy inference engines and defuzzification. Fuzzification is the conversion of the input of a system 
to fuzzy sets with some degree of membership anywhere within the interval using a membership 
function. A membership function is a curve that defines how each point in the input space is mapped 
to a membership value. The knowledge base stores all information on the fuzzy controller, including 
knowledge and required control objectives in the specific application field. These core factors 
determine the performance of the fuzzy controller. The function of the fuzzy inference engine is to 
convert the fuzzy “if-then” rule into a type of mapping according to the fuzzy logic rule. 
Defuzzification is the conversion of the fuzzy output quantity into clear output. 

Fuzzy logic is also applicable to image fusion. In this process, local features of the image are 
extracted and combined with fuzzy logic to compute weights for each pixel [115,116]. The fuzzy logic-
based fusion rule is often used to cope with blurry image fusion. As a fusion rule, it could be further 
combined with DWT [117], NSCT [35,118,119] and NSST [120] for medical imaging. In this 
application, DWT/NSCT/NSST was performed on source images to obtain high- and low-frequency 
sub-bands. Next, a logic-based fusion rule was applied for the fusion of high [35,117,118] or low [120] 
sub-bands, and for the enhancing of the global contrast of the image [119]. The Fuzzy logic algorithm 
could overcome defects of losing edge information and color distortion in DWT/NSCT/NSST to 
improve image contrast. Neuro-fuzzy combines artificial neural networks with fuzzy logic to 
generate a resulting hybrid intelligent system. The humanlike reasoning style fuzzy system is 
combined with the learning procedure of artificial neural networks. This approach utilizes an 
artificial neural network to train the parameters of the membership function, and has been used in 
the fusion of MRI/CT images [121,122]. Similar to fuzzy logic fusion, neuro-fuzzy logic can be 
combined with WT, Contourlet transform [123], NSST [124] and NSCT [125] to optimize fusion 
performance. 

4.8. Sparse Representation and Compressive Sensing Based Methods 

Recently, the sparse representation of signals has become a popular topic of research. The 
method assumes the input image (usually expressed as a column vector) can be represented by a 
linear combination of several elements (a series of column vectors), which is referred to as atoms. The 
atoms compose a dictionary. In this technique, the most important issue is the dictionary choice. Two 
methods are usually employed: (1) an analytical dictionary built by selecting a specified 
transformation matrix via Fourier, wavelet, Curvelet and Gabor transform, and (2) dictionary 
learning built based on data training. The second method effectively achieves higher accuracy in 
extracting complex image features, a better space representation of various features of images and 
good adaptability. The common procedures in this category include K-means generalized SVD (K-
SVD) [126–130], PCA [131,132], online dictionary learning, optimal directions and adaptive sparse 
representation [133]. However, such multidimensional signal/image processing usually involves a 
large amount of data. According to the compressive sensing theory [134], the image can be 
compressed with a few random projections if the image is sparse in a certain transform domain and 
can be sparsely represented [135–138].  
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Experimental results show that the image fusion using compressive sensing could preserve the 
rich texture information of the input images while reducing the amount of data required and the 
complexity of the algorithm processing [135,136]. During training, the dictionary for the sparse 
representation, the test sample (input images), can be represented as a column vector. Similarly, we 
create a dictionary matrix of a column vector which represents the training samples (atoms). 
Compressive sensing, using random projection, can be applied to reduce the dimensions of both the 
test vector and the dictionary matrix. Then, representation coefficients are obtained using sparse 
coding techniques, such as orthogonal matching pursuit, simultaneous orthogonal matching pursuit, 
a joint sparse representation model, approximate sparse representation with multi-selection strategy 
and convolutional sparse representation. At last, the sparse representation coefficients from the input 
images are fused by a certain fusion rule. Finally, the fused image is reconstructed by fused sparse 
representation coefficients. For instance, PET/CT/MRI images are fused using the K-SVD-based 
learning dictionary and Orthogonal Matching Pursuit (OMP) algorithm [139]. Similarly, Sparse 
representation-based methods have been applied for fusions of CT/MRI and MR images 
[138,140,141]. 

4.9. Edge-Preserving Based Methods 

The edge-preserving filter emerged is an effective tool for image processing applications. The 
overall grayscale of traditional image smoothing filtering tends to be consistent in the neighborhood 
to achieve a smoothing effect. It is useful for the image with the similar pixel values (grayscale). 
However, this assumption does not hold at the edge of the image, which contains key information, 
since in this region, the grayscale tends to vary significantly with space coordinates. These grayscale 
variations provide meaningful image information. Thus, in many applications, weakening or filtering 
of the edges of the image during the filtering process is not desirable. Bilateral filters [142,143] can 
solve the problem of low-pass filtering. A grayscale difference weighting value is introduced into the 
original spatial low-pass filter based on the original spatial filtering weight. The grayscale phase and 
spatial difference distances have similar local characteristics. This suggests that when a point differs 
greatly from the center point in grayscale, it is considered that the point is distant from that center 
point. Guided filter is a similar edge-preserving smoothing filter that applies an optimal local linear 
approximation to achieve the edge-preserving goal. In this method, the guiding filter guides the filter 
with a guiding graph G, while the filter window radius, r, and the smoothing intensity, ε, are 
adjustable parameters. The linear transformation of the model ensures that the appearance of the 
output edge only depends on the edge of the guiding graph G. After the image is smoothed by edge 
preservation, the large edge structure of the image is preserved, and small fluctuations corresponding 
to noise are smoothed out. The above characteristics of bilateral and guided filters can optimize fusion 
weight to ensure that the fusion is more smoothly connected and visually natural. These features are 
extremely useful in medical image fusion applications, such as fusion of CT and MR images [142,143]. 

4.10. Deep Learning(DL) Methods 

The DL algorithm has strong ability of feature extraction and data representation, and has made 
advanced achievements in medical image processing. The application of DL techniques in the field 
of image fusion has emerged as an active topic in the last three years. 

4.10.1. Convolutional Neural Networks 

The popular deep learning model, convolutional neural networks, can provide some new way 
in image fusion. Convolutional Neural Networks (CNNs) are able to extract the most important 
features from a large number of samples. The CNN uses a system much like a multilayer perceptron 
that has been designed to reduce processing requirements. CNNs consist of an input layer, an output 
layer and a hidden layer that includes multiple convolutional layers, pooling layers, fully connected 
layers and normalization layers. A convolutional layer defines multiple filters as a window and 
subsequently scans the entire image through this window.  
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It can output many feature mappings after training. The output can provide a multiscale and 
multiangle feature, it can also provide the location information of the feature. The advantages of 
feature extraction by CNN can be fully utilized in pixel or feature level image fusion. Another 
operation in CNNs is spatial pooling (max-pooling, min-pooling), which can bring some desirable 
invariances, including translation, rotation and scale into the model to a certain extent. Fully 
connected layers act as the role of a classifier. CNN overcomes the difficulty on manually designing 
complicated activity level measurement and fusion rules [144]. The activity level measurement and 
fusion rule can be jointly generated via training a CNN model. The feasibility of CNNs used for 
medical image fusion have already been proposed [145]. CNN can decompose the original images to 
high frequency and low frequency images [146], and select the rule of regional matching to fuse the 
two high frequency and low frequency images to get the final fusion images. Kumar et al. [147] 
developed a supervised CNN to learn to merge the data from PET-CT images of lung cancer. CNN 
has also been applied to fuse medical images MRI/CT, MRI/SPECT, multiparametric MR images [148] 
and PET/MRI [149]. CNN can also be combined with a wavelet transform for the fusion of CT and 
MR images [150]. In this method, the wavelet transform coefficients are first obtained by 
decomposing the input images. The next step is to use the trained CNN model to improve the high 
frequency coefficient’s resolution. A similar procedure is applied to combine CNN with NSST to 
merge the CT and MR images [151]. 

4.10.2. Convolutional Sparse Representation  

Sparse representation has been widely used in various image fusion. Due to the modeling 
burden and computational cost, traditional sparse representation has always been performed on local 
image patches rather than on the entire image. The concept of convolutional sparse coding (CSC) 
originates from the deconvolutional networks proposed by Zeiler et al. [152]. Its fundamental 
principle is to get an image’s convolutional decomposition with a sparsity constraint. As an image 
representation approach, CSC is also termed as convolutional sparse representation (CSR). On the 
contrast to the conventional sparse representation, the sparse representation of an entire image can 
be computed in the CSR model. In this CSR model, the obtained representation is single-valued and 
optimized over the entire image [153,154].  Liu et al. [153] introduced the CSR into the field of 
medical image fusion on MRI/CT. Qiu C et al. proposed a novel fusion method based on 
convolutional sparse representation (CSR) to fuse the mis-registered GFP and phase contrast images 
in biomedical image fusion [155,156].  

4.10.3. Stacked Autoencoders 

A standard stacked autoencoder (SAE) is formed by stacking multiple autoencoders. The 
autoencoder can be learned by pretraining each layer before its successor using a back-propagation 
algorithm. At each layer, an autoencoder is used to obtain a set of features by jointly using an encoder 
and a decoder [157]. To prevent learning a trivial solution, stacked sparse autoencoders and stacked 
denoising autoencoders [158] have been applied to improve the SAEs’ methods. SAE-based DL 
models have been applied to image fusion for multimodal medical image feature extraction. These 
extracted features can be used to design optimal fusion rules [159] and to obtain better fusion images. 
In this method, a multitask loss function related to image fusion quality is used to train the network. 

In summary, the clinical applications of the fusion methods are shown in Table 1. 

4.11. Image Fusion Indicators 

Several image fusion indicators can demonstrate fusion quality. One is the fused image 
assessment. The other is the fused image metrics. We can obtain the assessment results by the 
subjective ratings, computational metrics and objective human tasks.  

 
A number of image quality metrics [160] have been proposed, including mean square error 

(MSE), root mean square error (RMSE), peak signal-to-noise ratio (PSNR), mean absolute error 
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(MAE), quality index, mutual information (MI), the Petrovic and Xydeas metric and Piella’s Quality 
Index [161]. 

Table 1. Major medical image fusion methods. 

Fusion methods Diagnostic modality References 
Arithmetic combination US, MRI, PET, CT [8,63,164,168,169,72,176–178] 

IHS MRI/PET [31–35] 
PCA US-PET/CT, MRI/CT [41–43] 

Pyramid based methods MRI, CT, PET, SPECT [57–59] 

Wavelet transformation-based 
methods 

CT, PET, MRI, SPECT, 
Ultrasonography, Multiparametric 

MR images 

[33,34,7–49,52–57,66–68,70–
74,82,83,85,86,117,181,182] 

Pulse-coupled Neural network 
methods 

CT, PET, MRI, fMRI, SPECT, 
Ultrasonography, Multiparametric 

MR 
[94,111–114,84] 

Fuzzy logic-based methods 
CT, PET, MRI, MRA, fMRI, SPECT, 

Ultrasonography 
[121–125] 

Sparse representation and 
compressive sensing-based methods 

PET, CT, MRI, Multiparametric MR [138–141] 

Edge-preserving based methods CT/MRI [142,143] 

Deep Learning 
PET-CT, MRI-CT, MRI-SPECT 

Multiparametric MR 
[12–21,27–30,145–151,153] 

5. Clinical Applications of Image Fusion in Liver Cancer Diagnosis and Treatment 

5.1. Ultrasonography/MRI, Ultrasonography/CT and Ultrasonography /PET-CT 

Ultrasonography, a traditional, practical and convenient imaging technology, presents major 
advantages in the diagnosis of liver cancer. The recently developed ultrasound-based fusion imaging 
technology plays an important role in early diagnosis and ensuring minimally invasive procedures 
[162]. Several liver tumor types exist, including benign and primary liver malignant tumors and 
metastatic liver cancer. Benign liver lesions include hemangioma, focal nodular hyperplasia (FNH) 
and hepatic adenoma. Primary liver malignancies originate from hepatocytes, intrahepatic bile duct 
epithelial cells, endothelial cells and connective tissue. A number of tumor types, such as FNH and 
hepatic adenoma, have similar manifestations in enhanced CT or dynamically-enhanced MRI, and 
are therefore often difficult to distinguish. As the concept of fusion imaging technology was gradually 
implemented in clinical practice in the 1990s, ultrasonography was initially applied to the field of 
image fusion to identify the types of liver tumor [163]. 

CEUS/CT and CEUS/MRI fusion images were successfully generated and employed to 
dynamically observe blood flow in lesions and the blood perfusion of tumors, facilitating the 
diagnosis of different types of intrahepatic lesions, and in particular, minor lesions. CEUS/CT and 
MRI fusion imaging clearly achieves higher diagnostic efficacy than CEUS, CT or MRI alone. At 
present, image fusion technology based on CEUS is mainly applied for (1) diagnosis and treatment 
of small liver cancer, (2) the evaluation of minimally invasive treatment methods, such as liver tumor 
TACE and RFA, and (3) the early diagnosis and treatment of new or recurrent liver cancers or liver 
metastases after surgery. 

5.1.1. Utility of CEUS/MRI in Diagnosis and Treatment of Small Liver Cancer 

The natural course of subclinical stage liver cancer is at least two years. Through the study of 
subclinical stage liver cancer, the 5-year survival rate of small liver cancer is markedly higher than 
that of advanced large liver cancer.  

However, the clinical diagnosis rate of small liver cancer is a big problem for clinicians. In 
addition to screening for AFP indicators in blood samples, effective imaging examination methods 
urgently require application to optimize clinical practice. 
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Contrast-enhanced ultrasound has a high diagnostic efficacy for liver lesions, especially small 
lesions less than 1 cm [164]. However, Ultrasonography presents inherent limitations. First, 
researchers with significant clinical experience are essential for effective implementation. Second, 
Ultrasonography lacks high resolution, and is unable to provide information on spatial hierarchical 
relationships. As mentioned above, MRI images are characterized by high soft tissue resolution and 
multiple signals, especially for intrahepatic vessel imaging. At the same time, micro-cancerous 
nodules, precancerous nodules and vascular cancer thrombus display different signals on MRI 
sequences. Introduction of the liver-specific contrast agent, Gd-EOB-DTPA (i.e., Gadoxetate 
Disodium-ethoxybenzyl-diethylenetriamine pentaacetic acid), has greatly improved the image 
quality of enhanced MRI scans, clearly revealing the boundaries of liver cancer and micro-lesions 
[165]. 

Multistage image fusion technology of contrast-enhanced ultrasound and MRI is reported to 
improve the accuracy of the diagnosis of small liver cancer. Originally, conventional ultrasound and 
MRI were used to conduct an image fusion of the axial profile of the liver. Furthermore, upon 
combination of contrast-enhanced ultrasonography to observe the blood flow direction of liver 
lesions, data from the fusion image of contrast-enhanced ultrasound (CEUS) and magnetic resonance 
imaging (MRI) allowed the determination of the three-dimensional parameter index of tumor lesions 
in liver (size, spatial location, blood supply arteries, drainage area), resulting in increased detection 
rates of suspicious small liver cancer. Moreover, the main blood supply source of liver cancer, portal 
vein tumor thrombus and the specific hepatic arterioportal fistulas caused by tumor pathological 
factors were clearly displayed. 

5.1.2. Utility of CEUS/MRI in Radiofrequency Ablation of Liver Cancer 

Radiofrequency ablation of liver has been widely applied in the radical treatment of small liver 
and multinodular liver cancers due to multiple advantages of safety, simplicity and minimal 
invasion. The 5-year survival rate following radiofrequency ablation of small liver cancer is reported 
to be close to that of surgical resection [166]. Based on the advantages of CEUS/CT fusion imaging 
technology, local ablation of liver tumors has gradually become an important supplementary adjunct 
to the surgical treatment of primary liver cancer and colorectal cancer with liver metastases. 

CEUS/CT fusion imaging has many advantages over conventional ultrasound-guided treatment 
for liver lesions that are difficult to ablate. Conventional Ultrasonography is unsuitable in the 
following situations: (1) the target lesion for ablation shows a similar echo signal to surrounding 
sclerosing nodules of liver tissue, which are difficult to identify owing to low spatial resolution, (2) 
some target lesions cannot be clearly displayed due to the interference of diaphragm movement or 
close proximity to the diaphragm, colon and gas movement, and (3) after repeated TACE or RFA 
treatment, the local echo of advanced liver tumor lesions is mixed, the lesion boundary is blurred, 
and it is difficult to identify the initial and recurrent lesions. CEUS/CT fusion imaging technology 
solves the above issues by not only taking into account the advantages of the real-time and 
continuous dynamic observation of the ablation effect, but also combining the characteristics of high-
resolution-enhanced CT localization of lesions. Therefore, accurate needle placement for lesions is 
achieved under difficult conditions, and the flexibility of Ultrasonography is used to adjust the 
direction of intraoperative needle insertion to pinpoint the locations of difficult lesions. Recent 
reports indicate that the success rate of fusion imaging-guided radiofrequency ablation technology 
has increased to 93% [8]. CEUS/CT fusion imaging additionally allows multiple ablation plans for 
complex liver lesions based on the characteristics of enhanced CT three-dimensional imaging, the 
reasonable placement of needles and the needling path, along with the formulation of other specific 
plans to reduce the occurrence of accidental cases of the mis-penetration of the anatomical structure 
and vital vessels around the lesion, such as the diaphragm, colon and small intestine, thus avoiding 
the incidence of pneumothorax, hydrothorax, colon fistula and intestinal fistula after radiofrequency 
ablation. In view of the above advantages, CEUS/CT fusion imaging technology facilitates precise 
liver radiofrequency ablation treatment, which has a high clinical value. 



Appl. Sci. 2020, 10, 1171 14 of 28 

5.1.3. Utility of CEUS/PET-CT in Transarterial Chemoembolization Treatment of Liver Cancer 

Transarterial Chemoembolization (TACE) has been employed for the treatment of liver tumors 
since the 1980s. With increasing information on the mechanisms underlying liver cancer progression, 
clinicians are gradually realizing that surgical resection is inadequate to treat cases with a 
background of liver cirrhosis and the biological characteristics of polycentric or multiple liver cancer, 
which are responsible for the high recurrence of liver cancer after surgery [135]. In addition, 
pathologists have confirmed that once the size of the hepatocellular carcinoma exceeds 5 cm, the 
incidence of tumor lesions invading the portal and hepatic vein branches to form vascular thrombus 
vessels is greatly increased, which is the basis of intrahepatic dissemination and distant 
hematogenous metastasis. TACE therapy for liver cancer has been gradually applied for clinical 
treatment with minimal trauma and significant efficacy. However, clinicians are yet to establish the 
type of liver tumor suitable for TACE therapy, the optimal means to evaluate the efficacy of TACE 
therapy and the specific indicators that should be evaluated before intervention. According to clinical 
practice, before interventional embolization for liver cancer, the scope of lesions and the number of 
sub-lesions should be determined, considering the clinical difficulty of the TACE-mediated control 
of the intrahepatic dissemination of tumors. Methods of application of existing imaging technologies 
to evaluate the residual tumor range after TACE, the specific times of new rounds of TACE treatment, 
and outcomes of tumor necrosis after treatment, are of clinical significance. 

TACE treatment is based on vascular embolization, and its effect depends on efficient blood flow 
into the tumor. Although enhanced CT or MRI is currently accepted as the gold standard for the 
imaging diagnosis of liver cancer, information provided by enhanced CT or MRI is mostly static, 
which is unable to help clear tissue perfusion of the tumor-bearing liver segment. Detailed images of 
the blood vessels furnishing liver cancer could not be clearly defined in previous analyses, and it was 
therefore impossible to assess whether the route of TACE into the tumor-bearing liver segment was 
effective, and the level of tumor necrosis after TACE. CEUS can be used to display micro-perfusion 
in liver tissues in real time, but its success is highly dependent on the experience of the operator, with 
interference from various objective factors. First, reactive congestion of liver tissue around the lesion 
in the early stages after interventional embolization is reported to affect measurement of the range of 
residual tumor lesions [168]. Second, contrast-enhanced images of the focal arterial stage were not 
evident when TACE was applied to intrahepatic cholangiocarcinoma with blood supply deficiency, 
and the detection rate of residual lesions was low. Additionally, contrast enhancement and regression 
were rapid in the arterial phase of tumor lesions with a rich blood supply, presenting the imaging 
characteristics of “fast in and fast out” [164]. CEUS may overlook residual lesions in different section 
scans. CEUS/PET-CT fusion imaging technology integrates the advantages of CEUS and PET-CT or 
enhanced PET-CT to display iodine-oil deposition, the even distribution of the embolization agent 
and the area of tumor necrosis in liver cancer. Therefore, the technique allows not only accurate 
estimation of the scope of the tumor lesion necrosis area after TACE, but also the recognition of blood 
flow signals in the necrotic area and a timely detection of residual lesions, which is of significant 
value in improving the efficacy of TACE, reducing recurrence, and ultimately improving the survival 
rate and the quality of life of patients. Due to the speed requirement of real-time CUES and CT/MRI 
fusion, arithmetic combination is usually used in the above clinical applications. Here, we list one 
example to show the influence of image fusion of CUES and CT/MRI images in the real clinical 
application. The first example is from Xu et al. [169].  They performed CT/MRI and CEUS fusion 
imaging to evaluate treatment responses of 157 patients. From the results, if only the US modal is 
used, there were 26.7% (41/157) of inconspicuous lesions observed in the enrolled patients. While if 
US modal is fused with CT/MRI, there were only 1.3% (2/157) of inconspicuous lesions observed. One 
image fusion example of CEUS and MRI is shown in Figure 3 from Xu et al. [169]. 
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Figure 3. A 51-year-old male. (a,b) Contrast-enhanced computed tomography (CT) indicates a liver 
tumor located in segment 7. Arterial enhancement and delay washout were observed. (c) A 
hypoechoic lesion in Ultrasonography (US). (d) Real-time US was successfully matched with 
immediately acquired pre-ablation 3DUS. (e) Real-time US was matched with pre-ablation CT volume 
images successfully. (f) Ablation was applied under the guidance and monitoring of US. (g) Contrast-
enhanced ultrasonography (CEUS) was performed and fused with pre-ablation 3DUS. The ablation 
zone completely covered the target tumor and the 5-mm ablative margin. (h) CEUS fused with pre-
ablation CT indicated the ablation zone completely covered the target tumor and the 5-mm ablative 
margin. (i) Subsequent contrast-enhanced CT within three months confirmed that the tumor had been 
completely ablated [169].  

5.2. CT/MRI 

5.2.1. Detection of Intrahepatic Cholangiocarcinoma 

Intrahepatic cholangiocarcinoma (ICC) is the second most common hepatic malignant tumor 
type after hepatocellular carcinoma, which is characteristically associated with invasive growth, the 
occurrence of satellite foci and intrahepatic metastasis [164]. Preoperative imaging findings of 
intrahepatic cholangiocarcinoma foci and their sub-foci and accurate delineation of the boundaries 
of tumor lesions provide the basis for good surgical results. To improve the long-term survival rate 
of patients with bile duct cell carcinoma, the elucidation of the spatial anatomical relationships of bile 
duct cell carcinoma foci with intrahepatic portal vein and hepatic venous systems, and an 
improvement of the R0 resection rate, are necessary steps. 

Currently, multistage-enhanced CT and dynamic-enhanced MRI are commonly used in clinical 
practice for the detection of intrahepatic cholangiocarcinoma. These two technologies have the 
following disadvantages: the diagnostic rate for small tumor lesions < 1 cm is not high, and an 
accurate display of tumor boundaries when the lesion differentiation degree is low and the capsule 
is incomplete, is difficult. The liver-specific contrast agent Gd-EOB-DTPA-enhanced MRI scan has 
the advantage of clearly displaying tumor lesion boundaries and intrahepatic microscopic lesions. 
However, due to the length of time required for MRI, images of intrahepatic vessels are likely to 
contain artifacts due to respiratory non-coordination [170]. With an extensive clinical application of 
medical image fusion technology, researchers have circumvented the disadvantages of the above 
techniques via the preoperative fusion of enhanced CT/MRI imaging in ICC. Fusion imaging allowed 
the determination of whether or not the lesion invades important hepatic vessels as well as 
establishment of the anatomical relationship between cholangiocarcinoma and satellite sub-focal 
lesions.  
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In other words, the technology facilitated the quantitative evaluation of whether main and sub-
focal lesions were in the same tumor-bearing liver segment, and thus the possibility of combined 
vascular resection. In this way, preoperative assessment could be used to effectively guide whether 
to perform regular segment resection, combined segment resection or enlarged lobectomy, leading 
to the avoidance of unexpected situations, such as postoperative liver insufficiency and liver failure. 

5.2.2. Surgical Operation Assistance 

Image fusion is a valuable tool for planning treatment strategies and examining pathological 
changes. The CT portal vein image is automatically registered with Gd-EOB-DTPA-enhanced MRI 
images using Mitworkbetch software prior to the operation. The CT-MRI fusion image provides 
detailed lesion information, in turn, improving diagnostic accuracy [171,172]. At the same time, three-
dimensional models and virtual surgical images based on CT/MRI fusion image reconstruction are 
applied to guide the key surgical procedures. Combined with indocyanine green molecular 
fluorescence images, CT/MRI image fusion efficiently defines tumor boundaries and identifies 
hidden microscopic lesions, leading to improved surgical precision. In addition, fusion imaging is 
particularly useful for lesions for which anatomical images are difficult to obtain from various angles 
with conventional techniques, such as anatomically complex hilar lesions. Based on tumor location 
in combination with the distance between the tumor and intrahepatic vasculature and spatial 
positional relationship, the optimal virtual resection plane can be determined. Additionally, fusion 
imaging may be effective for therapeutic evaluation. Posttreatment changes can be easily clarified by 
creating a fused image prior to treatment. Moreover, since 3D images can be obtained without 
difficulty, we may be able to successfully simulate surgical treatment in the future. Fusion imaging 
further allows patients to visually understand the disease process. 

Intraoperative bleeding is a critical aspect of liver surgery, and an important factor affecting the 
success of surgery and the postoperative recovery of patients [173]. Enhanced preoperative CT/MRI 
fusion imaging can assist surgeons to better understand information related to intrahepatic vascular 
alignment, portal vein alignment variation, location of main hepatic vein branches and spatial 
distance from the tumor lesions. Thus, identification of important vessels and anatomical markers 
surrounding the lesion can be improved by the assessment of enhanced CT/MRI image fusions before 
the operation, which is vital in reducing intraoperative bleeding and operation times and accelerating 
postoperative recovery. Queisner et al. [174] conducted a series of clinical studies to evaluate the 
efficiency of contrast-enhanced CT/MRI image fusion technology in hepatectomy for different 
anatomical locations. Data from their study suggest that most preoperative surgical planning 
schemes based on image fusion are similar to the actual operative procedure conducted following 
the exploration of the liver. Therefore, routine preoperative contrast-enhanced CT/MRI image fusion 
could provide a valuable guide for planning surgical procedures, leading to the improvement of 
surgical treatment outcomes. 

For the fusion of CT and MRI in real clinical applications, the common methods are Arithmetic 
combination [172], the PCA-wavelet transformation-based method [47–49,53,54,56,117] and the 
Pyramid method [58,59]. Here, we show one real clinical example for the assessment of the 
cryoablation margin using MRI-CT fusion imaging in hepatic malignancies [175]. From their study, 
it is shown that MRI-CT fusion imaging was achieved successfully in 46 (97.9%) of 47 lesions, and 
was useful for evaluating the Minimal ablative margin (MAM) of cryoablation in hepatic 
malignancies. An example of the fused MRI-CT images from Chen et al. [175] using Arithmetic 
combination is shown in Figure 4. 
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Figure 4. A 59-year-old man with hepatocellular carcinoma (HCC) following radical resection, who 
was treated with percutaneous cryoablation. (a) A single tumor measuring 0.8 cm is noted in segment 
5 on the portal phase of contrast-enhanced magnetic resonance image (MRI) before cryoablation. (b) 
The intraoperative CT image at the end of cryoablation shows a clear ablation zone. (c) The fusion 
image is created after automatic rigid registration combined with manual correction. The medication-
assisted manipulation (MAM) is categorized as group II: MAM 0e5 mm. (d) Contrast-enhanced MRI 
image obtained 4 months after cryoablation shows Local Tumor Progression (LTP) [175]. 

5.3. PET/CT & PET/MRI 

PET/CT is the most widely used fusion imaging technique in clinical diagnosis. However, due 
to its imaging principles, PET/CT is less effective in locating tumor lesions in spatial resolution, and 
can only show a specific standard uptake value (SUV) range, which fails to accurately evaluate liver 
tumor position and its adjacent relationship in anatomical space. PET/MRI fusion technology has 
greater advantages in the assessment of tumor morphology, function and metabolic imaging than 
PET/CT [176,177]. Firstly, based on the advantages of diffusion-weighted imaging (DWI), perfusion 
imaging PWI and MR spectrum, MRI is far superior to CT in the functional imaging of human soft 
tissue organs. Secondly, the PET/MRI imaging system does not impose an ionizing radiation burden 
on the patient or operator. Thirdly, on CT images, signals of some abdominal and pelvic lesions may 
be disrupted by peristaltic bowel, poor bladder filling or uterine translocation. This type of 
interference is often unavoidable in the imaging process and affects the observation of diseased 
organs, which can be effectively overcome by the hybrid technology conditions of PET/MRI [178]. 

Clinical findings suggest that PET/MRI has an advantage in regular postoperative follow-up for 
patients at high risk of liver metastases from colorectal cancer with regard to the monitoring of tumor 
recurrence, especially in distinguishing inflammatory tissue around the surgical area of rectal cancer 
lesions, distant liver metastasis and the clinical TNM stage. With regard to adjacent tissue, taking into 
consideration both the metabolism of 18F-FDG in postoperative inflammatory tissues of rectal cancer 
and DWI images in enhanced MRI, morphologic and functional imaging can effectively discriminate 
whether the newly formed mass in the rectal cancer area is an inflammatory scar or recurrent tumor 
tissue [179]. In terms of N-staging, 18F-FDG activity is not specific to cancer, since it has been observed 
in macrophages involved in inflammatory and infectious diseases. Cancer patients with acute 
inflammatory or infectious diseases also display high SUV signals on PET/CT images, which makes 
it impossible to determine whether lymph nodes with high metabolic signals present an 
inflammatory lesion or neoplastic metastasis that affects the N stage of correctly diagnosed cancer 
patients. Owing to the significant benefits of the MRI in soft tissue imaging of lymph nodes, PET/MRI 
is obviously superior to PET/CT in distinguishing internal lymph node structures. Taking the 
morphological, functional and metabolic features of suspected lymph nodes into consideration, 
PET/MRI can effectively distinguish tissue structures, such as fat hilum, margin and necrotic area 
within lymph nodes, which allows determination of the tumor metabolism of lymph node tissue with 
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high suspicion of metastasis, and thus the differentiation of malignant from benign lymph nodes. 
With regard to M-staging, PET/MRI, which can distinguish metastatic lesions less than 1 cm, is of 
greater diagnostic value in patients with suspected liver metastasis of rectal cancer. Reiner reported 
a higher diagnostic rate of PET/MRI relative to enhanced CT/PET fusion [104]. Simultaneously, 
PET/MRI in the diagnosis of primary liver cancer can clearly distinguish whether the portal and 
hepatic vein systems display any important pathological features of tumor thrombus involvement, 
which can provide a foundation for clinical decisions of subsequent treatment. For the fusion of PET-
MRI for clinical applications, the wavelet transformation-based method [66,73,74,130], IHS-PCA[31] 
and deep learning methods [151,154] are generally used. On the other hand, wavelet transformation-
based methods [52,57,181,182] and deep learning [147] are generally applied for the fusion of PET-
CT. Here, we show an example in Figure 5, which compares the accuracy of the fused image of 
PET/MRI and single modal MRI in the correct identification of a patient with liver lesions  [183]. The 
data from this study indicate that the fusion of PET/MRI can increase the identification rate of the 
liver malignant lesion  from 94.4% to 100%. 

 
Figure 5. A 25-year-old female patient with a history of colorectal cancer presented multiple liver 
lesions after surgery. The focal nodular hyperplasia (FNH) in the right liver shows an arterial contrast-
agent enhancement (A), and is still hyperintense in the liver-specific contrast phase (C). No significant 
18F-FDG-uptake is seen (B,D). A second lesion in the right liver is rated as a colorectal liver metastasis 
due to incomplete resection. Tumor lesion is neither detectable by MRI without liver-specific contrast 
phase nor with liver-specific contrast phase (E,G). In fused PET/MR images (F,H) the remaining 
tumor tissue lesion could clearly be identified. Additional lesions near the liver hilus are adenomas 
with strong arterial contrast-agent enhancement (I). In the liver-specific contrast phase lesions are 
hypointense (K). Similar to the FNH, no significant 18F-FDG-uptake is seen (J,L) [183]. 

6. Discussion on the Limitations and Prospects of Medical Image Fusion Technology 

In the modern clinical practices, physicians have a higher demand on the accuracy and efficiency 
of a visually-aided medical diagnostic system. The image fusion techniques can efficiently process 
and combine the information from different image devices, which plays an important role in the 
precise positioning of tumors, the early diagnosis and treatment of cancer. With the advance of 
modern computer systems and medical imaging equipment, image fusion technology will be further 
developed, bringing a new revolution to clinical diagnosis. The research trend is to develop new 
algorithms which will make the registration of multimodal medical images more accurate, the fusion 
more efficient, and thus they will eventually achieve the purpose of improving the diagnostic effect. 
In the following, we present several challenges and the research trend in this topic: 

The extensive application of different medical image modalities has played a globally 
recognized role in the diagnosis of the liver cancers [184]. However, these modalities still have several 
flaws. As a result, one research challenge and focus is to further improve the single modalities. These 
may include the reduction of the rising cost of these medical images, decreasing the patient’s 
exposure time to radiation, while maintaining the image quality [185,186]. In addition, current clinical 
application of image fusion is still limited to merge the medical images from two independent 
medical devices. As a result, the patient needs to receive multiple examinations. Consequently, image 
fusion is more expensive than single image technology, which limits its application in the clinical 
diagnosis and treatment of tumors.  
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To reduce the examination cost and the risk of additional radiation, it is ideal to develop devices 
which can perform multimodalities exams at the same time while maintaining high image qualities. 

Development of efficient medical registration technologies is also very important. One topic is 
to address the significant alignment errors caused by patient breathing and motion compensation. In 
order to optimize linkage of the fused image, data from the unified respiratory phase should be used 
for registration, and the patient should remain in the same scanning position to the greatest possible 
extent, particularly for organs that move with the respiratory phase. Automatic registration will be 
the development direction of image fusion volume navigation technology, aiming to optimize the 
registration process and the fusion accuracy. In addition, improvement of the available algorithms in 
terms of accuracy and faster registration processes may promote the utility of fusion imaging. New 
algorithms and methods may be introduced to take into account organ movement caused by changes 
in breathing or position. An ideal system is based on automatic registration using complex 
electromagnetic tracking and computer-aided imaging algorithms, without effects on external 
reference points or anatomical landmarks selected by the user. These features would allow wider 
usage of this technology by individuals with less experience in image fusion. With further 
development of follow-up physical diagnosis technologies, improved fusion imaging may be widely 
applied in clinical practice to achieve an early diagnosis and treatment of tumors in the future. 

Another interesting research topic is to reduce the computational time of the registration/fusion 
algorithm, or to speed up the fusion procedure. The relatively large computational time puts 
limitation of the implementation of several fusion algorithms in specific clinical applications based 
on the requirement of these medical studies. For example, as discussed in Section 5.1, for the real-
time fusion of US and MRI or CT for liver lesion diagnosis, current clinical application can only use 
fusion results by a simple arithmetic combination due to its fast processing speed. Several research 
directions could be useful to overcome this challenge, such as (i) applying high performance 
computation, which utilizes parallel computing, to obtain efficient image fusion process; (ii) using a 
pretrained deep learning network for high speed image fusion processing. 

As shown in Section 4.10, the deep learning method becomes more and more popular for the 
registration/fusion of medical images. However, the robustness and availability of the dataset still 
constrain the usage of such a method in clinical image fusion. For instance, the size of available data 
is often very limited due to the privacy of these clinical data. Secondly, the need for medical experts 
to label the available dataset is very time- and finance-consuming. At last, the quality of the data, 
especially pathological data, cannot be guaranteed. To solve the problem of data shortage, researchers 
have proposed and applied data augmentation in medical image processing, which increase the 
diversity and size of the dataset without obtaining new data. The simplest data augment function 
such as random image rotations or nonlinear deformations are easy to implement, but lack the ability 
to emulate real variations. The more advanced methods, such as few-shot/one-shot learning [187] and 
attribute-guided augmentation (AGA) [188], could produce a wide variety of realistic new images for 
the deep learning-based image fusions with little supervised data samples. Unsupervised learning is 
another important research direction to overcome the small dataset challenge. For instance, stack 
autoencoders is one of the popular feature extraction unsupervised learning algorithms used in the 
image registration/fusion process. A newly developed learning module, Spatial Transformer (ST) 
[189], can make explicit use of the data’s spatial information and can be inserted into CNNs. This 
makes CNNs invariant to translation, scaling, rotation and common distortions without additional 
training, and thus to be able to register medical images without training datasets. Another relative 
new and popular algorithm, Generative Adversarial Networks (GANs) [190], creates a generative 
network and a discriminative network at the same time. The network can receive end-to-end training 
and learn representative features in a completely unsupervised way which provides a research 
direction in deep learning-based image registration/fusion.  

As discussed in the previous sections, all of the existing image fusion techniques possess their 
own strength or weakness. With efficient combination of different image fusion methods, the 
advantages of different fusion methods could be combined for higher image qualities, while the 
weakness of these methods could be avoided.  
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At the same time, a new and more efficient algorithm still needs to be developed to improve the 
quality and visualization of the fusion image, while reducing the errors due to resolution difference 
between images, image noise and the dimension difference between images. Noise effects due to 
signal noise could affect the image fusion process in a negative way. As a result, an efficient denoising 
algorithm would be useful to address the signal noise from the medical image in order to enhance 
the quality of fused images. 

At last, many articles to date have documented case reports with only a small number of 
patients. Larger multicenter randomized studies, including cost–benefit analyses and clinical impact 
studies, are required to further evaluate the efficacy of medical fusion technology. 
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