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Abstract: In this paper, an adaptive dual-regularization super-resolution reconstruction algorithm
based on sub-pixel convolution (MPSR) is proposed. There are two novel features of the algorithm:
First, the traditional regularization algorithm and sub-pixel convolution algorithm are combined to
enrich the details; then, a regularization function with two adaptive parameters and two regularization
terms is proposed to enhance the edge. MPSR firstly enhances the multi-scale detail of low-resolution
images; then, regular processing and feature extraction are carried out; finally, sub-pixel convolution is
used to fuse the extracted features to generate high-resolution images. The experimental results show
that the subjective and objective evaluation indexes (PSNR/SSIM) of the algorithm have achieved
satisfactory results.

Keywords: super-resolution reconstruction; infrared images; double regular items; sub-pixel
convolution; detail enhancement

1. Introduction

Infrared imaging equipment has anti-jamming and strong target recognition ability, and can work
at night and in harsh environments. It has been widely applied in industry, military, medicine, life and
other fields. However, due to the limited number of pixels in the detector array of the infrared imaging
system and the limitation of pixel size, the spatial sampling frequency cannot satisfy the sampling
theorem, and infrared diffraction also causes the loss of high-frequency details of the image signal. In
addition, the temperature range of real objects in nature is relatively small, and there is heat exchange
and absorption with the surrounding environment. Therefore, compared with visible light images,
an infrared image has lower resolution, unclear gray level, more concentrated gray distribution and
less obvious texture, which is far from meeting the needs of human eyes for resolution. To solve
these problems, the researchers applied the super-resolution reconstruction algorithm to the infrared
image field.

The deep convolution neural network has been successfully applied to single image
super-resolution reconstruction (SISR) [1]. The goal of single image super-resolution reconstruction is
to reconstruct high-resolution (HR) images from low-resolution (LR) images. It has a wide range of
applications in security, monitoring, satellite, medical imaging and other fields [2], and can be used as
a a built-in module for other image restoration or recognition tasks [3,4]. With the rapid update of
intelligent algorithms, the image super-resolution algorithm has made great progress compared with
the original. Because of the addition of depth learning theory, the image super-resolution reconstruction
effect is amazing, and the derivative speed of the new algorithm is very fast. From Figure 1, it can be
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seen that the super-resolution reconstruction algorithm based on deep learning can be divided into
four parts:

1. Algorithm based on standard CNN, such as SRCNN [5], FSRCNN [6], ESPCN [7];
2. Algorithm based on ResNet, such as VDSR [8], RED [9], CARN [10];
3. Algorithm based on GAN, such as SRGAN [11] and SRFeat [12];
4. Other model algorithms, such as RDN [13], IDN [14], DBPN [15].
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Figure 1. Taxonomy of single image super-resolution reconstruction methods.

In 2016, Shi proposed a super-resolution reconstruction method based on sub-pixel convolution [7].
This method directly takes low-resolution images as input, which reduces the complexity and has
a good reconstruction effect. However, due to the low-resolution, indistinct gray level, centralized
gray distribution and unclear texture of infrared images, this algorithm is improved on the basis of
a sub-pixel convolution super-resolution reconstruction algorithm. The improved algorithm is more
suitable for infrared images and achieves better results.

In this paper, an adaptive dual-regularization super-resolution reconstruction algorithm (MPSR)
based on sub-pixel convolution is proposed. This algorithm has obvious advantages in infrared
image processing. MPSR firstly enhances the multi-scale detail of low-resolution images, Then the
initial reconstruction is carried out with the regular terms of the double regular terms and the double
adaptive parameters. Finally, sub-pixel convolution is used to fuse the extracted features to generate
high-resolution images. The experimental results show that the subjective and objective evaluation
indexes (PSNR/SSIM) of the algorithm have achieved satisfactory results.

The rest of this paper is organized as follows. Section 2 is the detailed introduction of the algorithm
proposed in this paper. Section 3 describes the content of the experiment and the analysis of the
results. Section 4 is the conclusion.

2. Methods

Due to the low resolution, indistinct gray level, centralized gray distribution and unclear texture of
infrared image, the super-resolution reconstruction algorithm based on sub-pixel convolution directly
takes a low-resolution image as input, which results in an unsatisfactory reconstruction effect.

Therefore, the adaptive dual-regularization super-resolution reconstruction algorithm based on
sub-pixel convolution (MPSR) first enhances the infrared image with multi-scale details. In the second
step, another regular term is added to the regular part of the algorithm to enhance the edge of the
image, and an adaptive regularization parameter of the constrained fidelity term and two regular items
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is added. The third step is to extract and activate the features, finally, the sub-pixel convolution is used
to generate high-resolution images. The algorithm block diagram of MPSR is shown in Figure 2 and
will be described in detail in the following sections.
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2.1. Multi-Scale Detail Enhancement

MPSR uses the multi-scale method to improve image details without artifacts. Firstly, the image
is convoluted into three Gaussian blur kernels H1, H2, H3 of different scales, and the blurred images
B1, B2, B3 are obtained as follows:

B1 = H1 ∗X, B2 = H2 ∗X, B3 = H3 ∗X (1)

Then, the convoluted images are subtracted from the original image to obtain different levels of
detail information:

D1 = X − B1, D2 = X − B2, D3 = X − B3 (2)

Finally, the overall detail image is generated by merging the three layers:

D = (1− a1 × sgn(D1)) ×D1 + a2 ×D2 + a3 ×D3 (3)

the fine detail D1 expands the gray level differences near the edge, but may saturate the gray levels
duo to its excessive overshooting. To overcome this problem, the sgn function is introduced.

The data of a1,a2,a3 and the PSNR of the reconstructed image are obtained by simulation
experiment. Figure 3 is drawn from the experimental data. It can be seen that when a1,a2,a3 are set to
0.1, 0.2 and 0.6 respectively, the reconstruction effect is the best.
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2.2. Adaptive Regularization Algorithm Based on Maximum a Posteriori Estimation

2.2.1. Related Algorithm

The algorithm in this paper is proposed on the basis of the maximum a posteriori estimation,
which is described in detail below.

The implication of the super-resolution reconstruction algorithm based on maximum a posteriori
estimation is that if the sequence of low-resolution images is known; the posteriori probability of
high-resolution images is maximized as follows:

x̂MAP = argmax
x

[
Pr

{
x
∣∣∣y }]

(4)

According to the Bayesian formula, the following formula is obtained:

x̂MAP = argmax
x

Pr
{
x
∣∣∣y }

Pr{x}

Pr
{
y
}  (5)

Take the logarithm to the right side of Formula (5):

x̂MAP = argmax[log Pr
{
y|x

}
+ logPr{x}] (6)

where log Pr
{
y|x

}
is the logarithm of the maximum likelihood function; log Pr{x} is the logarithm of

the prior probability of x. If the image noise is assumed to be Gauss noise with mean values of 0 and
variance of σ2

k , the overall probability function for estimating yk by x is:

Pr(yk|x ) =
∏
∀x,y

1

σk
√

2π
exp

− (ŷk − yk)
2

2σ2
k

 (7)

In Formula (7), ŷk simulates low-resolution images and is given by ŷk = Akx̂, where Ak is a fuzzy
matrix. Assuming that the images are independent of each other, the probability density function of
low-resolution image sequences can be expressed as Formula (8).

Pr(yk|x ) =
∐
∀k

∏
∀x,y

1

σk
√

2π
exp

− (ŷk − yk)
2

2σ2
k


 (8)

A common prior probability estimation method is to smooth the image, that is, to punish the
adjacent pixel units with large differences in the image, and its probability density function can be
assumed to be in the following form:

Pr(x) = exp
[
−

1
λ
‖Qx‖2

]
(9)

where λ is a control parameter to control the peak of probability density distribution. Substitute
Formula (9) into Formula (6):

x̂MAP = argmax

log
N

σK
√

2π
−

∑ (ŷk − yk)
2

2σ2
k

−
1
λ
‖Qx‖2

 (10)

In Formula (10), the first term in the middle bracket on the right side of the equal sign is a
constant term, which can be eliminated directly; then the negative sign of the other two terms is
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changed to a positive sign, and assuming that the noise of each image has the same variance, the above
maximization problem can be transformed into the following minimization problem:

x̂MAP = argmin
[∑

(ŷk − yk)
2 +

2σ2

λ
‖Qx‖2

]
(11)

Set α1 = 2σ2

λ ; the above formula can be written as:

x̂MAP = argmin
[
‖y−Ax‖2 + α1‖Qx‖2

]
(12)

where α1 is the regularization parameter. The necessary condition for minimizing the above formula is
that the partial differential value of ‖y−Ax‖2 + α1‖Qx‖2 with respect to x is zero, as Formula (13).

(ATA + α1QTQ)x = AT y (13)

According to Formula (12), regularization parameter α1 controls the relative contribution of
‖y−Ax‖2 and ‖Qx‖2 in the process of solving, and constrains the degree of distortion and smoothness
of reconstructed images. If α1 is too small, the problem of noise is not solved well, and the reconstructed
image will still be distorted. If α1 is too large, the reconstructed image will be too smooth, resulting
in the loss of image details. The adaptive solution method can solve the above problems. This
method makes full use of the information of reconstruction results in the iteration process, updates α1

continuously and calculates the reconstructed image. The new reconstructed image will be applied to
solve α1 in the next iteration, so that the optimal solution of the reconstructed image can be obtained
by cyclic iteration.

From the principle of regularization, it is pointless that the regularization parameter is less than
zero, so the first condition it should satisfy is to be greater than zero. Larger ‖y−Ax‖2 represents that
there is a large noise in the model. In order to eliminate the influence of noise on the results, larger α1

is needed to regularize it, so α1 should be proportional to ‖y−Ax‖2. Because Q is a high-pass filter
operator and larger ‖Qx‖2 represents image with rich edge and texture details, it is necessary to select
smaller regularization parameters to maintain image details, so α1 should be inversely proportional to
‖Qx‖2. According to the three basic attributes mentioned above, the following regularization parameter
solving formulas are determined:

α1(k+1) = ln

λ ‖y−Axk‖
2

‖Qxk‖
2 + r

+ 1

 (14)

In Formula (14), α1(k+1) is the regularization parameter of the k+ 1 iteration; xk is the reconstruction
image of the k iteration; r is a very small number to ensure that the denominator is not zero; λ is the
convergence correction factor, and a fixed constant can be selected. In the process of iteration, after
regularization parameters are determined, Formula (15) is applied to update the reconstructed image:

xk+1 = xk +
[
AT y−

(
ATA + α1(k+1)Q

TQ
)
xk

]
(15)

2.2.2. Improvement of Regularization

On the basis of the two-dimensional Laplacian operator, a Prewitt operator is added to enhance
the edge of the image. This operator is represented by W.

Pr(x) = exp
[
−

1
λ1
‖Qx‖2 −−

1
λ2
‖Wx‖2

]
(16)
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Then the maximization problem is transformed into the minimization problem. The formula is as
Formula (17):

x̂MAP = argmin
[
‖y−Ax‖2 + α1‖Qx‖2 + α2‖Wx‖2

]
(17)

where α1 and α2 are regularization parameters.
The necessary condition for minimizing the above formula is that the partial differential value of

‖y−Ax‖2 + α1‖Qx‖2 + α2‖Wx‖2 with respect to x is zero, as Formula (18):

2AT(Ax− y) + 2α1QTQx + 2α2WTWx = 0 (18)

In the process of iteration, after regularization parameters are determined, the following formulas
are used to update the reconstructed image:

xk+1 = xk +
[
AT y−

(
ATA + α1(k+1)Q

TQ + α2(k+1)W
TW

)
xk

]
(19)

α2(k+1) = ln

λ ‖y−Axk‖
2

‖Wxk‖
2 + r

+ 1

 (20)

where α1(k+1) and α2(k+1) are the regularization parameter of the k+1 iteration; xk is the reconstruction
image of the k iteration; r is a very small number to ensure that the denominator is not zero; λ is the
convergence correction factor, and a fixed constant can be selected.

2.3. Combining Regularization with Sub-Pixel Convolution

2.3.1. Basic Theory of Sub-Pixel Convolution

Many super-resolution reconstruction algorithms usually preprocess the low-resolution image in
the first step, that is, they are enlarged to the required size by the bicubic interpolation algorithm [16],
and then reconstructed. This greatly increases the complexity of reconstruction. The super-resolution
reconstruction algorithm of sub-pixel convolution is to extract the features of low-resolution images
first, and finally to fuse the extracted features to generate high-resolution images by using sub-pixel
convolution. The process is shown in the Figure 4.
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As shown in Figure 4, the input of the network does not need interpolation pretreatment, but
directly inputs the original LR image. After the convolution layer, the characteristic images with channel
number r2 are obtained; r is the magnification factor. Then, through the sub-pixel convolution layer, r2

channels of each pixel correspond to a sub-pixel block with size r × r in the HR image. Finally, the
characteristic image of H ×W × r2 is rearranged to an HR image of rH × rW × 1. Therefore, the number
of feature outputs of the last convolution layer should be set to the square of the magnification factor r,
so that the total number of pixels is the same as the HR image.

Compared with using the interpolation function to enlarge the image in the first layer of the
network, when using sub-pixel convolution to enlarge the image, the interpolation function can learn
automatically in the previous layer of convolution, thus learning better and more complex mapping
from LR to HR. Since convolution operations are performed on LR images, smaller convolution cores
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can be used to extract the same information, which further reduces the computational complexity, so
the efficiency will be significantly improved.

For a network composed of L layers, the first L-1 layer can be described as Formula (21) and
Formula (25).

f 1
(
ILR; W1, b1

)
= ϕ

(
W1 ∗ ILR + b1

)
(21)

f l
(
ILR; W1:l, b1:l

)
= ϕ

(
W1 ∗ f l−1

(
ILR

)
+ bl

)
(22)

where Wl, bl, l ∈ (1, L − 1) are the weight and deviation of the network, Wl is the 2D convolution
layer of size nl−1 × nl × kl × kl, nl is the characteristic number of layer l, kl is the filter size of layer l,
deviation bl is the vector of length nl, ϕ is a non-linear function (or activation function) and the last
layer f L synthesizes.

2.3.2. Combining Regularization with Sub-Pixel Convolution

Due to the insufficient feature extraction of the regularization algorithm in the super-resolution
reconstruction of a single image, and the complexity of using the interpolated image as the reconstruction
input, in order to solve the above problems, this paper proposes an adaptive dual-regularization
super-resolution reconstruction algorithm based on sub-pixel convolution (MPSR), which combines
the regularization and sub-pixel convolution to make the original low-resolution image. The resolution
image is directly used as the input. Firstly, it is regularized to enhance the details and edges; secondly,
it is extracted and activated; finally, it is rearranged with the sub-pixel convolution layer to get
a high-resolution image, which not only improves the image quality compared to the original basis,
but also improves the algorithm training speed. See Algorithm 1 for details

Algorithm 1 MPSR algorithm

1: Input: Low resolution image X, up-sampling factor s.
2: Step 1: Multi-scale detail enhancement for X.
3: Step 2: Initial image reconstruction using regularized objective function.
4: (1) Parameter initialization:
5: α1 = 0.02, α2 = 0.008, MAX = 50, ITER = 1
6: (2) Reconstruction from objective function:
7: xk+1 = xk +

[
AT y− (ATA + α1(k+1)QTQ + α2(k+1)WTW)xk

]
8: (3) Adjust adaptive parameters:

9: α1(k+1) = ln
(
λ
‖y−Axk‖

2

‖Qxk‖
2+r

+ 1
)

10: α2(k+1) = ln
(
λ
‖y−Axk‖

2

‖Wxk‖
2+r

+ 1
)

11: (4) ITER = ITER + 1
12: (5) If ITER < MAX:
13: Yes, Go back to 2);
14: No, output, X = xk+1
15: Step 3: Image magnification by sub-pixel convolution
16: (1) Using convolution layers to extract image features
17: (2) Generation of high-resolution image I by sub-pixel convolution
18: Output: High-resolution image I
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3. Experiments and Results

3.1. Complexity Analysis

When calculating the complexity of the model, the influence of the activation function on the
complexity of the model is neglected because the activation function has little influence on the
complexity of the model. The formula for calculating the complexity is as follows:

 D∑
l=1

Kl ×Cl−1Cl

SI

 (23)

where D is the network depth, Kl is the convolution core size of layer l, C is the number of channels,
SI is the size of the input image. Formula (23) shows that the complexity of the network model is
proportional to the size of the HR image, and the impact of the middle layer on the complexity of
the network model is relatively greater than that of the first and last layer. In SRCNN, the size of the
convolution core in the first layer is set to 9× 9, but since our algorithm uses the original low-resolution
image as input, the smaller convolution core can be applied to extract the same features. The size of
the convolution core in the first layer is 5× 5, and the size of the convolution core in the latter layer is
3× 3. The following table compares the complexity of the 9-5-5 SRCNN algorithm with that of MPSR
algorithm. According to Table 1, the complexity of the algorithm MPSR is 3.9 times lower than that
of SRCNN.

Table 1. Comparisons of model complexity

Complexity Related Items SRCNN MPSR

Conv1 (64, 9, 1) (64, 5, 1)
Conv2 (32, 5, 64) (64, 3, 64)
Conv3 (1, 5, 32) (64, 3, 32)
Conv4 None (4, 3, 32)

Input image SHR SLR
Number of parameters 57,184 58,048

Complexity 3.9 1

3.2. Experimental Environment and Parameters Setting

Infrared image dataset is a kind of self-made dataset. These images are taken by infrared imaging
equipment. It contains 400 training images and 100 test images. In order to make the experimental
results as accurate as possible, the training set should contain as many scenes as possible. In order to
synthesize low-resolution images, Gauss filter is used to blur high-resolution images. Due to the small
number of samples in the dataset, the original high-resolution image and the blurred low-resolution
image are cut to generate more sample pairs. The original image pixel is 320× 240, the cut image pixel
is 32× 24 and finally 4× 104 pairs of training samples are generated. During the training, the learning
rate is set to 10−4 and the activation function is RELU.

Among them, MAX is the largest number of regular partial iterations, and the maximum number
of iterations has an impact on the reconstruction effect and time. As shown in Figure 5.

As can be seen from the Figure 5a, the greater the number of iterations, the greater the PSNR
values, the better the reconstruction effect. Figure 5b shows that the larger the number of iterations,
the longer the time needed to reconstruct the image. Considering comprehensively, the number of
iterations in this experiment is set to 50. In practical work, it can be selected according to the needs.

The experimental environment is as Table 2.
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Figure 5. (a) Relation diagram between maximum iteration number and PSNR values. (b) Relation
diagram between maximum iteration number and time.

Table 2. Experimental environment.

Project Environment/Version

Operating system ubuntu
CPU i7-8700k

Memory 32GB
GPU GTX1080ti

Framework pytorch
Python IDE pycharm

3.3. Image Quality Metric Parameters

In the evaluation of simulation image test results, subjective evaluation and objective evaluation
are used in this paper. The subjective evaluation is the result of human observation [17]. The objective
evaluation indexes include peak signal-to-noise ratio (PSNR) and structural similarity degree (SSIM).
The formula for obtaining PSNR value is defined as Formula (24):

PSNR = 10 log10
2552

MSE
(24)

where MSE represents the mean square error. In the objective evaluation index of image processing,
PSNR is widely used, which is recognized by researchers. The larger the PSNR value is, the closer the
reconstructed image is to the original high-resolution image, and the better the reconstruction effect is.

SSIM (structural similarity index) is another commonly used evaluation index, which judges image
quality according to the similarity of image structure before and after reconstruction. The formula is
defined as Formula (25).

SSIM(x, y) =
(2µxµx + c1)

(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (25)

where µx is the average of x, µy is the average of y, σ2
x and σ2

y are the variance of x and y respectively,

and σ2
xy is the covariance of x and y. c1 = (k1L)2, c2 = (k1L)2. L reflects the range of pixel values.

k1 = 0.01, k2 = 0.03, SSIM value range is (−1, 1). The closer the SSIM value is to 1, the better the image
reconstruction effect is. When the two images are identical, the value of SSIM is 1.
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3.4. Experimental Results

3.4.1. Experiment on the Effectiveness of Algorithm Improvements

MPSR has two improvements. Firstly, because the texture of the infrared image is not obvious,
the image details are enhanced before the super-resolution reconstruction, and then the image is
reconstructed with the improved biregular objective function. Secondly, the regularization objective
function is combined with sub-pixel convolution. Instead of taking the enlarged high-resolution image
as the input, the low-resolution image is taken as the input. Finally, the sub-pixel convolution is used
to enlarge the image to the required multiple, which not only reduces the complexity, but also enhances
the reconstruction effect. The effectiveness of these two parts is verified by experiments, as shown
in Figure 6.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 
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Figure 6. (a) Comparison of the objective functions of a single regular item and double regular items.
(b) Comparison of PSNR values before and after algorithm improvement.

Figure 6a is a comparison of the objective functions between single regular item and double
regular items. It can be seen from the figure that the effect of image reconstruction with the objective
function of double regular items is better than that with single regular item, and the PSNR value is
increased by about 1.5 dB

Figure 6b is the comparison of PSNR values before and after algorithm improvement. The former
algorithm refers to the traditional regularization algorithm, the improved algorithm is MPSR. It can be
seen from the figure that the improved PSNR value has increased by 2.5 dB. As shown above, both
improvements in this experiment are effective.

3.4.2. Comparison of Different Algorithms

In order to compare with MPSR, spline interpolation algorithm (SPLINE), adaptive regularization
algorithm (MAP), SRCNN and sub-pixel convolution-based reconstruction algorithm (ESPCN) are also
applied in the experiment. Eight images in the test set are selected to display the data. The specific
images are shown in Figure 7.
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Figure 7. Experimental images.

The PSNR and SSIM values obtained from reconstructed images using different algorithms are
listed in Tables 3 and 4.

Table 3. PSNR values of different algorithms.

Metric
Parameters Number Image

Pixel SPLINE MAP SRCNN ESPCN MPSR

PSNR (dB)

1 320 * 240 34.0800 35.1562 36.9908 37.0787 38.0546
2 320 * 240 23.6019 24.5066 25.9310 25.9588 27.5505
3 320 * 240 31.3120 32.2794 33.2204 33.8099 35.0086
4 320 * 240 31.7600 32.7605 33.0185 33.6165 36.7969
5 320 * 240 31.8201 32.2924 33.3726 33.6970 35.8422
6 320 * 240 30.8223 31.2468 32.1141 32.6161 33.7191
7 320 * 240 31.0702 31.9873 33.3658 33.7443 34.9114
8 320 * 240 29.8001 30.8034 32.1989 32.5128 34.1559

Table 4. SSIM values of different algorithms.

Metric
Parameters Number Image

Pixel SPLINE MAP SRCNN ESPCN MPSR

SSIM

1 320 * 240 0.9113 0.9215 0.9398 0.9429 0.9516
2 320 * 240 0.7518 0.7875 0.8315 0.8457 0.8804
3 320 * 240 0.8779 0.8925 0.9023 0.9194 0.9365
4 320 * 240 0.9594 0.9617 0.9645 0.9690 0.9736
5 320 * 240 0.9593 0.9625 0.9659 0.9678 0.9702
6 320 * 240 0.9175 0.9223 0.9290 0.9360 0.9436
7 320 * 240 0.8099 0.8340 0.8661 0.8782 0.9059
8 320 * 240 0.8334 0.8542 0.8784 0.8889 0.9144

In order to evaluate the effect more intuitively, the data in Tables 3 and 4 are averaged and plotted
in Figure 8.
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Figure 8. (a) Means of PSNR values of different algorithms. (b) Means of SSIM values of
different algorithms.

The abscissa of Figure 8a is the algorithm name, and the ordinate is the PSNR values obtained by
reconstructing the image with different algorithms. From Figure 8a, it can be seen that the SPLINE
algorithm has the worst effect, the mean value of PSNR after reconstruction is only 30.5 dB, and the
traditional regularization algorithm MAP is not ideal. At present, the popular algorithm based on
deep learning has a better reconstruction effect than the traditional algorithm, but MPSR proposed in
this paper has the best effect. It can be seen from Figure 8a that the PSNR values calculated by this
algorithm is about 4 dB higher than that of SPLINE interpolation algorithm, about 2 dB higher than
that of SRCNN algorithm, and about 1 dB higher than that of ESPCN algorithm.

The abscissa of Figure 8b is the algorithm name, and the ordinate is the SSIM value obtained
by reconstructing the image with different algorithms. Compared with the trend of PSNR, spline
algorithm has the worst effect. The mean value of SSIM after reconstruction is less than 0.88, while the
mean value of SSIM of MPSR is nearly 0.94, which is nearly 0.03 more than that of SRCNN algorithm
and 0.02 more than that of ESPCN algorithm.

The effect of the reconstructed images is as in Figure 9.
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Figure 9. (a) and (b) are comparison of reconstruction effects of different algorithms.

Figure 9 are the images reconstructed with different algorithms. Among these five methods,
the super-resolution image reconstructed by SPLINE interpolation is the most fuzzy and the edge
preserving effect is the worst. SRCNN and ESPCN algorithm have good reconstruction effect and rich
detail information, but the edge reconstruction effect is still not ideal. The MPSR algorithm proposed in
this paper has obvious advantages in detail information enhancement and edge preservation, and can
effectively reduce noise and improve the overall brightness of the image, and the subjective visual
effect is better than other algorithms.

4. Conclusions

Common super-resolution reconstruction algorithms usually pre-process low-resolution images;
that is, interpolation is enlarged to the required size, and then super-resolution reconstruction is
carried out. This greatly increases the complexity of reconstruction. The image super-resolution
reconstruction algorithm based on sub-pixel convolution directly takes low-resolution images as input,
which reduces the complexity and improves the speed. However, due to the low resolution of the
infrared image, the unclear gray level and the centralized gray distribution, the texture is not obvious,
and the reconstruction effect is not ideal. In this paper, an adaptive dual-regularization super-resolution
reconstruction algorithm based on sub-pixel convolution is proposed. The algorithm regularizes the
image before convolution. Compared with the traditional regularization algorithm, the algorithm firstly
enhances the multi-scale details of the image, and adds another regularization term to the regularization
part of the algorithm to enhance the edge of the image, and adds a constraint fidelity. Compared with
other algorithms, the PSNR and SSIM values of the proposed algorithm are significantly improved,
and the enhancement of image details and edge preservation are significantly better. Moreover,
the proposed algorithm can effectively reduce noise and enhance the overall brightness of the image,
and the subjective visual effect is better than other algorithms.
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