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Abstract: We live in an era of privacy concerns. As smart devices such as smartphones, service robots
and surveillance cameras spread, preservation of our privacy becomes one of the major concerns in
our daily life. Traditionally, the problem was resolved by simple approaches such as image masking
or blurring. While these provide effective ways to remove identities from images, there are certain
limitations when it comes to a matter of recognition from the processed images. For example, one
may want to get ambient information from scenes even when privacy-related information such as
facial appearance is removed or changed. To address the issue, our goal in this paper is not only to
modify identity from faces but also keeps facial attributes such as color, pose and facial expression for
further applications. We propose a novel face de-identification method based on a deep generative
model in which we design the output vector from an encoder to be disentangled into two parts:
identity-related part and the rest representing facial attributes. We show that by solely modifying
the identity-related part from the latent vector, our method effectively modifies the facial identity
to a completely new one while the other attributes that are loosely related to personal identity are
preserved. To validate the proposed method, we provide results from experiments that measure two
different aspects: effectiveness of personal identity modification and facial attribute preservation.

Keywords: privacy preserving; face de-identification; generative model; variational auto-encoder

1. Introduction

In recent years, cameras are becoming widespread. Surveillance cameras are deployed in almost
every public places (e.g., airports, streets, and buildings) and even in some private spaces such as smart
houses and vehicles. Smartphones equipped with high-performance cameras increase the convenience
of taking pictures or recording daily events anywhere, anytime. Consequently, in our daily lives, there
is a huge number of images and videos processed and even shared through online social networking
services. Furthermore, recent advances in computer vision and artificial intelligence technologies
have enabled many image-based applications. Due to high computational burden, however, these
techniques tend to require images to be uploaded to high-capacity servers on public networks, resulting
inevitable vulnerability to attacks. Also, these deep learning-based techniques demand large amounts
of data to properly train, but their collection is plagued by privacy concerns.

In the meantime, for many applications, facial attributes such as expression, gender, pose and
gaze play important role and there are many research works dedicated to extracting these attributes.
Many early works on face de-identification are based on deteriorating of the image by blurring [1],
pixelization, image segmentation [2], downsampling [3], deletion of part of the face, or cartoonizing [4].
While these methods can effectively remove identity-related information from images, they also get
rid of such useful facial attributes which are loosely related to personal identity, making difficult to
adopt in further applications.
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(a) Original (b) Blurred (c) Masked (d) Result from Ren
et al. [5]

(e) Ours (I90) (f) Ours (I180)

Figure 1. Comparison of various face de-identification methods: (a) input image, (b) blurred image,
(c) masked image, (d) de-identified image by a generative adversarial networks-based method [5], (e,f)
de-identification results from the proposed method by rotating the disentangled identity-related latent
vector 90 and 180 degrees, respectively. As it can be seen from the figures, the proposed method results
in more natural facial images while the identity is effectively modified.

To address the issue, we propose a novel de-identification method based on a deep generative
model that effectively modifies facial appearance while keeping the useful attributes. There are two
main streams in deep generative models: variational auto-encoder (VAE)-based models and generative
adversarial networks (GAN)-based models. GAN-based models are composed of two competing
networks, a generator that outputs desired samples given random vectors and a discriminator that
distinguishes between generated and real samples. Therefore, GAN-based models show impressive
results while it is hard to converge, sometimes generating unnatural results. Also, in GAN-based
methods, because the generator has a random vector as an input, it is difficult to design explicit relation
from features to outputs. VAE-based models are usually constructed in an encoder–decoder structure
as in Auto-Encoders. However, unlike Auto-Encoders that directly output latent vectors, the encoder
in VAE-based methods outputs parameters for probabilistic distribution of latent feature space and
use them to sample a latent vector from the distribution. Therefore, because VAE-based methods learn
distribution from training samples, they tend to generate more natural samples. Also, the decoders
in VAE-based methods take latent vectors from encoders, we can design explicit guidance between
features and outputs inside the network.

Regarding preservation of facial attributes while modifying personal identity, some research
works use additional attribute classifiers or facial landmarks detector [5–9]. These methods can
successfully preserve some facial attributes. However, they only focus on the specific facial attributes
and depend on additional algorithms such as facial landmark detector, facial expression estimator, or
action detector.

Another approach is to use face swapping methods for face de-identification [10–13]. These
methods produce more realistic, attribute-preserved outputs. However, the outputs are not images
of new person. Rather, the result is a mapping from one to another which also exists in the training
dataset. Therefore, it is hard to consider as a privacy-preserving technique.

In this work, we do not try to estimate facial attributes to preserve them. Instead, we aim to
extract identity-related vector, and by modifying solely this vector we show that the proposed method
can effectively change appearance of face while preserving rest of facial attributes that are loosely
related to personal identity. Also, we show that with simple transformations we can control the
amount of de-identification. As shown in Figure 1, the proposed method generates more natural faces
than the other existing methods. Our method can be applied to smart devices such as service robots,
surveillance cameras or smartphone applications for social networking service in which people does
not want to be invaded their privacy. Because the applications should be able to analyze captured
images to provide useful information, it is desirable only to remove privacy-sensitive information
from images.

The contribution of this work can be summarized as follows:

• A network architecture that explicitly disentangle latent vector to parts of personal identity and
facial attributes
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• An end-to-end scheme that can effectively change appearance of faces while keeping important
attributes

• Exhaustive experiments carried thoroughly to validate the proposed method

2. Related Work

2.1. Deep Generative Model

Variational Auto-Encoders (VAE) [14] and Generative Adversarial Networks (GAN) [15] are
representative deep learning-based generative models that are able to tackle intractable probabilistic
distribution and large datasets. Similar to Auto-Encoders (AE), VAEs are usually composed of
two parts, an encoder and a decoder, in which encoders in VAEs are responsible for capturing the
probabilistic distribution of latent features while encoders in AEs are designed to directly output latent
features. Therefore, it is well known that VAEs are effective in modelling latent probability distributions.
Several works [16–18] have shown how VAEs can be used to learn structured, disentangled and
interpretable representations in the latent space. However, outputs from VAEs tend to be blurry. GAN
and its variations [19–21] are the most popular generative network recently. They alternately train a
generative model to create samples and a discriminative model to distinguish between real and fake
samples. Compared to VAE-based models, GAN-based models generate high-quality and realistic
images while it is harder to converge and output inconsistent samples in some cases. Furthermore,
their inputs for the generative model are meaningless random noise, thus difficult to manipulate.

VAE and GAN have also been applied to perform conditional generation of samples. Based on
Conditional Variational Auto-Encoders (CVAE) [22] or Conditional Generative Adversarial Networks
(CGAN) [23], there are works performing interesting tasks [24–27]. Odena et al. [24] proposed an image
synthesis model which conditionally generates samples for 1000 classes. Reed et al. [26] demonstrated
to generate images from text descriptions. Yan et al. [25] showed a conditioned image generation
from visual attributes using CVAE. Walker et al. [27] proposed a model to generate possible future
trajectories conditioned on the present image. Most recently, for person re-identification from images,
Zheng et al. [28] proposed a GAN-based architecture containing two distinct encoders resulting an
appearance-related latent vector and a structure-related latent vector, respectively. With these latent
vectors, similar to our work, they manipulate appearance and structure from input images to generate
new pedestrian images. Additionally, in a work from Larsen et al. [29], the authors proposed the
combination method of VAE and GAN. In [30], Conditional VAE-GAN for data augmentation and
image inpainting is proposed. They show impressive results but also suffer from aforementioned
problems in GAN.

2.2. Face Swapping

Face swapping or face replacement is the task of transferring a face from source to target image.
Early works of face swapping are based on 3D Morphable Model (3DMM) [31,32]. A drawback is that
these methods only works properly when there is a large number of images of the target subject and
the source subject because a 3D Model must be first built. Furthermore, estimation of 3D geometries
along with different lighting conditions using 3DMM is still difficult.

As the result of the success of deep learning, many deep learning-based methods are emerging.
In [33], the authors proposed new face swapping method as a style transfer task. They consider facial
attributes and identity as a style. In [34], the authors proposed a method to work in more challenging
conditions. They used convolutional neural network for blending technique. Region-Separative
GAN (RS-GAN) [35] uses an approach that swaps in the latent space by disentangling the latent
representations. FSNet [36] uses the latent space which separates identity and geometric components.
Face Swapping GAN (FSGAN) [37] uses subject-agnostic method. In other words, their method does
not need person-specific training.
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Although some of the face swapping works have been proposed due to privacy
concerns [10–13,38–40] and their techniques are similar to face de-identification, in the sense of
privacy preservation, they do not adequately protect privacy of the person on the other side because
this technique just transforms one face to the target face. Therefore, it is important to get explicit
consent from owners of target facial images to use them for users’ facial de-identification. For this
reason, these methods are more suitable for recreation or entertainment purposes.

2.3. Face De-Identification

Earlier works on face de-identification had simply used blurring [1], downsampling, masking,
or pixelation [41]. Although these methods had been easily applicable and removing privacy-sensitive
information successfully, it had deleted other useful information. To solve this problem, k-Same
family motivated by k-Anonymity [42] have been proposed. Vanilla k-Same method [43] created a
new face by averaging k-closest faces of a gallery. It normally suffered from ghosting artifacts in
the result images. k-Same-Select method [44] aimed at preserving facial attributes. To do that, this
method partitions a gallery into mutually exclusive subsets. k-Same-M method [45] tried to avoid the
undesirable artifacts due to misalignment. This method used Active Appearance Models (AAM) [46]
for alignment. In [47,48], the authors also used the k-Same family method. These methods used the
AAM and facial attribute classifiers to keep facial attributes. Problem of the k-Same family methods is
lack of generalization. These methods need a large and various set of faces and simultaneously each
subject should be only represented once in the set. In addition, a method cannot include all kind of the
facial attribute classifiers, and the AAM also have a generalization problem.

Emerging approaches are using deep learning-based generative models [5–9]. These methods
have produced higher quality images thanks to deep generative models. However, GAN-based
methods [5,7–9] have sometimes generated awkward facial images and cannot manipulate the amount
of de-identification. In addition, randomly generated facial images may result in looking similar
to the original one. In [6], the authors proposed a method using VAE with GAN. This method can
control de-identification by using conditional vector for identity. However, because this control vector
is the one-hot encoded vector, the range of the de-identification is limited in the training set. In [8], the
authors proposed a method to preserve facial pose by using facial landmark detector to generate a
new random face with the same pose. However, due to the aforementioned limitation in GAN-based
methods, this method also would not assure that the generated random face is different from the
input face.

For preserving attributes, many of those methods have focused on one or two attributes explicitly
and use additional classifier(s) to do this. In [5], the authors focused only on preserving action and
use action detector. The method of [6] preserved facial expression and use facial expression estimator.
The authors of [7] tried to preserve structural similarity index of image, i.e., luminance, contrast and
structural differences. The method of [9] had a bit different perspective. The authors viewed identity
as a combination of facial attributes. They used 40 classifiers to predict facial attributes and selected
facial attributes to preserve based on their criterion for protecting privacy. Finally, based on preserved
attributes, it generated a new face. Leaving the computational power for running 40 classifiers, this
perspective cannot meet our objectives to preserve useful information of an original face.

3. Proposed Method

The process of the proposed method differs in training and testing phases. We provide in detail
the proposed network architecture, then describe the training and testing process in the following
subsections.

3.1. Network Architecture

As it can be seen from Figure 2, the proposed network adopts the VAE architecture with
skip connections [49]. Using the VAE architecture, the proposed method can learn to have latent
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space organized, enabling the encoded feature vector to be split into two parts: identity-related and
attributes-related parts. Furthermore, benefited from skip connections, the network is able to generate
new faces which do not exist in training images (i.e., not merely transforms one face to another which
also exists in the training dataset) with high quality.
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Extractor
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Embedding loss

Reconstruction loss
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Decoder block

(a) Training process
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�

(b) Testing process

Figure 2. Overview of the proposed method: (a) an overview of the training process and (b) an
overview of the testing process, where m is degrees of identity modification.

The encoder network contains four blocks using skip connections as shown in Figure 3a. In this
work, we use facial images in a shape of 64 × 64 × 3 as input for the encoder and the output latent
vector z is 1024-dimensional. With z, we treat the first 512 dimensions as an identity-related vector zi

and the rest 512 dimensions as an attributes-related vector za. As depicted in Figure 3b, the decoder
network also contains four blocks using skip connections. z is directly input to the decoder network
and the shape of the output is the same as the input image, 64 × 64 × 3. Detailed architecture of the
proposed network is described in Table 1.
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Table 1. Architecture of the proposed network. Where LReLU is leaky ReLU, BN is batch normalization,
FC is fully connected layer, ’3x3 Conv’ is a convolution of which filter size is 3 by 3, and, ’3x3 AvgPool’
is an average pooling of which filter size is 3 by 3.

Name Operations Input Output Size

Enc0 7x7 Conv(stride=2)-BN-LReLU Input image 32 × 32 × 64

EncBlock1_1
3x3 Conv(stride=2)-BN-LReLU-
3x3 Conv(stride=1)-BN-LReLU Enc0 16 × 16 × 64

EncBlock1_2 3x3 Conv(stride=2)-BN Enc0 16 × 16 × 64

EncBlock1_3 Add-LReLU EncBlock1_1, EncBlock1_2 16 × 16 × 64

EncBlock1_4 { 3x3 Conv(stride=1)-BN-LReLU } x2 EncBlock1_3 16 × 16 × 64

EncBlock1_5 Add-LReLU EncBlock1_3, EncBlock1_4 16 × 16 × 64

EncBlock2_1
3x3 Conv(stride=2)-BN-LReLU-
3x3 Conv(stride=1)-BN-LReLU EncBlock1_5 8 × 8 × 128

EncBlock2_2 3x3 Conv(stride=2)-BN EncBlock1_5 8 × 8 × 128

EncBlock2_3 Add-LReLU EncBlock2_1, EncBlock2_2 8 × 8 × 128

EncBlock2_4 { 3x3 Conv(stride=1)-BN-LReLU } x2 EncBlock2_3 8 × 8 × 128

EncBlock2_5 Add-LReLU EncBlock2_3, EncBlock2_4 8 × 8 × 128

EncBlock3_1
3x3 Conv(stride=2)-BN-LReLU-
3x3 Conv(stride=1)-BN-LReLU EncBlock2_5 4 × 4 × 192

EncBlock3_2 3x3 Conv(stride=2)-BN EncBlock2_5 4 × 4 × 192

EncBlock3_3 Add-LReLU EncBlock3_1, EncBlock3_2 4 × 4 × 192

EncBlock3_4 { 3x3 Conv(stride=1)-BN-LReLU } x2 EncBlock3_3 4 × 4 × 192

EncBlock3_5 Add-LReLU EncBlock3_3, EncBlock3_4 4 × 4 × 192

EncBlock4_1
3x3 Conv(stride=2)-BN-LReLU-
3x3 Conv(stride=1)-BN-LReLU EncBlock3_5 2 × 2 × 256

EncBlock4_2 3x3 Conv(stride=2)-BN EncBlock3_5 2 × 2 × 256

EncBlock4_3 Add-LReLU EncBlock4_1, EncBlock4_2 2 × 2 × 256

EncBlock4_4 { 3x3 Conv(stride=1)-BN-LReLU } x2 EncBlock4_3 2 × 2 × 256

EncBlock4_5 Add-LReLU EncBlock4_3, EncBlock4_4 2 × 2 × 256

EncL 3x3 AvgPool-FC-LReLU-BN EncBlock4_5 1 × 1024

Dec0 FC-Reshape-LReLU EncL 4 × 4 × 512

DecBlock1_1
Upsample-
{ 3x3 Conv(stride=1)-BN-LReLU } x2 Dec0 8 × 8 × 256

DecBlock1_2 Upsample-3x3 Conv(stride=1)-BN Dec0 8 × 8 × 256

DecBlock1_3 Add-LReLU DecBlock1_1, DecBlock1_2 8 × 8 × 256

DecBlock1_4 { 3x3 Conv(stride=1)-BN-LReLU } x2 DecBlock1_3 8 × 8 × 256

DecBlock1_5 Add-LReLU DecBlock1_3, DecBlock1_4 8 × 8 × 256

DecBlock2_1
Upsample-
{ 3x3 Conv(stride=1)-BN-LReLU } x2 DecBlock1_5 16 × 16 × 128

DecBlock2_2 Upsample-3x3 Conv(stride=1)-BN DecBlock1_5 16 × 16 × 128

DecBlock2_3 Add-LReLU DecBlock2_1, DecBlock2_2 16 × 16 × 128

DecBlock2_4 { 3x3 Conv(stride=1)-BN-LReLU } x2 DecBlock2_3 16 × 16 × 128

DecBlock2_5 Add-LReLU DecBlock2_3, DecBlock2_4 16 × 16 × 128
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Table 1. Cont.

Name Operations Input Output Size

DecBlock3_1
Upsample-
{ 3x3 Conv(stride=1)-BN-LReLU } x2 DecBlock2_5 32 × 32 × 64

DecBlock3_2 Upsample-3x3 Conv(stride=1)-BN DecBlock2_5 32 × 32 × 64

DecBlock3_3 Add-LReLU DecBlock3_1, DecBlock3_2 32 × 32 × 64

DecBlock3_4 { 3x3 Conv(stride=1)-BN-LReLU } x2 DecBlock3_3 32 × 32 × 64

DecBlock3_5 Add-LReLU DecBlock3_3, DecBlock3_4 32 × 32 × 64

DecBlock4_1
Upsample-
{ 3x3 Conv(stride=1)-BN-LReLU } x2 DecBlock3_5 64 × 64 × 32

DecBlock4_2 Upsample-3x3 Conv(stride=1)-BN DecBlock3_5 64 × 64 × 32

DecBlock4_3 Add-LReLU DecBlock4_1, DecBlock4_2 64 × 64 × 32

DecBlock4_4 { 3x3 Conv(stride=1)-BN-LReLU } x2 DecBlock4_3 64 × 64 × 32

DecBlock4_5 Add-LReLU DecBlock4_3, DecBlock4_4 64 × 64 × 32

DecL LReLU-3x3 Conv(stride=1) DecBlock4_5 64 × 64 × 3

3x3 Conv, stride=1

BatchNorm

BatchNorm

BatchNorm

LeakyReLU

LeakyReLU

LeakyReLU

Add
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BatchNorm
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(a) Architecture of an encoder (E) block.
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(b) Architecture of a decoder (D) block.

Figure 3. Architectures of blocks of the encoder and the decoder.

3.2. Training Process

An overview of the training process is shown in Figure 2a. The encoder network E maps a facial
image I to z which consists of identity-related vector zi and attribute-related vector za. Then, the
decoder network D generates a reconstruction image I r from z. As is common in encoder–decoder
architectures based on VAE, we also use binary cross entropy (BCE) loss to measure reconstruction error
as well as Kullback–Leibler (KL) loss for regularization. Since in an image, pixel intensity values follow
a conditional probability distribution, we assume that the values can be interpreted as probabilities for
pixels being on/off after the values are scaled to [0, 1]. Therefore, the BCE loss can be adopted to our
formulation. The BCE loss function results in the minimum loss when the value of a pixel on the input
image Ij(x, y) and the value of the corresponding pixel on the reconstructed image I r

j (x, y) are the
same. We define the BCE loss Lr and the KL loss Lkl as follows,

Lr =
N

∑
j=1

(
−

W

∑
x=1

H

∑
y=1
Ij(x, y)log(I r

j (x, y))

)
(1)

where N is the number of samples, W and H are width and height of the image, respectively.



Appl. Sci. 2020, 10, 1120 8 of 17

Lkl =
N

∑
j=1

KL(q(z|Ij)‖N (0, I)) (2)

where q is the encoder network.
Our key idea in this work is to design the latent feature vector resulting from the encoder to

have disentangled into identity-related part and the rest facial attribute-related part, enabling effective
identity modification by solely manipulating the identity-related part from the latent vector. To
train the network to result such disentanglement, we present an embedding loss using an external
facial embedding extractor F. Since, we employ the F which is pre-trained for face recognition and
verification, we assume that it is well trained to provide plenty distinctive features for facial identity.
Therefore, by transforming a point on the identity space defined by F, we expect that identities of given
facial images can be transformed with ease by producing new facial images. In this work, we use a
Keras implementation [50] of FaceNet [51] as the face embedding extractor F. The network architecture
is based on the Inception-Resnet-v1 [52] and the model was trained on VGGFace2 dataset [53] using a
triplet loss.

To make zi resulted from the proposed network get closer to the output of F, z f , we design the
embedding loss function using cosine distance as follows:

Le =
N

∑
j=1

1−
z f

j · z
i
j

‖z f
j ‖2‖zi

j‖2

. (3)

For a sample j, the cosine distance between z f
j and zi

j ranges in [0, 2], and the loss is the sum of
the distances of N samples in a batch.

Finally, our training loss is defined as the sum of the loss functions with control parameters λr,
λkl and λe:

L = λrLr + λklLkl + λeLe, (4)

where by the embedding loss Le, the latent space related to facial identities is trained while non-identity
latent space is also be learned due to the reconstruction loss Lr because it demands the rest information
to reconstruct the input image properly.

3.3. Testing Process

An overview of the testing process is shown in Figure 2b. In the testing, it does not require the face
embedding extractor F, but an identity changer C to transform zi to zm which is a new identity-related
vector. For the transformation, we first L2-normalize the identity-related vector zi. Then, we adopt
the well-known Gram–Schmidt process to rotate zi 90 degrees with following equation,

z90 =
zr − projzi (zr)

||zr − projzi (zr)|| , (5)

where zr ∈ R512 is a random vector which determines the rotational axis and projb(a) denotes a
function which projects the vector a onto b. Finally, with z0 (i.e., zi) and z90, we can get a modified
identity-related vector zm for arbitrary degrees with following equation:

zm = z0 cos m + z90 sin m. (6)

With the concatenated vector of za and zm, the decoder generates a facial de-identified image
as shown in Figure 2b. Therefore, by modifying zi we can change the identity from the input image.
In particular, the proposed method can generate new image of a person who does not exist because
a condition vector of the decoder zm is not an one-hot encoded vector but the face embedding that
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it contains rich information of a face as aforementioned. Figure 4 shows the facial de-identification
examples from the proposed method in which I{0,60,120,180} denote transformation results rotated on a
hyper-plane with 0, 60, 120 and 180 degrees, respectively. As it can be seen from the figure, the proposed
network gradually modifies identities from given facial images as the rotation degree increases.

(a) I (b) I0 (c) I60 (d) I120 (e) I180

Figure 4. Facial de-identification examples from the proposed method. From left to right: input facial
images and transformation results rotated on a hyper-plane by {0, 60, 120, 180} degrees, respectively.

4. Experiments

To validate the effectiveness of the proposed method, we conduct two types of experiments. The
first experiment is to show how well our method can remove identity from a facial image while the
second one is to confirm how well it preserves facial attributes.

4.1. Experimental Setup

We implement the proposed system using TensorFlow and conducted all of the experiments in
this work with a workstation equipped with four Nvidia GeForce RTX 2080 ti GPUs, Intel(R) Core(TM)
i9-9900X CPU (3.50 GHz), 128 GB of RAM. For face part detection from given images, we employ a
method from King et al. [54].

To train the proposed model, we use VGGFace2 [53], one of the major large-scale datasets for face
recognition. The images in the dataset have significant variations in pose, age, illumination, ethnicity
and profession, amounting 3.31 million images from 9131 identities. Since the official test split by
Cao et al. [53] (167,559 images from 500 identities) contains evenly sampled images from the whole
dataset, we use the split as our training set in this work. We train our network with Adam [55] with
β1 = 0.9, β2 = 0.999, starting learning rate 0.0001 with a time-based decay of 10−6, for 300 epochs with
batch size of 32 taking about 30 h on our system.

4.2. Evaluation on De-Identification

To validate facial de-identification performance of the proposed method, we adopt the
state-of-the-art face verification method FaceNet [51] which provides a similarity distance given
two facial images. Given two images of the same person, we measure how the proposed method can
separate them as the transformation degree in M varies. As the test set, we use a widely adopted
public benchmark dataset, Labeled Faces in the Wild Deep Funneled dataset (LFW) [56–58] which
provides matched and mismatched facial image pairs of 1680 people. From the dataset, for each of
3000 matched pairs, we de-identify an image from a pair using the proposed method, then compute a
similarity distance between the de-identified image and the other in the pair. Finally, if the resulting
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distance is lower than a threshold (η), we count the sample as a matching pair. Example images for
evaluation on de-identification are shown in Figure 5.

(a) Matched pairs (b) I0 (c) I30 (d) I60 (e) I90 (f) I120 (g) I150 (h) I180

Figure 5. Examples for evaluation on de-identification. (a) shows matched pairs from LFW [58], (b–h)
show de-identified images of the right image on each matched pair rotated by {0, 30, 60, 90, 120, 150,
180} degrees, respectively.

Table 2 provides the result in which we compute the matching rate for 3000 pairs varying the
threshold and transformation degree. For a comparison purpose, we also compute the matching rate
for original image pairs (i.e., no images are transformed in the pairs) and reconstruction (i.e., one of
the images in the pair is transformed with 0 degrees) pairs. Therefore, with the matching rate in the
case of the original image pairs, we can see the performance of the face verification algorithm we used,
while with the results on the reconstruction pairs, we can see the effect of degradation caused by the
decoder network. As we can see from the table, the FaceNet algorithm performs well on the original
and reconstruction pairs. However, after applying the proposed method, FaceNet cannot identify the
same person. Interestingly, I180 transformation results the best even high thresholds as we expect.

Table 2. Quantitative de-identification results using 3000 matched facial image pairs from LFW
dataset [58]. From left to right, η: cosine similarity distance, I : matching rate using original pairs given
η, Im: matching rate in which one of the images in the testing pairs is rotated by m degrees.

η
Matching Rate

I I0 I30 I60 I90 I120 I150 I180

0.1 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.2 0.215 0.014 0.009 0.000 0.000 0.000 0.000 0.000

0.3 0.524 0.109 0.085 0.014 0.000 0.000 0.000 0.000

0.4 0.763 0.342 0.290 0.097 0.002 0.000 0.000 0.000

0.5 0.905 0.608 0.565 0.309 0.019 0.001 0.000 0.000

0.6 0.963 0.797 0.767 0.585 0.081 0.001 0.000 0.000

0.7 0.984 0.913 0.900 0.788 0.224 0.011 0.002 0.001

0.8 0.990 0.964 0.959 0.916 0.452 0.050 0.007 0.005

0.9 0.994 0.986 0.986 0.972 0.704 0.131 0.030 0.019

1.0 0.998 0.995 0.995 0.991 0.880 0.280 0.093 0.061
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Table 2. Cont.

η
Matching Rate

I I0 I30 I60 I90 I120 I150 I180

1.1 0.998 0.998 0.998 0.997 0.965 0.507 0.219 0.161

1.2 0.999 0.999 1.000 1.000 0.990 0.731 0.409 0.343

1.3 1.000 1.000 1.000 1.000 0.999 0.899 0.657 0.577

1.4 1.000 1.000 1.000 1.000 1.000 0.978 0.843 0.784

1.5 1.000 1.000 1.000 1.000 1.000 0.995 0.964 0.935

1.6 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.992

1.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4.3. Evaluation on Preserving Facial Attributes

To evaluate the performance of facial attributes preservation while de-identification of the
proposed method, we conduct both of qualitative and quantitative experiments in this subsection.

4.3.1. Qualitative Analysis

Our goal in this work is to de-identify facial images while preserving facial attributes such as pose,
color, gender, expression as much as possible. To confirm the performance qualitatively, we apply our
method on three different datasets: VGG2Face, LFW, and Japanese Female Facial Expression dataset
(JAFFE) [59]. The results are shown in Figures 6–8. As we can see from the figures, the proposed
method effectively preserves non-identity-related attributes while identity changes.

(a) I (b) I0 (c) I90 (d) I180 (e) I (f) I0 (g) I90 (h) I180

Figure 6. Results from the VGGFace2 dataset. (a,e) show original input images, (b,f) show
reconstructed images (i.e. rotated with 0 degrees), (c,g) show de-identified faces by rotating 90 degrees,
and (d,h) show de-identified faces by rotating 180 degrees.
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(a) I (b) I0 (c) I90 (d) I180 (e) I (f) I0 (g) I90 (h) I180

Figure 7. Results from the Labeled Faces in the Wild (LFW) dataset. (a,e) show original input images,
(b,f) show reconstructed images (i.e. rotated with 0 degrees), (c,g) show de-identified faces by rotating
90 degrees, and (d,h) show de-identified faces by rotating 180 degrees.

(a) I (b) I0 (c) I90 (d) I180 (e) I (f) I0 (g) I90 (h) I180

Figure 8. Results from the Japanese Female Facial Expression (JAFFE) dataset. (a,e) show original
input images, (b,f) show reconstructed images (i.e. rotated with 0 degrees), (c,g) show de-identified
faces by rotating 90 degrees, and (d,h) show de-identified faces by rotating 180 degrees.

4.3.2. Quantitative Analysis

To quantitatively analyze the facial attribute preservation performance of our work, we adopt
a facial expression recognition algorithm, Microsoft Azure face API [60], and compute confusion
matrices with the ground truth labels for four types of image sets: original, I0, I90 and I180. For
this experiment, we choose Japanese Female Facial Expression (JAFFE) dataset [59], which contains
213 images of 7 facial expressions (i.e., angry, disgust, fear, happy, neutral, sad and surprise) by 10
Japanese female models. Among the facial expressions, in this experiment, we use only four of them
(i.e., happy, neutral, sad and surprise) showing high accuracy from the adopted facial expression
algorithm. Figure 9 provides the results. In the case of using original images shows the best accuracy,
the transformed results processed by the proposed method also provide comparable accuracy except
only from the case of ‘sad’. We analyze this as an effect of the degradation of details by our method.
Since the proposed network architecture is based on VAE, it bounds to the generative power of
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stochastic sampling methods although it enables capturing meaningful features from the input domain,
thus such disentanglement of latent feature space we benefit from in this work.

We also provide F-measures which are harmonic means of the precision and recall calculated from
the confusion matrices. Averages of F-measures for original images, I0, I90 and I180 are 0.448, 0.338,
0.333 and 0.324, respectively. Since gaps between de-identification results are minimal, we can confirm
that the proposed method can preserve facial expression while identity removes but the degree of
preservation is bounded to the generative power of the VAE-based encoder we adopt in this work.

(a) I (b) I0 (c) I90 (d) I180

Figure 9. Confusion matrices of facial expression recognition using MS Azure face API: (a) result
of original images, (b) result of reconstruction images (i.e., rotated with 0 degrees), (c,d) results of
de-identification images by rotating 90 and 180 degrees, respectively.

4.4. Qualitative Analysis on Videos

Finally, we present experimental results of the proposed method on videos (Supplementary
Videos S1). In this experiment, we use Multimedia Understanding Group (MUG) facial expression
dataset [61], which consists of image sequences of 86 subjects performing various facial expressions.
The proposed method is applied on those image sequences frame by frame to see if the modified
identities retain in a sequence which is preferable for various applications. As we can see in Figure 10,
with the same m which is the control parameter for the de-identification, the modified identities tend
to retain in the sequence as we intended in this work. However, as it also can be seen from the results,
there are some limitations. The result has discontinuity on boundaries of facial parts (which have been
processed by the proposed method) and loses small details such as moles from input faces.

(a) I : input frames of ‘happiness’ (b) I : input frames of ‘surprise’

(c) I90 (d) I90

(e) I180 (f) I180

Figure 10. Results from the MUG dataset [61]: (a,b) results of original images, (c,d) results of
de-identification images by rotating 90 degrees, (e,f) results of de-identification images by rotating
180 degrees.
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5. Conclusions

In this work, we proposed a novel facial de-identification method for privacy preservation.
Our method is aimed at not only removing identity-related information from input facial images but
also preserving the rest facial attributes that are useful for further applications. The proposed method
disentangles an identity-related vector and a facial attributes-related vector from a facial image and
then we efficiently transform the identity-related vector to change the identity of the input image to
a completely new identity which have not seen in the training. Through various experiments, we
have shown that the proposed method can effectively change the identity from input facial images
while preserving the rest attributes as we designed. However, we also have seen that the output of the
proposed method is suffered from degradation when compared to real images and discontinuity on
facial boundaries. Therefore, we will extend our method to construct with an adversarial architecture
while having manipulated latent space to overcome the degraded quality and discontinuity on facial
boundaries of the resulting de-identified images.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/3/1120/
s1, Video S1: Results from the MUG dataset [61].
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