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Abstract: Tachycardia is defined as a heart rate greater than 100 bpm for more than 1 min.
Tachycardia often occurs after endotracheal intubation and can cause serious complication in patients
with cardiovascular disease. The ability to predict post-intubation tachycardia would help clinicians
by notifying a potential event to pre-treat. In this paper, we predict the potential post-intubation
tachycardia. Given electronic medical record and vital signs collected before tracheal intubation,
we predict whether post-intubation tachycardia will occur within 10 min. Of 1931 available patient
datasets, 257 remained after filtering those with inappropriate data such as outliers and inappropriate
annotations. Three feature sets were designed using feature selection algorithms, and two additional
feature sets were defined by statistical inspection or manual examination. The five feature sets were
compared with various machine learning models such as naïve Bayes classifiers, logistic regression,
random forest, support vector machines, extreme gradient boosting, and artificial neural networks.
Parameters of the models were optimized for each feature set. By 10-fold cross validation, we found
that an logistic regression model with eight-dimensional hand-crafted features achieved an accuracy
of 80.5%, recall of 85.1%, precision of 79.9%, an F1 score of 79.9%, and an area under the receiver
operating characteristic curve of 0.85.

Keywords: tachycardia prediction; tracheal intubation; electronic medical record; vital sign; machine
learning; clinical decision support

1. Introduction

The usual circulatory response to laryngeal and tracheal stimulation during tracheal intubation
in anesthetized patients are tachycardia and a rise in arterial pressure due to reflex sympathetic
stimulation [1–3]. The resulting tachycardia is transient and poses little risk to healthy patients.
However, in patients with cardiovascular disease, it can induce a cardiac oxygen imbalance and
cause serious complications such as myocardial ischemia. To prevent such tachycardia, β-blockers,
lidocaine, opioids, and deep anesthesia are used [4–6]. These methods do not always effectively
block tachycardia and the potential for complications associated with drug administration cannot
be ignored. If post-intubation tachycardia can be predicted, pre-intubation medication could be
administered prior to intubation to mitigate the degree of tachycardia. However, several characteristics
of anesthesia induction make prediction difficult. Patients often experience anxiety prior to surgery,
which activates the sympathetic system. Medication (e.g., β-blockers) and preexisting medical
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conditions (e.g., cardiovascular diseases, diabetes) are confounding factors. Furthermore, bolus
administration of anesthesia induction agents responds variously according to the patient’s general
condition and existing disease. Tracheal intubation itself causes various hemodynamic responses,
further complicating the task of predicting such responses. With the universal use of electronic medical
records (EMR; otherwise referred to as Electronic Healthcare Records) and real-time biological signal
collection equipment, data from EMR (e.g., patient demographic information, coexisting disease,
and medication history) and physiological and pharmacological data obtained from various anesthesia
monitoring devices can be collected simultaneously during anesthesia and surgery. The development
of machine learning has reached a stage where it may be possible to train systems to predict
blood-pressure fluctuation during anesthesia [7]. However, to our knowledge, no studies have yet
predicted the occurrence of tachycardia after induction of anesthesia by machine learning.

Although no studies of predictive systems for post-intubation tachycardia have been conducted,
reports on related events (e.g., ventricular tachycardia, cardiac arrest, and arrhythmia) are available.
In most studies, the related events were predicted using heart rate variability (HRV) as the main variable
and several have adopted machine learning models such as logistic regression (LR), random forest (RF),
decision tree (DT), artificial neural networks (ANN) [8–11]. Some studies have investigated feature
selection algorithms to enhance model performance and identify indicative features. Riasi et al. [12]
used a linear correlation method to predict ventricular tachycardia (VT). They analyzed the linear
correlation of the features, removed highly correlated features, and achieved a sensitivity of 0.88
using support vector machines (SVMs). Yaghouby et al. [13] used generalized discriminant analysis
(GDA) feature reduction to predict four types of cardiac arrhythmias. A total of nine linear and
nonlinear features were extracted from the HRV signals, which were reduced to three-dimensional
values by GDA. Feature selection improved accuracy rates by between 1% and 7%, and they achieved
an accuracy of 100% with an ANN model. As feature selection has shown its potential to resolve
a variety of complex relationships between factors (or features), we employed feature selection
algorithms to deal with factors that affect the heart rate after intubation. Among the known factors are
patient characteristics (e.g., age, comorbidity), a history of taking cardiovascular drugs before surgery
(e.g., β-blockers, calcium channel blockers, antiarrhythmics), time to intubation, degree of muscle
relaxation, intubation methods (e.g., traditional direct laryngoscope, video laryngoscope), and the
type and amount of anesthesia drug injected. We also designed feature sets based on statistical clues
(e.g., p-value) and manual examination. We applied these carefully designed features to machine
learning models for tachycardia prediction.

In this paper, we aimed to predict whether post-intubation tachycardia will appear within 10 min,
given EMR and vital signs collected before tracheal intubation. Tachycardia is defined a heart rate
greater than 100 bpm for more than 1 min. As far as we know, this is the first study to predict
tachycardia after tracheal intubation. To predict tachycardia, we used a variety of machine learning
models with feature selection techniques. We believe that this will prove helpful for clinicians by
notifying a potential event to pre-treat.

This paper is structured as follows. Section 2 describes the characteristics of the data and
preprocessing steps. It also supplies details on how we used feature selection algorithms and machine
learning models. Section 3 provides details of experimental settings and results, Section 4 discusses
about the results, and Section 5 concludes the paper.

2. Materials and Methods

2.1. Data Preparation

Datasets were collected from nine operating rooms at Soonchunhyang University Bucheon
Hospital, Bucheon city, Republic of Korea, between 29 October 2018, and 30 September 2019. The data
were collected from patients who had received total intravenous anesthesia (TIVA), and were at least
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18 years old. The datasets do not contain any direct patient identifiers and additional approval from
our institutional review board was obtained for this retrospective study (No. 2019-10-024-002).

The datasets consisted of electronic medical records (EMRs) and vital signs. The EMR data
were manually collected and included age, sex, height, weight, body mass index (BMI), American
Society of Anesthesiologists (ASA) physical status grade, and types of coexisting diseases. Vital signs
were collected automatically between the time of entering the operating room and the beginning
of operation. Vital signs were collected using a Vital Recorder [14] connected to several devices in
operating rooms: Bx50 (patient monitor), Solar 8000M (patient monitor), Datex-Ohmeda (anesthesia
machine), Primus (anesthesia machine), BIS (brain monitor) and Orchestra (infusion pump). Vital
signs included 35 variables such as heart rate (HR), systolic blood pressure (SBP), tidal volume (TV),
carbon dioxide (CO2), end-tidal CO2 partial pressure (ETCO2), positive endexpiratory pressure (PEEP),
bispectral index (BIS), and so forth. Figure 1 shows a sample of the two types of data; the EMR is
collected once for each operation, whereas the vital signs are supposed to be gathered every second
continuously. Figure 1 shows a sample of the two types of data; the EMR data were collected once for
each operation, whereas vital signs were ideally gathered every second continuously. Details of the
two types of data are summarized in Table 1, where the baseline vital values are collected only before
anesthesia induction.

(a) EMR data

(b) Vital signs

Figure 1. (a) Sample EMR data, and (b) sample vital signs of a patient.
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Table 1. Description of collected data.

Source Category Feature Name

Electronic medical record

Demographic data

Age
Sex
Height
Weight
Body mass index
ASA classification

Comorbidities

Cardiovascular disease
Respiratory disease
Coronary artery disease
Gastrointestinal disease
Renal disease
Endocrine disease
Neurologic disease

Vital recoder

Baseline

Heart rate
Systolic blood pressure
Mean blood pressure
Diastolic blood pressure

Noninvasive blood pressure
Systolic blood pressure
Mean blood pressure
Diastolic blood pressure

Heart rate Heart rate

Mechanical ventilation data

Tidal volume
Minute ventilation
Respiratory rate
Mean positive airway pressure
Peak inspiratory pressure
End-tidal CO2 partial pressure
Carbon dioxide
Saturation of partial pressure of oxygen
Positive endexpiratory pressure

Neuromuscular transmission train-of-four count

Bispectral index

Spectral edge frequency
Signal quality index
Electromyogram power
Total power
Bispectral index value

Anesthetic drug Volume
Rate

- propofol Plasma concentration
- remifentanil Effect-site concentration

Target concentration

Vasoactive drug administration

Volume
- Ephedrine
- Phenylephrine
- Esmolol
- Nicardipine
- Dexamethasone

Muscle relaxant
Volume- Rocuronium
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The datasets required preprocessing because of missing values (e.g., signal quality index (SQI) of
BIS), inconsistent sampling rates, outliers (e.g., height), and incorrect time-logs of intubation. Missing
values from the BIS were replaced by the mean of the surrounding values. Other missing values
were replaced by the last observed values. Different vital signs had inconsistent sampling rates; for
example, generally noninvasive blood pressure was recorded every minute, whereas the respiratory
rate was recorded every 3 s. To handle this, as the fastest sampling rate was 1 s, we assume that all
vital signs had the same sampling rate of 1 s. If a sampling rate of a particular variable was 3 s, then
the corresponding variable values were copied twice.

After the missing values and inconsistent sampling rates were addressed, it was necessary to
filter some data as depicted in Figure 2. Of the original 1931 patients collected between 29 October2018,
and 30 September 2019, both vital signs and EMR were available for only 1093. Outlier values
(e.g., height of 1554.2 cm, remifentanil volume of 538,976.25 µg) as determined by a predefined range
of variables were removed. The patients without BIS, neuromuscular transmission train-of-four
count (NMT_TOF_CNT), or CO2 were filtered out. The patients without any intubation annotation
(i.e., “EVENT”) were also removed because our purpose was to predict post-intubation tachycardia.
Furthermore, because the intubation annotation may have been wrong for several reasons, we designed
Algorithm 1 to correct wrong annotations. The algorithm also found patient data that could not be
corrected, and 271 were discarded. Based on the corrected annotations of intubation, we filtered 64
patients data of two cases: (1) intubation only 10 s after anesthesia induction, and (2) operation begins
within 10 min after intubation.

Figure 2. Data filtering.

The major purpose of Algorithm 1 was to correct annotations of intubation. The time-step (or
point) of tracheal intubation was annotated manually by the perioperative nurse (or anesthesiologist)
in the operating room. Therefore, the annotated points may have been incorrect for several reasons
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(e.g., a mistake or delay). For example, the EVENT column of Figure 1b has the incorrect annotation
“intubation” at 00:08:02, because the CO2 value must remain at zero during tracheal intubation. Our
purpose was to predict post-intubation tachycardia, so it was critical to find the correct intubation
points. Algorithm 1 describes four steps of finding the start and end points of tracheal intubation.
More formally, in Figure 3, the algorithm identifies the beginning point of intubation Is and the ending
point of intubation Ie.

Figure 3. Input and output area based on the intubation points.

The first step of Algorithm 1 was to find candidate points of tracheal intubation using three
conditions, as shown in line 4. The first condition checked if the bispectral index value (BIS) was
lower than 70. When patients entered the operating room, TIVA using propofol and remifentanil
via a target controlled infusion pump (Orchestra Base Primea with module DPS; Fresenius Kabi
AG, Germany) was administered. After anesthesia, patients gradually lost consciousness as BIS
decreased. In Figure 1b, this condition is met at 00:07:01. The second condition checks muscle state;
neuromuscular transmission train of four count (NMT_TOF_CNT) is 0 or 1 when the muscle is relaxed.
The rocuronium was injected intravenously, and we electrically stimulated the nerves dominating
the patient’s thumb and measured their movements to determine if the muscles were relaxed. The
last condition checks if the carbon dioxide (CO2) values for 10 s remain at zero. After receiving the
muscle relaxant, the patients could not breathe on their own, so CO2 values were zero. In Figure 1b,
the annotated event “intubation” violates this condition, meaning that the annotation must be incorrect.
By the above three conditions, the first step finds a candidate set of beginning points of intubation.
For example, the candidate set included the point 00:07:01 in Figure 1b. If no candidate was found,
then the corresponding data were discarded, as described in line 12. The lines between 14 and 18 were
to take only the first candidate point if some candidate points are consecutive; for example, given
four candidate points [10, 20, 30, 50], the two points 20 and 30 were to be filtered out, resulting in two
remaining candidate points [10, 50].

The second step of the algorithm was to find a manually annotated intubation point in the
operating room. Unless there was only one annotated intubation point, the corresponding data
were discarded. In other words, if there were multiple annotated points or no points at all, then
the corresponding data were regarded as incorrect. Such wrong data were discarded even multiple
candidate points CIs were obtained from step 1, which means that the CIs and MI were required to
find the intubation points Is and Ie in the following steps. The third step was to find the beginning
point Is. The Is was found by comparing MI and multiple candidate points CIs. By comparing the
difference of MI with each element of CIs, the nearest element of CIs to MI became Is. For example,
in Figure 1b, assume that CIs and MI are [00:07:01, 00:12:04] and [00:08:02], respectively. The Is will be
00:07:01 because it is the nearest candidate point to 00:08:02. The last step was to find the ending point
Ie of intubation. It assumes that the post-intubation CO2 emission was greater than the pre-intubation
CO2 emission. For example, in Figure 1b, the CO2pre will be 2.4 at 00:07:00. The Ie will be 00:08:01
because it is the earliest point with a greater CO2 value than CO2pre. If the Ie was not found by this
step, then the corresponding data were to be discarded; but we did not observe such a case.
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Algorithm 1: Finding the start and end points of tracheal intubation for a target patient.
Result: Beginning point of intubation Is, Ending point of intubation Ie

1 STEP 1: Finding a set of candidates for beginning points of tracheal intubation
Output :Candidates of beginning point CIs

2 Timestep i← 0; CIs ← {}
3 for i-th point do
4 if BIS[i] < 70 and (NMT_TOF_CNT[i] == 0 or 1) and CO2[i:i+10] == 0 then
5 CIs.append(i)
6 i← i + 10
7 else
8 i← i + 1
9 end

10 end
11 if len(CIs) == 0 then
12 discard this patient data
13 else
14 for each pair (ci1, ci2) in reverse(CIs) do
15 if ci1 - ci2 <= 10 then
16 CIs.remove(ci1)
17 end
18 end
19 end

20 STEP 2: Finding manually tagged intubation point in the operating room
Output :Manually tagged intubation point MI

21 Timestep i← 0; MI ← NULL; MIc ← {}
22 for i-th point do
23 if EVENT[i] == ’intubation’ then
24 MIc.append(i)
25 i← i + 1
26 end
27 end
28 if len(MIc) != 1 then
29 discard this patient data
30 else
31 MI ← MIc[0]
32 end

33 STEP 3: Finding the beginning point of intubation
Output :Beginning point of intubation Is

34 Is = argminci∈CIs
‖MI − ci‖

35 STEP 4: Finding the ending point of intubation
Output :Ending point of intubation Ie

36 Pre-intubation CO2pre ←CO2[Is-1]
37 for i-th point > Is do
38 if CO2pre < CO2[i] then
39 Ie = i
40 break
41 end
42 end
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2.2. Feature Selection

Our purpose was to predict a post-intubation tachycardia, for which the input feature was obtained from
the “input area” in Figure 3, and the output was 1 (or true) if the tachycardia occurred in the “output area”;
otherwise it was 0 (or false). In this paper, tachycardia is defined as a HR greater than 100 bpm for more than
1 min. The input feature is defined using two types of data (e.g., EMR and vital signs). First, a 24-dimensional
feature vector fEMR was obtained from EMR, including age, sex, BMI, and so forth; details of the 24-dimensional
feature can be found in the first two rows of Table A1 in the Appendix. For example, if the patient was female and
had a cardiovascular disease (e.g., hypertension), then fEMR was [. . . , fsex = 1, . . . , fhypertension = 1, . . . ]. Second,
a 129-dimensional feature vector fvital was obtained from the vital signs. The fvital contains mainly min, max,
mean, and standard deviation (sd) of each vital sign; details can be found in Table A1 of the Appendix. For
example, if systolic blood pressure (SBP) of the baseline was 130 and the minimum value of respiratory rate
(RR) was 4.9, then fvital was [. . . , fbaseSBP = 130, . . . , fminRR = 4.9, . . . ]. The two feature vectors fEMR and fvital
were merged into a 153-dimensional feature vector finput . Every numerical element of the finput was normalized
between 0 and 1.

Feature selection finds a promising set of features that has a potential to contribute performance improvement.
Feature selection is known to shorten training time, reduce overfitting, and improve accuracy [15]. It has produced
useful results for ventricular tachycardia and arrhythmia in previous studies [12,13]. We compared feature
selection with three different measurements: recursive feature elimination (RFE), Gini index (GI), and a univariate
statistical test (UST) using mutual information. The RFE and GI-based feature selection were performed with a
random forest (RF) classifier using scikit-learn [16]. By grid searching, RFE, GI, and UST-based feature selection
resulted in 10, 15, and 15 promising feature sets, respectively. Details of the selected features are listed in Table 2.

In addition to feature selection with the three measurements, we also prepared two additional feature sets:
a p-value based feature set and a manually designed feature set. In Table 2, the “P-based” and “Hand-crafted”
feature sets indicate the two feature sets, respectively. The P-based feature set was defined by statistical clues; we
conducted a t-test or Wilcox test for continuous variables (e.g., height, tidal volume), and chi-squared or Fisher
tests for categorical variables (e.g., sex, ephedrine). We observed significant statistical differences in baseline heart
rate, noninvasive heart rate, and remifentanil values, as shown in Table 3. However, the hand-crafted feature
set was carefully designed through an exploratory data analysis process. That is, by manually examining
a group of patients, we picked eight promising features, including sex, HR_mean, remifentanil_CE_max,
remifentanil_CP_max, remifentanil_VOL_max, remifentanil_VOL_mean, BIS_min, and MV_max.

Table 2. Feature sets.

All 153 Features RFE-Based GI-Based UST-Based P-Based Hand-Crafted

Sex •

Comorbidities - no.
Endocrine disease

Hemoglobin A1c •

Baseline
Heart rate • •

Heart rate
Min • • •
Max • • •
Mean • • • • •
Sd •

Difference Heart rate
Max •
Mean •

Mechanical ventilation data
Minute ventilation

Max • •
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Table 2. Cont.

All 153 Features RFE-based GI-based UST-based P-based Hand-Crafted

End-tidal CO2 partial pressure
Max •
Mean •

Carbon dioxide
Mean •

PLETH_SPO2
Mean •

Positive endexpiratory pressure
Sd •

Bispectral Index
Spectral frequency

Mean •
Signal quality index

Sd •
Electromyograpy

Min •
Mean •

Total power
Max •
Mean • •

Bispectral index value
Min • •
Max •
Sd •

Anesthetic drug
Volume

Propofol
Min •

Remifentanil
Max •
Mean • •

Rate
Propofol

Mean • •
Sd •

Plasma concentration
Remifentanil

Max • • •
Effect-site concentration

Propofol
Min •

Remifentanil
Max •
Mean •

Pre-intubation sinus tachycardia
Occurrence •
Frequency •

RFE stands for recursive feature elimination, GI means Gini index, UST implies univariate statistical test,
and P-based represents p-value based feature sets, and PLETH_SPO2 means saturation of partial pressure
of oxygen.
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Table 3. Statistical characteristics of variables.

All Cases No Tachycardia Tachycardia p Value
(n = 257) (n = 207) (n = 50)

Age - yr 58.2 (14.5) 58.7 (14.2) 56.2 (15.7) 0.266
Sex (Female) 131 (51.0%) 106 (51.2%) 25 (50.0%) 0.878
Height—cm 161.2 (9.3) 161.2 (9.4) 161.5 (9.3) 0.851
Weight—kg 64.6 (12.4) 64.7 (12.3) 64.1 (12.8) 0.777
BMI—kg/m2 24.7 (3.5) 24.8 (3.5) 24.5 (3.7) 0.588
ASA classification - no. 0.647

1 72 (58.8%) 59 (28.5%) 13 (26.0%)
2 151 (28.0%) 119 (57.5%) 32 (64.0%)
3 34 (13.2%) 29 (14.0%) 5 (10.0%)

Comorbidities - no.
Cardiovascular disease

Hypertension 100 (38.9%) 81 (39.1%) 19 (38.0%) 0.883
Atrial fibrillation 6 (2.3%) 4 (1.9%) 2 (4.0%) 0.331
Coronary artery disease 11 (4.3%) 9 (4.3%) 2 (4.0%) 0.636
Angina pectoris 5 (1.9%) 5 (2.4%) 0 (0.0%) 0.336
Congestive heart failure 2 (0.8%) 1 (0.5%) 1 (2.0%) 0.352

Respiratory disease
Asthma 12 (4.7%) 8 (3.9%) 4 (8.0%) 0.187
Chronic obstructive pulmonary disease 4 (1.6%) 4 (1.9%) 0 (0.0%) 0.418

Gastrointestinal disease
Hepatitis 3 (1.2%) 2 (1.0%) 1 (2.0%) 0.479
Liver cirrhosis 7 (2.7%) 6 (2.9%) 1 (2.0%) 0.591
Viral carrier 7 (2.7%) 5 (2.4%) 2 (4.0%) 0.409
Hepatitis B viral infection 14 (5.4%) 10 (4.8%) 4 (8.0%) 0.280

Renal disease
Chronic kidney injury 0.574

2 1 (0.4%) 1 (0.5%) 0 (0.0%)
3 6 (2.3%) 6 (2.9%) 0 (0.0%)
4 1 (0.4%) 1 (0.5%) 0 (0.0%)

End-stage renal disease 2 (0.8%) 2 (1.0%) 0 (0.0%) 0.648
Endocrine disease

Diabetes mellitus 58 (22.6%) 50 (24.2%) 8 (16.0%) 0.216
Thyroid disease 0.386

1 3 (1.2%) 3 (1.4%) 0 (0.0%)
2 2 (0.8%) 1 (0.5%) 1 (2.0%)
3 13 (5.1%) 9 (4.3%) 4 (8.0%)

Hemoglobin A1c 1.5 (2.9%) 1.6 (3.0%) 1.0 (2.4%) 0.223
Neurologic disease

Cerebrovascular disease 10 (3.9%) 8 (3.9%) 2 (4.0%) 0.612
Dementia 1 (0.4%) 1 (0.5%) 0 (0.0%) 0.805

Baseline
Systolic blood pressure—mmHg 142.8 (23.7) 143.3 (24.7) 141.0 (19.3) 0.546
Mean blood pressure—mmHg 102.7 (15.8) 102.6 (16.4) 102.8 (13.0) 0.959
Diastolic blood pressure—mmHg 78.5 (11.5) 77.9 (11.4) 80.8 (11.6) 0.11
Heart rate—/min 75.5 (15.6) 73.3 (14.5) 84.6 (17.1) < 0.001 ***

Noninvasive blood pressure—mmHg
Systolic 123.4 (19.6) 123.7 (20.2) 122.0 (16.8) 0.57
Mean 123.4 (19.6) 123.7 (20.2) 122.0 (16.8) 0.57
Diastolic 69.9 (9.6) 69.6 (9.8) 71.0 (8.7) 0.357

Heart rate—/min 72.9 (12.6) 70.1 (10.9) 84.4 (12.8) < 0.001 ***
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Table 3. Cont.

All Cases No Tachycardia Tachycardia p Value
(n = 257) (n = 207) (n = 50)

Mechanical ventilation data
Tidal volume—mL 239.4 (86.0) 237.1 (85.7) 248.8 (87.4) 0.39
Minute ventilation—L/min 3.8 (1.5) 3.8 (1.5) 4.1 (1.5) 0.131
Respiratory rate—/min 15.9 (5.8) 15.6 (5.8) 16.9 (5.6) 0.169
Mean positive airway pressure—cmH2O 6.8 (1.9) 6.8 (1.9) 6.9 (1.8) 0.645
Peak inspiratory pressure—cmH2O 14.8 (4.3) 14.8 (4.2) 14.6 (4.4) 0.783
End-tidal CO2 partial pressure—% 22.8 (0.7) 2.8 (0.7) 2.8 (0.5) 0.567
Carbon dioxide—% 1.1 (0.4) 1.1 (0.4) 1.1 (0.3) 0.977
Saturation of partial pressure of oxygen—% 99.1 (1.2) 99.0 (1.2) 99.1 (1.0) 0.635
Positive endexpiratory pressure—cmH2O 2.7 (1.1) 2.7 (1.1) 2.8 (1.2) 0.334

Neuromuscular transmission
train-of-four count 1.5 (0.6) 1.5 (0.6) 1.5 (0.7) 0.838

Bispectral Index
Spectral frequency—Hz 17.5 (2.6) 17.4 (2.5) 18.0 (2.9) 0.195
Signal quality index—Hz 81.0 (12.0) 81.0 (12.0) 81.2 (12.1) 0.902
Electromyograpy—Hz 35.4 (4.2) 35.3 (4.2) 35.9 (4.0) 0.331
Total power 63.9 (2.9) 63.8 (2.7) 64.2 (3.4) 0.479
Bispectral index value 63.2 (10.9) 62.8 (10.6) 65.0 (12.1) 0.185

Anesthetic drug
Volume

Propofol—mg 112.7 (31.3) 112.6 (30.8) 113.2 (33.2) 0.909
Remifentanil—µ g 32.7 (15.7) 34.0 (16.3) 27.4 (11.8) 0.001***

Rate - mL/hr
Propofol 200.3 (184.5) 208.9 (194.0) 164.8 (134.8) 0.062
Remifentanil 44.0 (81.2) 44.4 (84.0) 42.0 (69.1) 0.852

Plasma concentration
Propofol—mcg/mL 6.0 (1.6) 6.0 (1.7) 6.0 (1.3) 0.947
Remifentanil—ng/mL 2.7 (1.6) 2.8 (1.7) 2.2 (1.2) 0.017*

Effect-site concentration
Propofol—mcg/mL 4.2 (0.8) 4.2 (0.8) 4.3 (0.7) 0.471
Remifentanil—ng/mL 1.5 (0.7) 1.5 (0.7) 1.3 (0.6) 0.04*

Target concentration
Propofol—mcg/mL 4.9 (0.8) 4.8 (0.8) 5.0 (0.8) 0.275
Remifentanil—ng/mL 1.8 (0.9) 1.9 (0.9) 1.6 (0.8) 0.035 *

Vasoactive drug administration - no.
Ephedrine 3 (1.2%) 3 (1.4%) 0 (0.0%) 0.521
Phenylephrine 3 (1.2%) 3 (1.4%) 0 (0.0%) 0.521
Esmolol 2 (0.8%) 1 (0.5%) 1 (2.0%) 0.352
Nicardipine 1 (0.4%) 1 (0.5%) 0 (0.0%) 0.805
Dexamethasone 68 (26.5%) 57 (27.5%) 11 (22.0%) 0.426

Muscle relaxant
Rocuronium—mg 46.2 (11.9) 45.8 (12.4) 48.0 (9.3) 0.239

Continuous variable are expressed as mean and standard deviation. T-test or Wilcox test was performed
appropriately. For categorical variables, numbers and ratios are displayed, and chi-square tests or Fisher’s
tests performed appropriately. * 0.05, *** 0.001.

The five feature sets were compared using various machine learning models: random forest (RF) [17], logistic
regression (LR) [18], naïve Bayes classifiers (NB) [19], support vector machine (SVM) [20], extreme gradient
boosting (XGB) [21], and artificial neural networks (ANN) [22]. The ANN had two hidden layers, in which the
first and second layers had 15 and 20 nodes, respectively.

3. Results

Among the 257 patients, there were positive patients that had the post-intubation tachycardia, where the
number of positive patients |Dpos| = 50. To avoid such imbalance, we randomly divided the remaining 207
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negative patients Dneg into four disjoint subsets, where |Dneg1 | = 52, |Dneg2 | = 52, |Dneg3 | = 52, and |Dneg4 | = 51.
We conducted four independent experiments with every pair of Dpos and {Dneg1 , Dneg2 , Dneg3 , Dneg4 }; the total
amount of datasets for the four experiments was 102, 102, 102, and 101, respectively. All experimental results
were averaged values of 10-fold cross-validation. The performance of different models was compared by accuracy,
precision, recall, and F1 score [23]. We also utilized an area under the receiver operating characteristic curve
(AUC) to compare the models; larger AUC values implied better models.

We applied our five feature sets to six machine learning models. Parameters of each model were optimized
through a grid search, for which the settings are described in Table 4. We used a computer with eight Central
Processing Units (CPU) of i7-7700 3.6 GHz and two NVIDIA GeForce 1080 Ti. The machine learning models were
implemented with Python3 language.

Table 4. Parameter settings for machine learning models.

Models Description

Artificial neural network

Common parameter : Activation (relu), Solver (adam), L2 penalty (0.001),
Maximum iteration (200)

Common structure : two hidden layers = [15, 20]
All feature : L2 penalty = 0.1, One hidden layer with 10 nodes
RFE-based : Initial parameter
GI-based : Initial parameter
UST-based : Activation = identity, Solver = sgd
P-based : Activation = identity, Solver = lbfgs
Hand-crafted : Activation = identity, Solver = lbfgs

Logistic regression

Common parameter : Penalty (L2), C (1.0), Solver (liblinear)
All feature : Penalty = L1, C = 0.1
RFE-based : Penalty = L1
GI-based : Penalty = L1
UST-based : Penalty = L1
P-based : C=10
Hand-crafted : Initial parameter

Naive Bayes (GaussianNB) Naive Bayes using Gaussian distribution

Random forest

Common parameter : # of estimators (10), Maximum depth (None),
n_jobs (None)

All feature : # of estimators = 30, Maximum depth = 2, n_jobs = -1
RFE-based : # of estimators = 700, Maximum depth = 7
GI-based : # of estimators = 700, n_jobs = -1
UST-based : # of estimators = 700
P-based : Maximum depth = 2
Hand-crafted : Initial parameter

Support vector machines

Common parameter : Kernel (rbf), C (1.0), Maximum iteration (-1)
All feature : Kernel = linear, C = 0.1
RFE-based : Initial parameter
GI-based : Kernel = linear
UST-based : Initial parameter
P-based : Kernel = linear
Hand-crafted : Kernel = linear

Extreme gradient boosting

Common parameter : # of estimators (100), Gamma (0), n_jobs (1)
All feature : # of estimators = 20
RFE-based : Initial parameter
GI-based : gamma = 0.1, n_jobs = -1
UST-based : Initial parameter
P-based : # of estimators = 20
Hand-crafted : Initial parameter

The experimental results are summarized in Table 5, where the first row, “All feature,” refers to a
153-dimensional feature vector finput . The feature sets with feature selection algorithms (e.g., RFE-based, GI-based,
and UST-based) gave better results than the finput . Among the six machine learning models, LR and SVM achieved
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the best accuracy of 80.5% with hand-crafted features. As it is more critical if we miss post-intubation tachycardia,
better sensitivity is preferable. In terms of the sensitivity, the LR will be the most effective because its recall of
tachycardia (85.1%) was greater than that of the SVM. As shown in Figure 4, the LR model achieved a much better
AUC with the hand-crafted features than with the GI-based features. Although the hand-crafted feature was not
the best for some models (e.g., random forest), all six models generally achieved high performances with it.

Table 5. Performance of machine learning models with different feature sets, where each precision,
recall, and F1 score is a pair of two results for non-tachycardia(0) and tachycardia(1).

Feature Set ANN LR NB RF SVM XGB

All feature
Accuracy 59.9 72.0 51.9 69.1 57.6 67.1
Precision(0/1) 59.4/60.7 67.7/71.4 51.7/52.5 65.0/72.2 57.7/55.7 66.7/66.2
Recall(0/1) 61.2/63.8 72.2/72.3 51.8/51.4 72.7/66.9 57.0/58.4 66.2/72.1
F1 score(0/1) 58.6/56.9 68.4/68.9 50.2/52.4 67.9/67.1 57.7/55.7 66.6/64.2
AUC 0.65 0.80 0.56 0.72 0.62 0.71

RFE-based feature
Accuracy 69.6 71.8 70.3 74.2 71.8 71.5
Precision(0/1) 69.3/70.1 71.0/70.1 68.2/70.7 73.0/72.8 72.3/72.7 71.2/70.4
Recall(0/1) 67.7/75.8 69.3/75.9 73.4/71.8 71.8/78.3 73.1/75.7 68.2/77.0
F1 score(0/1) 69.2/67.8 69.7/69.1 68.5/66.6 72.2/72.2 69.6/68.8 68.9/69.6
AUC 0.79 0.79 0.79 0.79 0.81 0.78

GI-based feature
Accuracy 70.1 71.0 69.3 71.1 68.8 73.5
Precision(0/1) 68.7/68.7 66.5/69.1 65.7/70.3 69.2/70.6 65.6/66.8 70.9/74.9
Recall(0/1) 68.4/72.3 66.0/74.4 71.6/70.2 72.4/72.9 65.1/72.8 76.5/73.6
F1 score(0/1) 66.7/67.0 68.4/69.1 68.2/66.2 68.3/67.7 67.2/66.4 70.9/70.1
AUC 0.76 0.78 0.76 0.77 0.74 0.79

UST-based feature
Accuracy 71.6 72.1 66.4 73.2 66.1 70.8
Precision(0/1) 68.7/73.0 69.2/70.3 60.2/81.1 70.9/72.7 63.6/68.5 69.7/70.9
Recall(0/1) 72.9/72.3 70.3/73.2 87.7/45.0 74.1/74.1 71.3/63.9 73.4/69.5
F1 score(0/1) 68.7/68.8 68.2/70.4 71.3/60.1 70.3/69.5 66.4/61.0 70.5/67.2
AUC 0.80 0.79 0.78 0.79 0.74 0.79

P-based feature
Accuracy 74.7 77.0 71.3 68.8 75.0 68.8
Precision(0/1) 72.3/73.8 74.3/75.3 66.4/75.2 64.6/67.5 72.3/75.5 67.4/68.5
Recall(0/1) 75.8/76.7 75.9/79.1 78.7/66.3 70.9/64.0 77.0/76.7 72.7/67.1
F1 score(0/1) 72.5/72.1 73.8/74.6 71.9/66.3 67.7/66.5 72.7/72.7 67.7/65.3
AUC 0.83 0.84 0.80 0.76 0.84 0.74

Hand-crafted feature
Accuracy 79.8 80.5 70.3 69.8 80.5 68.1
Precision(0/1) 78.0/79.2 79.8/79.9 73.2/68.2 66.1/70.7 79.8/80.0 67.7/65.2
Recall(0/1) 75.0/85.1 76.5/85.1 66.9/77.7 75.3/64.1 77.7/84.7 66.2/70.7
F1 score(0/1) 78.6/79.4 78.4/79.9 66.8/68.6 68.6/64.9 79.0/79.6 70.1/66.1
AUC 0.84 0.85 0.81 0.74 0.86 0.75
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(a) GI-based (b) Hand-crafted

Figure 4. Receiver operating characteristic curves using Logistic regression.

4. Discussion

Of the five feature sets, hand-crafted features generally provided the best performance.
The eight-dimensional hand-crafted features include sex, HR_mean, remifentanil_CE_max,

remifentanil_CP_max, remifentanil_VOL_max, remifentanil_VOL_mean, BIS_min, and MV_max. Each
of the features was carefully chosen by intensive examination of the datasets, and we found that there have been
studies that support the choices. For example, it was discovered that female patients were more likely to have
arrhythmia than male patients, which supports the variable “sex” [24,25]. In [26], the heart rate feature was
utilized to predict tachycardia, which supports the variable “HR_mean.” The four variables related to remifentanil
are related to the fact that it may decrease heart rates [27,28] and that post-intubation tachycardia occurs more
frequently in small dose patients than large dose patients [29]. The BIS values are known to be strongly related to
prognoses in patients [30], which are related to the variable “BIS_min.” It has been discovered that respiration
features, which are related to the variable ‘MV_max’, contribute to prediction of tachycardia [31].

One can argue that using all 153-dimensional features finput must be better than other feature sets. More
features might help improve performance, but they often fail when we do not balance model complexity and
inherent data complexity. The total number of datasets for each experiment is close to 102, and the dimension of
all features is 153. Such imbalance between them causes the machine learning models to overfit to a given training
data; they will exhibit almost perfect performance only for the training data as shown in Figure 5. Note that we
performed a grid search to find optimal parameter settings for every feature set. For example, the ANN model
has an L2 penalty of 0.1, and the C value of SVM is 0.1 for finput . The LR model appears not to be overfit, which
may be related to the fact that the complexity of the LR model was successfully balanced by regularization. On
the other hand, SVM and ANN were overfit, meaning that they were poorly generalized. Nonetheless, in terms of
precision, the SVM with hand-crafted features outperformed the LR. In terms of recall, the ANN achieved the same
performance as the LR. This implies that different models can be chosen for different purposes or requirements.
In general, recall for tachycardia is the most important, so the LR with hand-crafted features will be optimal.
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Figure 5. Accuracies with all features on training/test data.

This study is limited by its small dataset. Although the original number of collected datasets was 1931, we
had only 257 patients data after filtering. As machine learning models learn from the dataset, we believe that
performance will improve if more data are gathered. We will continue collecting more data to create better models.

5. Conclusions

In this paper, to predict post-intubation tachycardia, we compared five feature sets with various machine
learning models. We collected datasets of two types (e.g., EMR and vital signs), and developed an algorithm to
find intubation points due to annotation errors. The feature sets were defined using feature selection algorithms,
statistical inspection, or manual examination. By experimental results, logistic regression (LR) model achieved
the best accuracy and sensitivity with eight-dimensional hand-crafted features. To improve performance, more
data should be collected and better models investigated. We will also perform further experiments with other
different settings.
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Appendix A

Table A1. Feature sets.

All 153 Features RFE-Based GI-Based UST-Based P-Based Hand-Crafted

Age
Sex •
Height
Weight
BMI
ASA classification

Comorbidities - no.
Cardiovascular disease



Appl. Sci. 2020, 10, 1151 16 of 20

Table A1. Cont.

All 153 Features RFE-Based GI-Based UST-Based P-Based Hand-Crafted

Hypertension
Atrial fibrillation
Coronary artery disease
Angina pectoris
Congestive heart failure

Respiratory disease
Asthma
COPD

Gastrointestinal disease
Hepatitis
Liver cirrhosis
Viral carrie
Hepatitis B viral infection

Renal disease
Chronic kidney injury
End-stage renal disease

Endocrine disease
Diabetes mellitus
Thyroid disease
Hemoglobin A1c •

Neurologic disease
Cerebrovascular disease
Dementia

Baseline
Systolic blood pressure
Mean blood pressure
Diastolic blood pressure
Heart rate • •

Noninvasive blood pressure
Systolic

Min
Max
Mean
Sd

Mean
Min
Max
Mean
Sd

Diastolic
Min
Max
Mean
Sd

Heart rate
Min • • •
Max • • •
Mean • • • • •
Sd •

Difference Heart rate
Max •
Mean •
Sd

Mechanical ventilation data
Tidal volume

Min
Max
Mean
Sd
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Table A1. Cont.

All 153 Features RFE-Based GI-Based UST-Based P-Based Hand-Crafted

Minute ventilation
Min
Max • •
Mean
Sd

Respiratory rate
Min
Max
Mean
Sd

Mean positive airway pressure
Min
Max
Mean
Sd

Peak inspiratory pressure
Min
Max
Mean
Sd

End-tidal CO2 partial pressure
Min
Max •
Mean •
Sd

Carbon dioxide
Min
Max
Mean •
Sd

PLETH_SPO2
Min
Max
Mean •
Sd

Positive endexpiratory pressure
Min
Max
Mean
Sd •

Neuromuscular transmission
Mean of train-of-four count

Bispectral Index
Spectral frequency

Min
Max
Mean •
Sd

Signal quality index
Min
Max
Mean
Sd •

Electromyograpy
Min •
Max
Mean •
Sd
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Table A1. Cont.

All 153 Features RFE-Based GI-Based UST-Based P-Based Hand-Crafted

Total power
Min
Max •
Mean • •
Sd

Bispectral index value
Min • •
Max •
Mean
Sd •

Anesthetic drug
Volume
Propofol

Min •
Max
Mean
Sd

Remifentanil
Min
Max •
Mean • •
Sd

Rate
Propofol min

Min
Max
Mean • •
Sd •

Remifentanil min
Min
Max
Mean
Sd

Plasma concentration
Propofol min

Min
Max
Mean
Sd

Remifentanil
Min
Max • • •
Mean
Sd

Effect-site concentration
Propofol

Min •
Max
Mean
Sd

Remifentanil
Min
Max •
Mean •
Sd

Target concentration
Propofol min

Min
Max
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Table A1. Cont.

All 153 Features RFE-Based GI-Based UST-Based P-Based Hand-Crafted

Mean
Sd

Remifentanil min
Min
Max
Mean
Sd

Vasoactive drug administration
Ephedrine
Phenylephrine
Esmolol
Nicardipine
Dexamethasone

Muscle relaxant
Rocuronium

Pre-intubation sinus tachycardia
Occurrence •
Frequency •

Duration of intubation

RFE stands for recursive feature elimination, GI means Gini index, UST implies univariate statistical test,
and P-based represents p-value based feature sets, COPD indicates chronic obstructive pulmonary disease,
and PLETH_SPO2 means saturation of partial pressure of oxygen.
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