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Featured Application: Volume reconstruction of serial sections of biological tissue.

Abstract: In this paper, we propose a novel noniterative algorithm to simultaneously estimate optimal
rigid transformations for serial section images, which is a key component in performing volume
reconstructions of serial sections of biological tissue. To avoid the error accumulation and propagation
caused by current algorithms, we add an extra condition: that the positions of the first and last
section images should remain unchanged. This constrained simultaneous registration problem
has not previously been solved. Our solution is noniterative; thus, it can simultaneously compute
rigid transformations for a large number of serial section images in a short time. We demonstrate
that our algorithm obtains optimal solutions under ideal conditions and shows great robustness
under nonideal circumstances. Further, we experimentally show that our algorithm outperforms
state-of-the-art methods in terms of speed and accuracy.

Keywords: image registration; volume reconstruction from series of microscopy sections; constrained
simultaneous registration problem; noniterative algorithm

1. Introduction

Volume reconstruction from serial sections of biological tissue [1,2] has attracted considerable
attention from the neuroscientific community in recent years. However, due to distortions caused by
sectioning, microscopic image registration, which aims to recover the 3D continuity of serial sections,
is a key problem.

Several 3D registration methods [3–7] have been proposed for serial section images; however,
because reliable correspondences could be extracted only from adjacent section images, these methods
always select one of the section images as a reference and then perform forward or backward image
registration sequentially for each pair of neighboring images. While these sequential methods alleviate
the difficulty of 3D registration, they introduce error accumulation and propagation. Moreover, they
all have high time consumption, making them inappropriate for simultaneously registering large
numbers of section images.

The correct positions of the first and last section images can be determined by taking photos of
the top and bottom surfaces of the samples before sectioning. Assuming that the positions of the first

Appl. Sci. 2020, 10, 1156; doi:10.3390/app10031156 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1450-6902
http://www.mdpi.com/2076-3417/10/3/1156?type=check_update&version=1
http://dx.doi.org/10.3390/app10031156
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 1156 2 of 14

and last section images have been correctly adjusted, if the optimal transformations of the remaining
section images could be simultaneously estimated, no error would accumulate or propagate. Therefore,
it is reasonable to consider that simultaneous registration for serial section images can be achieved
under the condition that the positions of the first and last section images are fixed. This constrained
simultaneous registration problem is completely new and has not previously been solved.

To address the above problem, we propose a novel noniterative method that simultaneously
estimates the optimal rigid transformations for serial section images while maintaining the positions of
the first and last section images unchanged. We prove that our algorithm can obtain an optimal solution
under ideal conditions. In addition, even under nonideal situations, we experimentally show that
our approach remains strongly robust to noise. Finally, our method outperforms the state-of-the-art
methods that are widely used in modern volume reconstruction tasks with regard to both speed
and accuracy.

2. Related Works

The task of serial section registration has made tremendous progress in recent years; smooth and
continuous structures of biological tissues can be recovered using the current methods. In biological
studies, researchers concentrate on rigid registration techniques because rigid transformation retains
the morphological structures of samples as much as possible. A global optimization problem is
established, but most methods solve it iteratively and may provide suboptimal solutions. For example,
LeastSquare [8] performs registration by aligning one to another sequentially across the whole serial.
The local registration is based on SIFT [9] correspondences extracted from an image snapshot taken
of each section. A least square solution is computed for this local registration. Based on an initial
estimation (i.e., the result of LeastSquare), BUnwarpJ [10] applies nonlinear spatial transformations to
achieve subsequent registration. Nonlinear spatial transformation takes the form of nonlinear cubic
B-splines; however, because it is based on local solutions, this approach is suitable only for short
sequences; long sequences will result in error accumulation and propagation, leading to large nonlinear
deformations. CW_R_color [3] extends a 2D image registration method [11] to perform registration of
serial sections, and it conducts the 2D image registration method [11] sequentially and bidirectionally
to align each pair of neighboring images. The 2D image registration method originates from the
bidirectional elastic b-spline model (BUnwarpJ [10]), and, similarly, it is also appropriate only for short
sequences. Elastic method [12] establishes an elastic spring mesh on the original image sequence and
then connects each pair of correspondences detected by block matching with a spring. All the springs
will work in concert to "drag" sections towards a global alignment. The global registration problem is
solved iteratively to generate a final nonlinear spatial transformation. With a rapid development of
deep learning, spatial transformer networks [13] (STN) are adopted to estimate spatial transformation
between images for image registration [14–16]. Meanwhile, some off-the-shelf convolutional neural
network models for optical flow estimation such as flownet [17], flownet2 [18], and PWC-Net [19] are
utilized for serial-section image registration. Similar to traditional methods, they still choose one image
as reference, and align images sequentially across the serial, thus error propagation and accumulation
are inevitable.

3. Noniterative Simultaneous Rigid Registration Method (NSRR)

3.1. Problem Definition

First, given a set of serial section images, we transform the first and last images into their
correct positions based on their relative displacements before sectioning. Then, we convert this serial
section image registration into a simultaneous rigid registration of multiple point sets by extracting
correspondences from adjacent section images. We utilize SIFT flow method [20] to obtain robust
correspondences between adjacent section images. The SIFT flow algorithm is able to match densely
sampled, pixelwise SIFT features between two images. Even though the individual features have
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low discriminative abilities, their correspondences can be inferred by considering the neighborhood
relationships. From these extracted dense correspondences, we further select a set of sparse pairs with
low matching errors. Thus, the obtained correspondences are robust and reliable. The remaining task is
to solve a constrained simultaneous rigid registration problem, which can be described mathematically
as follows.

A point set Xi,j ∈ R2×mi is composed of the landmarks extracted from i-th image, whose
correspondences is Xj,i ∈ R2×mi from the j-th image. Because these are one-to-one correspondences,
the number of Xi,j correspondences equals that of Xj,i, denoted by mi. Our goal is to estimate the
optimal rigid transformations for those point sets to minimize the corresponding point distances across
them, under the condition that the positions of X1,2 and Xn,n−1 are fixed. Therefore, the objective can
be mathematically defined as:

arg min
Ri ,Ti

n−1
∑

i=1
‖RiXi,i+1 + Tiei − Ri+1Xi+1,i − Ti+1ei‖2

F

s.t.


RT

i Ri = I
det(Ri) = 1
R1 = Rn = I
T1 = Tn = 02×1

(1)

where the rigid transformation of the point set Xi,j ∈ R2×mi is represented by a combination of the
rotation matrix Ri ∈ R2×2 and the translation vector Ti ∈ R2×1, where 02×1 ∈ R2×1 is a zero vector
and ei ∈ R1×mi is a row vector in which each component equal to 1.

3.2. Decoupling Rotation from Translation

In Equation (1), the optimization of rotation and translation is coupled; consequently, optimizing
either operation will interfere with the other. To simplify this complex situation, we propose a simple
yet effective way to decouple the optimization of these two variables.

Our scheme is that we first avoid interference from translation by alternately considering an
approximate problem that registers multiple point sets all centered at the origin. Since adjacent point
sets have common centroids (i.e., the origin), we only need to solve for a rotation transformation.
This approximate problem can be constructed by moving the centroid of every point set to the origin
and is referred to as the centralization of point sets. Then, we can concentrate on solving the optimal
rotation of this approximate problem. Rotation optimization is performed by the following equation:

arg min
Ri

n−1
∑

i=1
‖RiX̂i,i+1 − Ri+1X̂i+1,i‖2

F

s.t.


RT

i Ri = I
det(Ri) = 1
R1 = Rn = I

(2)

where X̂i,j denotes the point set after centralization.
After solving Equation (2), we substitute the optimal rotations obtained by solving Equation (2)

into Equation (1); we fix the values of the obtained rotation and then independently solve the translation
by optimizing Equation (1). Even though our decoupling scheme obtains only approximate solutions,
in Section 3.6, we prove that, under ideal conditions, our approximate solutions are equal to the
optimal solutions, and, in Section 4.1, we experimentally show that, even under nonideal conditions,
our algorithm remains robust and provides reliable solutions.

In following subsections, we explain our approach for estimating rotation and translation in
Sections 3.3 and 3.4, respectively, and then provide the overall workflow of our method in Section 3.5.
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3.3. Estimation of Rotation Matrix

It is known that the F norm of a matrix is equal to the trace of the matrix product of the matrix
and its transpose, which can be notated mathematically as ||X||2F=tr(XTX). Then, based on the matrix
trace property that tr(ABC)=tr(CAB)=tr(BCA), Equation (2) can be rewritten as follows:

arg min
Ri

n−1
∑

i=1
−tr(RT

i Ri+1X̂i+1,iX̂i,i+1)

s.t.


RT

i Ri = I
det(Ri) = 1
R1 = Rn = I

(3)

We let Wi = RT
i Ri+1, Ai = X̂i+1,iX̂

T
i,i+1; Thus, Equation (3) can be further rewritten as follows:

arg min
Wi

n−1
∑

i=1
−tr (WiAi)

s.t.


n
∏
i=1

Wi = I

WT
i Wi = I

det(Wi) = 1

(4)

Because the matrix product of two rotation matrices is still a rotation matrix, Wi still must satisfy
the two constraints of rotation matrices, i.e., WT

i Wi = I and det(Wi) = 1. Furthermore, because the
positions of the first and last point sets are fixed, no relative rotation exists between the first and last

point sets; therefore,
n
∏
i=1

Wi = R1Rn = I.

By using Lemma A1 in the Appendix A, solving Equation (4) is equivalent to solving Equation (5).
The goal of this step is to convert a complex problem into a very simple problem. Equation (5) can be
solved easily using the interior point method, e.g., the fmincon function in Matlab.

arg min
θi

n−1
∑

i=1
−tr (CiSi) cos θi

s.t.
n−1
∑

i=1
θi = −θ

(5)

The optimal solution of Wi is HiViCiUT
i , where Hi ∈ R2×2 is a rotation matrix whose rotation

degree is θi, θi is the solution of Equation (5), and UiSiVT
i is the result of the singular value

decomposition (SVD) of Ai. Ci is a diagonal matrix diag(1, det(ViUT
i )) ∈ R2×2, and θ is the rotation

degree of the matrix
n
∏
i=1

ViCiUT
i . We provide lemmas and their proofs in Appendix A. Consequently,

the final form of the rotation matrices is:

R1 = I, Ri =
i−1

∏
k=1

Wk (i = 2, . . . , n) (6)

3.4. Estimation of the Translation Vector

With the rotation matrix estimated, we solve for the optimal translations by solving Equation (1).
For notation simplicity, we define Zi = RiXi,i+1 − Ri+1Xi+1,i and Thi = Ti − Ti+1; the minimization
of function in Equation (1) can be rewritten as follows:
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arg min
Thi

n−1
∑

i=1
‖Zi + Thiei‖F

2

s.t.
n−1
∑

i=1
Thi = 02×1

(7)

Equating the partial derivative of Equation (7) with respect to Thi to zero, and using
Sherman–Morrison formula [21], we obtain

Thi = −m−1
i ZieT

i +
m−1

i

m−1
1 + · · ·+ m−1

n−1

n−1

∑
j=1

m−1
j ZjeT

j (8)

Hence, the final form of the translation vectors is:

T1 = 02×1, Ti =
i

∑
j=2

Thj−1, i = 2, · · · , n (9)

3.5. Algorithm Workflow

We summarize our noniterative simultaneous rigid registration algorithm (NSRR) in Algorithm 1.

Algorithm 1: Non-iterative Simultaneous Rigid Registration (NSRR).
Input: original serial section images Ii (i = 1, . . . , n)
1: Xi,i+j ←− landmarks of Ii (i = 1, . . . , n; j = −1, 1)
2: X̂i,i+j ←− centralized Xi,i+j (i = 1, . . . , n; j = −1, 1)

3: Ai ←− X̂i+1,iX̂
T
i,i+1 (i = 1, . . . , n− 1)

4: Vi,Si,Ui ←− SVD of Ai (i = 1, . . . , n− 1)
5: Ci ←− diag(1, det(ViUT

i )) (i = 1, . . . , n− 1)
6: θi ←− solution of Equation (5) (i = 1, . . . , n− 1)

7: Hi ←−
[

cos θi − sin θi
sin θi cos θi

]
(i = 1, . . . , n− 1)

8: Wi ←− HiViCiUT
i (i = 1, . . . , n− 1)

9: R1 ←− I, Ri ←−
i−1
∏

k=1
Wk (i = 2, . . . , n)

10: Zi ←− RiXi,i+1 −Ri+1Xi+1,i (i = 1, . . . , n− 1)

11: Thi ←− −m−1
i ZieT

i +
m−1

i
m−1

1 +···+m−1
n−1

n−1
∑

j=1
−m−1

i ZieT
i (i = 1, . . . , n− 1)

12: T1 ←− 02×1, Ti ←−
i

∑
j=2

Thj−1 (i = 2, . . . , n)

13: Îi ←− Ii transformed by Ri and Ti (i = 1, . . . , n)
Output: registered serial section images Îi (i = 1, . . . , n)

3.6. Optimality Conditions

In this section, we analyze the conditions under which our approximation algorithm will obtain
optimal solutions. Assuming that all the sections suffer from rigid deformations, because Xi,i+1
and Xi+1,i are one-to-one correspondences, we can consider them as the same point set Ẋi
centered at the origin under different rigid transformations (Ṙi, Ṫi). Let Xi,i+1 = ṘiẊi + Ṫi and
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Xi+1,i = Ṙi+1Ẋi + Ṫi+1. If the position of the first and last image have been correctly adjusted, we have
Ṙ1 = Ṙn = I, Ṫ1 = Ṫn = 02×1. Hence, Equation (2) can be rewritten as:

arg min
Ri

n−1
∑

i=1

∥∥(RiṘi − Ri+1Ṙi+1
)

Ẋi
∥∥

F
2

s.t.


RT

i Ri = I
det(Ri) = 1
R1 = Rn = I

(10)

Here, we have a trivial solution to Equation (10):

Ri = Ṙ−1
i (i = 2, . . . , n− 1) (11)

Substituting Equation (11) into Equation (8), Equation (8) is simplified as

Thi = −m−1
i ZieT

i (12)

Substituting Equation (12) into Equation (1), we obtain Equation (2), proving that, under ideal
condition, the result is equivalent to using Equation (2) to replace Equation (1).

Therefore, to obtain the optimal solution, two conditions must be satisfied: first, all the
serial sections must be rigidly deformed, and, second, the positions of the first and last images
must be correctly adjusted, meaning that they have no relative displacement. Although our
algorithm is intended to handle rigid deformations, it still offers robust initial estimates for nonrigid
registration algorithms.

4. Experiments

To verify the effectiveness of our algorithm, we tested it on both synthetic and real data. Using the
synthetic data, we prove that, even when correspondences are noisy, our algorithm still provides a
good registration effect. Using the real data, we demonstrate our algorithm’s effective application for
real scenes.

4.1. Robustness Test

As proved in Section 3.6, our algorithm obtains optimal solutions under ideal conditions.
Therefore, we investigated whether our algorithm remains robust under nonideal circumstances (i.e.,
when the original accurate correspondence positions are randomly shifted by nonlinear deformation).

In this experiment, we used synthetic data to test the robustness. As shown in Figure 1, we
sampled approximately 50 points from a fish-shaped point cloud to form 10 point sets. The first and
last point sets overlap (at bottom left) to ensure that no relative displacement exists. The points with
the same shape and color in adjacent point sets are corresponding points. To further verify generality,
we sampled different numbers of points (as illustrated in the middle-right and top-left images). To
prove that our algorithm is robust to noise, we added random deviations to each point; the different
noise ratios are shown in Figure 1 and range from 0.05 to 0.2. We can see that as the noise ratio grows,
the registered point cloud becomes progressively blurrier, but retains the overall fish shape.

To further demonstrate the generality of our algorithm, we investigated whether our algorithm
was able to simultaneously align several point sets with small partial overlaps. As shown in Figure 2,
unlike the first experiment, in which a complete fish shape was sampled, in this experiment, we
sampled only a part of the fish at one time, resulting in eight point sets that partially overlap the
adjacent point sets. Similar to the previous example, the correspondences are denoted by points with
the same color and shape. The first and last point sets completely overlap; therefore, their relative
positions do not need to be adjusted. We also added random noise proportional to the coordinates of
each point to simulate real scenes. The experimental result is shown in the second row of Figure 2.
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These results show that, even when partial overlaps exist, our algorithm still achieves fine registration
and is robust to noise.

Figure 1. Experimental results. Ten point sets with different degrees of noise ratios from 0.05 to 0.2 are
shown from left to right in the first row. The corresponding registration results by our algorithm are
shown in the second row.

Figure 2. Experimental results. Eight point sets with different degrees of noise ratios from 0.05 to 0.2
are shown from left to right in the first row. The corresponding registration results by our algorithm
are shown in the second row.

To analyze the results quantitatively, we adopted the mean square error (MSE) to measure the
accuracy between the ground truth of each example and our registration results. As Figure 3 shows,
as the noise ratio increases, the MSE remains at a low level (below 0.06). Hence, we can conclude that
our algorithm obtains accurate registration results even when inaccurate one-to-one correspondences
are obtained.
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Figure 3. Plot of MSE versus noise ratio.

4.2. Comparison with state-of-the-art methods

To test the proposed algorithm’s applicability to real-world scenes, we first used our noniterative
simultaneous rigid registration algorithm (NSRR) to register serial section images of a zebrafish, which
included 336 microscopic images imaged by scanning electron microscopy (SEM). The thickness of each
section is 50 nm, the image resolution is 6144 by 6144 pixels, and the pixel size of the images is 110 nm.
This problem involves different levels of rotation, translation, scaling, and nonlinear deformation.
All the experiments were run on the same PC equipped with an intel i7-4790 CPU. Baseline methods’
programs are publicly available in Fiji (the software can be downloaded from: https://imagej.net/Fiji
and http://www-o.ntust.edu.tw/~cweiwang/3Dregistration/).

We utilized the SIFT flow method [20] to obtain dense correspondences, from which we selected a
sparse set of correspondences with high confidence from the foreground, as illustrated in Figure 4.

Figure 4. An example of the correspondences we extracted (marked by red dots). We utilized the
SIFT flow method to obtain dense correspondences between adjacent images; then, from those, we
selected a sparse set of pairs with low matching errors. The two rows show adjacent images. Clearly,
our approach can obtain reliable correspondences even under conditions that involve illumination
variation, tissue removal, and spatial transformation.

The performance metric is SSIM [22], which evaluates the structural similarity between each
pair of registered adjacent images; these values are summed and averaged across the entire sequence.
Meanwhile, the SSIM variance along the whole sequence was calculated to evaluate the algorithms
in terms of stability. We computed the total time needed to register an image pair to measure
algorithm performance.

We adopted the widely used state-of-the-art methods described in Section 2 as baselines, including
Pairwise method [23], BUnwarpJ [10], CW_R_color [3], LeastSquare [8], and Elastic method [12]. Here,
Pairwise method was applied sequentially to register adjacent section images. Table 1 lists comparisons
of the results among the baselines and our method. Compared with the baseline methods, our method
achieves the highest accuracy in the least amount of time. Moreover, our method is very stable, and it

https://imagej.net/Fiji
http://www-o.ntust.edu.tw/~cweiwang/3Dregistration/
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achieves the smallest accuracy deviations. As Figure 5 shows, our method achieves the best results
and does not cause error accumulation and propagation.

Table 1. Comparison of accuracy and speed in Zebrafish SEM data.

Method SSIM Time

BUnwarpJ(fast) [10] 0.6523 ± 0.1235 3.6 min
BUnwarpJ(accurate) [10] 0.7037 ± 1.2717 4.3 min

LeastSquare [8] 0.8046 ± 0.1578 11.729 s
Elastic Method [12] 0.6118 ± 0.0968 1.4 min

CW_R_color [3] 0.6721 ± 0.9013 36.4 min
Pairwise method [23] 0.7331 ± 0.1283 0.937 s

NSRR (ours) 0.8297 ± 0.0706 0.2813 s

Figure 5. An example of our experimental results on the zebrafish SEM data. To provide a clear
demonstration of the registration effects, we averaged the registered sequence and show the results in
the last column.



Appl. Sci. 2020, 10, 1156 10 of 14

To further prove the effectiveness of our method, we also adopted the data acquired by
FIB-SEM [24], which contains 62 serial section images of a Drosophila brain whose image resolution is
6684× 6516 pixels with thicknesses and pixel sizes all equal to 9.15 nm. The advantage of using these
data are that all the sections were imaged in situ; therefore, these data can be treated as the ground
truth. It is well known that ground truth for image registrations is difficult to obtain; however, based
on these data, we can construct a testing set that includes ground truth.

Each section was randomly rotated and shifted, and some sections were removed to mimic
the common thicknesses of serial sections. Compared with the zebrafish SEM data, these data are
considerably more complex, because the image content can be replete with many textures, the matching
of fine details needs to be considered.

Similar to the last experiment, we compared the performance of our algorithm with all the baseline
methods. We used endpoint error (EPE) to evaluate accuracy; EPE is the Euclidean distance between
the registered images and the ground truth images, and it is averaged over all pixels. Here, an image
is reshaped to a vector. Table 2 shows a comparison among the baseline methods and our method.
Coinciding with the conclusion of the last experiment, our method achieves the least error in the least
amount of time. Figure 6 shows a visualization of the registration results. As Figure 6 shows, our
method achieves the best result and does not cause error accumulation and propagation. Moreover, it
generates the clearest average image compared to the others. Some methods that previously obtained
poor performances perform better on these data, such as BUnwarpJ and CW_R_color; however,
the performance of our method remains stable.

Table 2. Comparison of accuracy and speed in Drosophila brain FIB-SEM data.

Method EPE Time

BUnwarpJ(fast) [10] 16.6243 3.4 min
BUnwarpJ(accurate) [10] 14.3140 5.5 min

LeastSquare [8] 15.4013 5.462 s
Elastic Method [12] 17.6141 10.323 s

CW_R_color [3] 12.7754 8.1 min
Pairwise method [23] 14.5277 0.368 s

NSRR (ours) 11.1903 0.289 s
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Figure 6. An example of our experimental results on the Drosophila brain FIB-SEM data. The original
data contain large rigid deformations, and most methods tend to cause error accumulation and
propagation. To provide a clearer demonstration of the registration effects, we averaged the registered
sequence and show the results in the last column.

5. Discussion

In this section, we discuss the applicability of our method. As we prove in Section 3.6, we must
satisfy two conditions to obtain the optimal solution: first, all the serial sections must be rigidly
deformed, and, second, the first and last images must have no relative displacement. For the first
condition, since our algorithm is aimed at resolving rigid deformation, it it difficult to directly apply on
nonrigidly distorted sections. However, our method can offer a good initial estimate for the nonrigid
registration algorithms. For the second condition, we could image the top and bottom surfaces of
the samples before sectioning, acquiring the images of the first and last sections. Since this step is
conducted before sectioning, no relative displacement exists between the first and last sections.
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6. Conclusions

This work presents and solves a constrained simultaneous rigid registration problem for serial
section images. Because reliable correspondences can be extracted only from adjacent section images,
the current 3D registration algorithms degenerate into processes that sequentially solve pairwise
registration problems, resulting in error accumulation and propagation. To address this issue, we add
the constraint that the positions of the first and last section images must remain unchanged; then, we
estimate the optimal rigid transformations for the remaining section images to minimize the distances
between their correspondences. The proposed method is noniterative and obtains the optimal solution
under ideal conditions. It can simultaneously compute rigid transformations for large numbers of
serial section images in a short time.
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Appendix A. Proofs

Lemma A1. The optimal solution of Equation (4) is Wi = HiViCiUT
i , where UiSiVT

i is the singular value
decomposition (SVD) of Ai, Ci = diag(1, det(ViUT

i )), Hi is 2× 2 rotation matrix whose rotation degree θi

can be obtained by solving Equation (5), and θ is the rotation degree of
n
∏
i=1

ViCiUT
i .

Proof of Lemma A1. ViCiUT
i is the optimal rotation matrix in pairwise point sets registration [23].

We can assume that Wi = HiViCiUT
i , where Hi is an unknown rotation matrix we need to evaluate.

Using commutative law of multiplication for rotation matrix, the constraint in Equation (4) can be
represented as

n

∏
i=1

Wi =
n

∏
i=1

ViCiUT
i Hi =

n

∏
i=1

ViCiUT
i

n

∏
i=1

Hi = I (A1)

Denoting the rotation degree of
n
∏
i=1

ViCiUT
i to be θ and the rotation degree of Hi to be θi, we

obtain
n
∑

i=1
θi = −θ. Using Lemma A2, the objective function in Equation (4) becomes:

n−1
∑

i=1
tr (WiAi) =

n−1
∑

i=1
tr
(
CiSiVT

i HiVi
)

=
n−1
∑

i=1
tr

(
CiSi

[
cos±θi − sin±θi
sin±θi cos±θi

])
=

n−1
∑

i=1
−tr (CiSi) cos θi

(A2)

Therefore, solving Equation (4) is equivalent to solving Equation (5).

Lemma A2. With orthogonal matrix O and rotation matrix P, we have OTPO = P or PT .

Proof of Lemma A2. Since O is an orthogonal matrix, it is either a rotation matrix or a reflection
matrix. If O is a rotation matrix, using the commutative law of multiplication for rotation matrix,
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OTPO = POTO = P. If O is a reflection matrix, we denote Rot(θ) as a rotation matrix with rotation
degree θ and Ref(φ) as a reflection matrix with reflection degree φ, that is

Rot(θ) =

[
cos θ − sin θ

sin θ cos θ

]

Ref(φ) =

[
cos 2θ sin 2θ

sin 2θ − cos 2θ

] (A3)

It is known that: {
Rot(θ)Ref(φ) = Ref(φ + θ/2)
Ref(θ)Ref(φ) = Rot(2(θ − φ))

(A4)

Therefore,
OTPO = Ref(φ)Rot(θ)Ref(φ) = Rot(−θ) = PT (A5)
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