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Abstract: At present, the production lines of mobile phones are mainly manual and semi-automatic.
Robots are the most important tools used to improve the intelligence level of industry production.
The design of an intelligent robotic assembly system is presented in this paper, which takes the
assembly of screen components and shell components as examples. There are major factors restricting
the application of robots, such as the calibration of diversified objects, the moving workpiece with
incomplete information, and diverse assembly types. A method was proposed to solve these
technological difficulties. The multi-module calibration method is used to transform the pose
relationship between the robot, the conveyor belt, and the two cameras in the robot assembly
system. Aiming at a workpiece moving with incomplete information, the minimum matrix method
is proposed to detect the position. Then dynamic fetching is realized based on pose estimation of
the moving workpiece. At last, the template matching method is used to identify the assembly area
of the workpiece type. The proposed method was verified on a real platform with a LINKHOU
LR4-R5 60 robot. Results showed that the assembly success rate was above 98%, and the intelligent
assembly system of the robot can realize the assembly of mobile phone screens and back shells
without any staff.

Keywords: autonomous assembly; industry robot; mobile phone; incomplete information;
multi-module calibration

1. Introduction

Continuous progress of product design concepts has had a great impact on Computer,
Communication and Consumer (3C) industry manufacturing technology. Many enterprises are trying
to shift production lines from mass production to mass customization. A production system should
have the capability to handle smaller batch sizes [1]. As one of the representatives of the 3C industry,
mobile phones are an indispensable communication tool in modern life, which have the characteristics
of compact design and rapid updating. Phones assembly task is complicated and varied, usually
involving many parts and tools (see Figure 1). and there are several challenges [2], which include
the display module, camera, battery, and main board. After investigation, the assembly process of
mobile phone is as shown in the Figure 2. The mobile phone manufacturing process is manual or
semi-automatic, which also leads to high manufacturing costs [3]. The application of robot technology
brings opportunities to production line automation. The automation level of phone production lines
requires the improvement of robotic technology’s application. If robots replace humans, the labor cost
can be greatly saved [4]. However, the assembly parts of mobile phones are various and the robot
operation ability is weak [5,6].
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Figure 1. Composition of mobile phone.

Figure 2. The assembly process of mobile phone.

Many robotic companies and researchers have been focused on dual arm robots, such as the
Baxter robot [7], Yumi robot [8], and NEXTAGE robot [9]. They have been applied in some industrial
tasks [10]. However, the dual arm robot with precise hardware is of high cost [11]. Therefore, the
signal-arm robot is popular with some companies. There are many difficulties in the process of mobile
phone assembly, including pose detection, dynamic grabbing, multi-type assembly, and so on. Vision
on the production line is a common set of sensors used to obtain information. The calibration process
of a camera is tedious. In addition, sometimes the information of a workpiece being assembled is
incomplete. For example, there is often a situation beyond the camera’s field of view [12], due to the
cost constraints of the industrial site and the limited manufacturing process of the camera. In addition,
the sampling frequency of the camera under a relay trigger does not match the speed of the conveyor
belt [13], which also easily causes incomplete image information of the workpiece.

Vision and force sensors are the two common ways for a robot perceive the environment [14].
The mechanical constraints may be used to guarantee the initial position of the workpiece. If the model
of the assembled workpiece is changed, the mechanical tools should be different. Machine vision
was used to detect the different types of workpieces, which improved the flexibility of the production
line [15]. In 2013, the personal household robotic systems, such as HERB and PR2, perceived the
surrounding environment and completed some actions, such as cleaning and self-charging with
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the help of visual sensors [16]. Cai et al. achieved complex movements such as grabbing and
placing objects, which combined the multi-degree-of-freedom robot with the active visual positioning
system [17]. The target 3D point cloud is segmented by machine vision, and then the trained artificial
neural network is combined with machine vision to find the most suitable position for grasping the
object [18]. Stephen et al. [19] developed the assembly platform of dynamic binocular visual feedback
system. Image servo data acquisition is used as the basis to judge the next visual measurement
and guide the assembly of the manipulator. A “precision assembly robot” with a real-time vision
system [20] has been developed, and a dynamic target recognition and tracking algorithm based on an
improved Camshaft was proposed.

Therefore, the identification and positioning of the workpiece is very important and a lot of
work has been done [21]. In [22], a multi-workpiece recognition algorithm was proposed to locate the
three-dimensional workpiece of monocular vision in a complex industrial environment, which was
based on adaptive sub-pattern manifold learning. Wan et al. [23] taught robots to perform object
assembly using multi-modal 3D vision. Compared to 3-D vision, the monocular vision is low cost
and easy to implement. For incomplete information workpiece detection, such as exceeding-field
of view, Yang et al. designed a super-field component image measuring instrument by using image
stitching technology [12]. The adaptive image stitching algorithm was proposed in [24] for panoramic
image acquisition of super-field components. In [13], Liu et al. realized the effective recognition
of the exceeding-field workpiece by extracting the feature points on the workpiece and conducting
shape matching.

In addition, the force control or hybrid position/force control method is commonly used for
assembly tasks. In previous studies, there were three classes of control methods: position control,
force control, and hybrid position/force control [10,25]. Position control is used to complete the
assembly task and vision sensors are widely used to get the positions and orientations of assembly
objects [26,27]. The electronic circuit assembly was completed using vision based on OpenCV for an
industry robot [26]. The peg-hole assembly was completed through a vision system estimation [27].
The interaction force was obtained by force sensors to guide the robot to complete the assembly [28,29].
Most of the assembly strategies are based on the idea of modeling. A three-point contact model
is built, and the pose misalignment between the peg and hole is estimated by force and geometric
analysis [30]. A novel modeling method of geometric errors was proposed by Zhang et al. for precision
assembly [31]. A control scheme was used to teach the contact states during operation [10]. A robotic
assembly parameter optimization method [23,32] was proposed to enable industrial robots to assemble
a workpiece.

Compared with the previous work, this paper is aimed at a mobile phone production line process
using a robot. A comparative overview Table 1 is listed, which shows the key differences between the
different previous systems and the proposed system. The automatic system has also been extensively
used in the food industry [33]. There are few references for applying this system to a mobile phone
assembly line.

Table 1. A comparative overview between the previous systems and the proposed system.

Contents System of [5] System of [6] Proposed System

Products types Single species Single species Multiple species
Robots numbers Multiple robots Multiple robots One robot

Calibration method Multiple calibration Multiple calibration Model calibration
Detection and grabbing Targets within the field of view Targets within the field of view Targets with over field of view

Function Assembly in the same position Positioning and handling Assembly in the different position

In this work, the robot system is proposed to realize the mobile phone assembly process’s
automation. At first, a minimum rectangle fitting algorithm is proposed to solve pose estimation
problem of moving workpieces with incomplete information. The camera-belt-robot multi-hybrid
modular calibration is used to calibrate the assembly system, which could obtain the pose relationship
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among the robot, the conveyor belt, and the two cameras. Then a posture estimation algorithm
on a moving conveyor belt is proposed to track the objects with different speeds. At last, the
effectiveness of the method verified that back shell and screen components were assembled with
a six-degree-of-freedom LINKHOU.

The rest of this paper is laid out as follows. Section 2 introduces the assembly system description
of phone screen components and housing cover. In Section 3, the proposed method is described in
detail. Experiments were performed to validate the proposed method, and the experimental results
are presented and discussed in Section 4. Finally, the results of the current work were summarized and
future directions were discussed in Section 5.

2. System Description

The mobile phone assembly mainly includes three parts: the main board, the screen, and
the back shell. The intelligent assembly system is mainly composed of a manipulator, motion module,
vision module, and assembly module, as shown in Figure 3. The assembly producer, as shown in
Figure 4, should be divided into four steps.

1. Multiple modular hybrid calibration. This mainly includes calibration of the visual system,
calibration of the visual system and belt, and calibration of the belt and robot. The whole system
coordinate system is realized through transformation.

2. Position and posture detection of moving parts. As the motion speed is fast and the shooting lags
behind, there are repeated shootings and incomplete information of the target object in the field
of view of the camera.

3. Dynamic fetching. Due to the different speed of belt movement, the grasping position of the
suction cup is deviated during the grasping process. Posture estimation is important for tracking
belt speeds.

4. Recognize the workpiece to be assembled and the assembly itself. In the area of the workpiece to
be assembled, different types of workpieces should be placed. The correct assembly area should
be identified first, and then the assembly should be performed.

Figure 3. System composition.
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Figure 4. Assembly production of phone shell.

3. Proposed Method

This section describes the method of the calibration, position detection, dynamic capture, and
template matching in detail. Visual guidance is carried out to realize intelligent robot assembly of
parts and components of different types under fast beats.

3.1. Multi-Module Hybrid Calibration

Multi-module hybrid calibration mainly includes a robot base coordinate system {B}, an industrial
camera coordinate system {C}, and a conveyor coordinate system {T}. Each coordinate system consists
of an x axis; y axis; horizontal rotation angle θ of a workpiece; and the conveyor coordinate system as
the calibration link to realize the transformation and unification of the coordinate system, as shown in
Figure 5.

Figure 5. Relative relations between coordinate systems.

First the vision system uses the calibration plate, combines the HALCON calibration operator,
takes Zhang’s calibration [34] method to obtain the camera parameters, and then adopts the nine-point
method [35] to obtain the camera’s external parameters. The pose data of the industrial camera
coordinate system {C} are represented by T

CP in the conveyor coordinate system {T}, and their
expression is as follows:
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T
CP=

[
TC RC
0 1

]
(1)

RC denotes a rotation vector rotated about the Z axis of the conveyor coordinate system, and TC
represents the translation vector along the X axis and Y axis of the conveyor belt coordinate system.
The calibration of the vision system and the belt is completed through the coordinate values in the
pixel coordinate system converting into coordinate values in the conveyor coordinate system.

Then the marker is placed on the conveyor belt. The initial pose B1
T P of the marker is recorded, as

are the pose B2
T P after the belt has moved a distance and the number of pulses of the encoder L1,L2.

The relationship between the two positions is as follows:

B2
T P=B2

B1
P× B1

T P (2)

As the process of moving the workpiece on the conveyor belt is only x axis translation, with no
rotation, the matrix expression of B2

B1
P is defined as follows:

B2
B1

P=

 1 0 xB1 B2

0 1 0
0 0 1

 (3)

where xB1 B2
represents the translation distance of the workpiece along the X axis of the conveyor belt

coordinate system. The calculation method is as follows:

xB1 B2
= M · L (4)

where M indicates the change of X axis value of an encoder pulse corresponding to the conveyor
belt coordinate system. L=L2 − L1 represents the sum of pulses turned by the encoder during the
workpiece’s movement.

When the workpiece is detected by the industrial camera, with the advance of the conveyor belt,
its position and pose data in the robot base coordinate system B2

C P of the mechanical arm are expressed
as follows:

B2
C P=B2

B1
P× B1

T P× T
CP

=

 1 0 M · L
0 1 0
0 0 1

 [ RB TB
0 1

] [
RC TC
0 1

]
.

(5)

According to the rotation translation relationship of the coordinate system and the speed of the
conveyor belt, the calibration of the conveyor and the robot is completed.

As shown in Figure 6, B is the fixed base coordinate system of the robot arm, E is the end coordinate
system of the arm, and C is the camera coordinate system. BHW represents the transformation
relationship of the base coordinate system to the calibration coordinate system, including the rotation
matrix and the translation vector. C HE can be derived from the robot system. Then the robot was
moved to position 1,

PE=
BHE1 ∗

EHC ∗
(

C HC1

)−1
PW (6)

Since B and W are fixed, BHW does not change. Therefore:

B HW = BHE1 ∗ E HC ∗
(W HC1

)−1

= BHE2 ∗ EHC ∗
(W HC2

)−1.
(7)
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Make:
A1 ∗ X ∗ B−1

1 = A−1
2 ∗ A1 ∗ X

A−1
2 ∗ A1 ∗ X = X ∗ B−1

2 ∗ B1

AX = XB.
(8)

Therefore:
A1 ∗ X ∗ B−1

1 = A−1
2 ∗ A1 ∗ X

A−1
2 ∗ A1 ∗ X = X ∗ B−1

2 ∗ B1

AX = XB.
(9)

Among them, A is known, X is to be sought, and B can be obtained by camera calibration (Zhang’s
calibration method) [34].

Figure 6. Hand eye calibration.

3.2. Position Detection of Moving Workpiece With Incomplete Information

In the process of moving the target object with the belt, due to the fast moving speed of the belt
and the lag of shooting, the target object captured has repeated shooting and incomplete information in
the camera field of view. The target recognition method based on the fitting of the smallest rectangular
area of the assembled parts is studied, and the edge contour and feature matching are combined to
realize the accurate detection of the moving target pose. Before performing contour extraction, image
segmentation is performed, and foreground extraction is performed by binarization. The binarization
method is as follows:

det(x, y) =

{
max i f src(x, y) > threshold
min otherwise

(10)

Set the pixel on the image larger than the threshold to be maximal, and the other pixels to be
minimal. The region where the pixel is maximal in the binarized image is the region of interest (ROI).
In order to overcome the problem of some tiny black holes in the binarized image, a closed operation
process of first dilating and then eroding is required. For the dilate operation:
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dst (x, y) = dilate (src (x, y)) = max
(x′ ,y′)

src
(

x + x′, y + y′
)

(11)

and for the erode operation:

dst (x, y) = erde (src (x, y)) = min
(x′ ,y′)

src
(
x + x′, y + y′

)
(12)

The target contour is extracted by Canny edge detection algorithm [36]. The performance of
this algorithm depends largely on the Gaussian filter and the high and low threshold settings. The
Gaussian filter is as follows:

G (x, y) =
1

2πσ2 e
x2+y2

2σ2 (13)

Aiming at the incomplete image problems, an algorithm of the minimum rectangle fitting of
feature regions was proposed. Combined with the shape characteristics of the grabbing workpiece,
the minimum circumscribed rectangle is used to fit the ROI of the workpiece appearing in the camera
field of view, and the actual pose of the workpiece is solved by the eigenvalue of the rectangle.

In the pixel coordinate system, the camera field size is X*Y, the actual length of the workpiece is
H pixels, the workpiece center point is Pr, and the position is (U, V). The length of the rectangular
workpiece fitted in the field of view is h, and the center point Pf coordinate is (u, v). The rotation angle
of the rectangular area is θ. The specific mathematical schematic is shown in Figure 7.

Figure 7. The schematic of pose estimation.

So the actual workpiece positional relationship is as follows:[
U
V

]
= ±1

2
(H − h)

[
sin θ

cos θ

]
±
[

u
v

]
(14)

3.3. Fast Beat Shooting Dynamic Capture

For the multi-angle measurement of the target workpiece on the belt, the local and global images
are switched according to the recognition effect, and the pose parameters of the target workpiece in
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the robot arm coordinate system are obtained [37], along with the incoming belt displacement and
real-time prediction of the pose sequence of the target workpiece. Solving the motion trajectory of the
end effector of the robot based on the Kalman filter algorithm [38,39] achieves dynamic tracking of
a target workpiece position. Based on the pseudo-inverse solution of the Jacobian matrix, the joint
motion velocity of the robot arm is calculated, and a smooth tracking trajectory is generated to achieve
smooth grabbing of the target. The crawling process is divided into the following three steps [40]:

1. Approaching the target object. The end of the arm reaches the ready position, and the amount
of change in the position of the end effector and the target object is calculated. N path points
are planned between the two, and the end is accelerated first, reaching the first path point and
decelerating to the workpiece speed to synchronize with the target object.

2. Tracking target object. The trajectory of the object is the desired trajectory of the end effector of the
arm in the Cartesian coordinate space, which is controlled to keep moving, following the object.
The joint angle and velocity corresponding to each path point can be solved by the Jacobian
pseudo inverse matrix.

3. Grab the target object. When the distance from the workpiece meets the requirements, the object
is sucked by the air pump to complete the grasping process.

3.4. Fast Beat Shooting Dynamic Capture Method

In the fasten assembly, according to the approach of judging the assembly area in the context
of people, the assembly status is evaluated using images and assembly displacements. Images are
obtained and preprocessed. Then, the online assembly status is recognized through template matching.
The steps are as follows.

1. Additional angles of an image are captured using the camera.
2. Graying, filtering, and binarization are performed as image preprocessing. The method of

weighted average is used to gray the image [41]. After preprocessing the real-time image
sequences, a maximum between-class variance method (Otsu’s method) [42] is used to obtain the
best treatment threshold for performing the image binarization treatment.

3. The processed image is captured in a region of interest [43]. This region can be defined so that the
system processing time is reduced, while the real-time processing, reliability, and robustness are
improved.

4. The assembly quality is identified by the template matching. The common template matching
methods are square difference and correlation matching. In this study, template matching is
performed via normalized variance of squares matching [44].

R(x, y) =
∑ x′ ,y′(T(x′, y′)− I(x + x′, y + y′))2√

∑ x′ ,y′T′(x′, y′)2 ·∑ x′ ,y′ I(x + x′, y + y′)2
(15)

In the above, T(x, y) is the chosen template, I(x, y) is the target object, R(x, y) is the chosen
template, I(x, y) is the target object, and R(x, y) is a function of similarity.

5. A recognition result is provided. The performance, based on template matching, depends to a
large extent on the quality of the template database.

3.5. Phone Assembly

The overall assembly process is as shown in Algorithm 1 and Figure 8. The mutual conversion
relationship between different coordinate systems is established by the modular hybrid calibration of
the camera-belt machine. Then, the camera is triggered by the relay to take a photo, and it is detected in
real time when there is a workpiece passing through the field of view of the camera, thereby obtaining
the posture of the workpiece in the pixel coordinate system. The minimum pose of the feature area is
used to solve the actual pose of the workpiece. The system reads the encoder pulse number in real time,
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sets the robot pre-crawl position, calculates the conveyor moving distance, waits for the workpiece
to arrive, and dynamically grabs the workpiece to be loaded based on the model predictive control
method to realize the pre-fetch function. Through the calibration of the hand end of the robot arm, the
relationship between the position of the arm and the area to be loaded is established. The method of
template matching is used to solve the position of the position to be assembled, and the robot arm is
guided to the assembly site to realize the assembly function.

Algorithm 1 Minimum rectangle fitting of the feature area.

Initialize parameters:
The workpiece position (u ,v)
Actual position of workpiece (U,V)
Workpiece rotation angle θ
while true do

Trigger camera to take pictures
Extract the rectangular area data of workpiece
if v ≤ 1

2 Y then
if θ ≤ π

2 then
U ← u− 1

2 (H − h) sin θ

V ← v + 1
2 (H − h) cos θ

else
U ← u + 1

2 (H − h) sin θ

V ← v− 1
2 (H − h) cos θ

end if
else

if θ ≤ π
2 then

U ← u + 1
2 (H − h) sin θ

V ← v− 1
2 (H − h) cos θ

else
U ← u− 1

2 (H − h) sin θ

V ← v + 1
2 (H − h) cos θ

end if
end if
Convert U,V to base coordinate system data (x,y)
Socket communication
Robot motion path planning
q = [θ1, θ2, θ3, θ4, θ5, θ6]

T

Assembly area template matching

R(x, y) =
∑ x′ ,y′ (T(x′ ,y′)−I(x+x′ ,y+y′))2√

∑ x′ ,y′T
′(x′ ,y′)2·∑ x′ ,y′ I(x+x′ ,y+y′)2

Socket communication
Converted robot coordinates(x,y)to assembly area coordinates(x′,y′)
Finish the assembly

end while
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Figure 8. The assembly chart.

4. Experiments

4.1. Experiments Setup

Experiments were performed to verify the effectiveness of the proposed method. As shown in
Figure 9, this system uses the LR4-R560 robot arm of Suzhou LINKHOU Robot Co., Ltd in China.
The parameters are shown in Table 2. The basic components include the teach pendant, the mechanical
body, and the control cabinet, which are the actuators of the assembly action. The loading part of the
mobile phone component assembly consists of a belt and an encoder to form the motion module of the
system. The HIKVISION industrial area array camera was used to form a vision module, including a
fixed camera with an eye outside the hand and a moving camera with an eye on the hand. This was
mainly used to detect the assembly target of mobile phone parts, to realize the positioning of the
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workpiece to be loaded, and to guide the robot to reach the target position. The assembly module
mainly includes an end fixture and an assembly workbench. The system uses suction cup grippers
to grab and place mobile phone parts, and the workbench is used to place the parts to be assembled.
The system uses the front and rear covers of the mobile phone as the assembly object. Algorithm
testing relies on industrial computers with the win10 operating system. Through Hikvision machine
vision camera client MVS SDK V2.3.1, C++ language was used to establish communication with the
camera. The images collected by the camera are processed by the Halcon operator using C# language.
Communication was established with the robot through Transmission Control Protocol/Internet
Protocol (TCP/IP), and control the robot to grasp the workpiece. The programs were run in Visual
Studio 2013.

Table 2. Robot performance parameters.

Attributes Load Axis Radius Accuracy

Values 4 kg 6 560 mm 0.02 mm

Figure 9. Platform of the dynamically grasping system.

4.2. Multiple Modular Hybrid Calibration and Pose Detection

In the field of view of the camera, 15 to 20 Halcon calibration photos with different attitudes were
taken, and the coordinate system axis with the belt direction of positive along x was selected as the
reference coordinate system of the conveyor. Then, the feature information of the calibration plate was
extracted and the external parameters of the camera were calculated. The transformation relationship
between the robot base coordinate system and the conveyor belt coordinate system can be obtained by
reading the robot base coordinate data of the four points in the conveyor belt coordinate system from
the teaching device, and the transmission accuracy of the conveyor belt can be calculated as shown in
Figure 10. Calibration results are shown in Table 3.

Aiming at two kinds of complete information and four kinds of incomplete information
workpieces which may appear in the field of view, the minimum rectangle fitting method is adopted
to calculate the actual positions and postures of work pieces respectively, as shown in the Figure 11.
In order to determine the accuracy of pose estimation, a mobile phone back shell was placed in the
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field of view of the industrial camera to trigger the industrial camera to take pictures and calculate the
theoretical calculation pose that the robot should reach. Single-step execution of the robotic program:
the robotic arrives at the pre-grasp point to wait, opens the conveyor belt to move the back cover of
the mobile phone to the optimal gripping position of the robot, and manually controls the end clamp
of the robot to reach the center of the back cover of the mobile phone. The actual pose of the robot at
this time is recorded and compared to the two pose data.

From Table 4, the maximum detection error of the uniaxial coordinate data of each workpiece is
within 0.5 mm, and the attitude detection error is within 0.8 degree, which meets the technological
requirements of the mechanical arm to automatically absorb the back shell of the mobile phone and put
it into the area to be assembled with a vacuum chuck. In Liu’s system [13] for workpieces exceeding
the visual field, it takes about 6 s to recognize and grab the workpiece. In our method, the speed of the
conveyor can be matched to achieve real-time fast grabbing. It costs about 2 s to grasp the workpiece; it
can reach with the conveyor speed of 90 mm/s with incomplete information. In terms of accuracy, the
horizontal error of our grasping position is about 1mm, which is better to Liu’s system(2s). Compared
with special equipment, our robot system is more versatile and can be reused to suit different module
assembly requirements in engineering. The cost of industrial production will be reduced, and it is
more suitable for small batch, order-based manufacturing needs.

Figure 10. Camera-conveyer-robot hybrid modular calibration.

Table 3. Calibration results.

Calibration Parameters

Parameters Data Unit

Camera calibration error 0.0467 pixel
RC (0.656, 359.961) degree
TC (−22.521, −2.042) mm
RB (89.325, 179.651) degree
TB (321.251, 251.325) mm
M 10.305 line/mm

Table 4. Pose detection results.

1 2 3

Camera detectes pose (488.396, 507.995, −88.45◦) (394.760, 467.125, 84.74◦) (609.061, 543.858, −76.69◦)
Theoretical calculation pose (152.458, 245.584, −88.45◦) (171.821, 245.584, 84.74◦) (131.254, 245.584, −76.69◦)
Actual test pose (152.953, 245.557, −87.76◦) (171.411, 245.544, 83.97◦) (131.695, 245.567, −76.06◦)
X axis error 0.495 mm 0.41 mm 0.441 mm
Angle error 0.69◦ 0.77◦ 0.63◦
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Figure 11. Pose estimation of an incomplete information workpiece.

Table 5. Dynamic grasp results.

Number Grabbing Velocity Success Rate

1 10 (mm/s) 100%
2 50 (mm/s) 100%
3 90 (mm/s) 100%
4 8–90 (mm/s) 100%

4.3. Dynamic grasp

First, the robot was set to the initial position, and the belt was set to 10 mm/s. When the
target workpiece moves, the camera calculates the pose of the workpiece, and the speed of the belt
is measured. Then, the workpiece target position is estimated. Thus, tracking of the robot arm is
generated, and the movement of the robot is controlled so that the end and the workpiece remains
relatively stationary for a short time. Finally, after the camera detects that the target workpiece is
consistent with the end of the robot, it can suck the target workpiece and capture. The belt rotation
speed was set from 50 mm/s to 90 mm/s for comparison experiments. In addition, considering a
situation that may occur in practice, a set of variable speed experiments was designed. The belt first
moved the workpiece at a lower initial speed (8 mm/s), and then gradually accelerated the belt speed
to 90 mm/s to test the gripping effect of the system. Dynamic tracking was achieved with different
belt speeds and shifting conditions. The dynamic grasp calibration results are shown in Table 5.

4.4. Assembly Area Identification Results

The robotic arm successfully grabs the target workpiece and moves the robot arm to the top of
the belt assembly area. The camera on the robotic arm takes a picture of the real-time situation of the
assembly area, compresses the real-time image of the obtained assembly area, extracts the ROI area
and does other pre-processing, and compares it with the template in the pre-made template library.
Opencv and VS2015 were used to obtain the pixel value coordinates and pose of the center point of
the area to be assembled corresponding to the back cover of the mobile phone on the image of the
real-time area to be assembled, as shown in Figure 12. The coordinates are transmitted to the robot
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arm through the coordinates of the hand eye calibration, and the assembly of the back cover of the
mobile phone is completed.

Figure 12. Results for template matching.

4.5. Assembly test

Assembly experiments were performed at three different speeds of the belt. Two types of materials
(metal and plastic) are shown in Figure 13. For the overall assembly process, six groups of experiments
were set up. The assembly process is shown in Figure 14. Three initial position experiments were
performed (see Figure 15). The average assembly time was 6s. Each group of experiments included
100 rounds of testing the assembly success rate of the robot. From Table 6, the assembly success rate
achieved above 98% at different speeds. The industrial robot could flexibly complete various actions
in a single action cycle, so it is possible to replace the function of many complex parts in the special
assembly machine, which greatly reduces the complexity of assembly. In proposed robot system,
the problem of different assembly objects was solved through the pose detection and assembly area
recognition algorithms, which were based on machine vision in the assembly process. The assembly
of different types of parts was completed with the cooperation of the fixed camera and the hand-eye
camera. The target object over the field of view is detected and picked accurately. But the system’s
detection accuracy needs to be improved. The reason may be the geometric central points were instead
of assembly targets. The better image processing and feature extraction algorithm should be studied in
vision system.

Figure 13. Two types of materials for the phone.
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Figure 14. Overall assembly process.

Figure 15. Robot trajectories of different initial points.

Table 6. Assembly success rate.

Type of Phone Belt Speed Success Rate of Assembly
10 mm/s 99%

Type1 50 mm/s 98%
90 mm/s 98%
10 mm/s 99%

Type 2 50 mm/s 98%
90 mm/s 98%

5. Conclusions

This article focuses on the demand of intelligent mobile phone manufacturing in the 3C
industry. Certain problems, such as multivariate calibration, dynamic fetching, and identification
of the workpiece to be installed, were solved by the proposed methods. Combined with the
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camera-conveyor-robot hybrid modular calibration, the algorithm of the minimum rectangular fitting
of the feature area is used to solve the incomplete workpiece information on the conveyor belt. The
motion trajectory of the robot end effector achieves dynamic tracking of the target workpiece position
based on the Kalman filter algorithm. The template matching is used to identify the workpiece to be
assembled. The proposed methods were performed on the built platform. The experimental results
show that the maximum detection error is within 0.5mm and 0.8 degrees. The robot could pick up the
workpiece with a success rate of 100% at different conveyor speeds, even though the target component
provided incomplete information. Two different phone types were successfully assembled. The key
technologies developed in this paper will be applied to the key equipment in the automatic robot
production line. This will effectively improve the qualified rate of products, significantly improve
market competitiveness of the target products, and have a broad market space.
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