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Abstract: The emergence of the uncertainty principle has celebrated its 90th anniversary recently.
For this occasion, the latest experimental results of uncertainty relations quantified in terms of
Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on
the type of measurement uncertainties that describe the inability to obtain the respective individual
results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting
directions is analyzed. Two sub-categories of measurement uncertainty relations are considered:
noise–noise and noise–disturbance uncertainty relations. In the first case, it will be shown that the
lowest boundary can be obtained and the uncertainty relations be saturated by implementing a
simple positive operator-valued measure (POVM). For the second category, an analysis for projective
measurements is made and error correction procedures are presented.

Keywords: uncertainty relation; joint measurability; quantum information theory; Shannon entropy;
noise and disturbance; foundations of quantum measurement; neutron optics

1. Introduction

According to quantum mechanics, any single observable or a set of compatible observables
can be measured with arbitrary accuracy. However, the physical scenario changes when jointly
(i.e., simultaneously or successively) measuring non-commuting observables. Heisenberg’s seminal
paper from 1927 [1] predicts a lower bound on the uncertainty of a joint measurement of incompatible
observables, more precisely of the canonically conjugate variables position and momentum. On the
other hand, it also sets an upper bound on the accuracy with which the values of non-commuting
observables can be simultaneously prepared.

While in the past these two statements have often been mixed, they are now clearly distinguished
as measurement uncertainty and preparation uncertainty relations. When we consider the quantities
position and momentum, as in Heisenberg’s original argument, the well-known inequality states
that it is impossible to prepare a quantum system for which both, position and momentum, are
arbitrarily sharply defined. Operationally this is achieved by an apparatus that prepares many copies
of a quantum particle in the same way, which is schematically illustrated in Figure 1. On one part
of the ensemble, the position is measured and on the other part the momentum. From the statistical
distribution of these two measurements, the preparation uncertainty can be determined. What is
the correct way to interpret these distributions? While Heisenberg’s paper only presented his idea
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heuristically, the first rigorously-proven uncertainty relation for position Q and momentum P was
provided by Kennard [2] in terms of standard deviations expressed as

∆(Q)∆(P) ≥ h̄
2

, (1)

where the standard deviation is defined as ∆(A)2 = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2. This relation can be
generalized to other pairs of incompatible observables, including the phase and excitation number
of a harmonic oscillator, the angle and the orbital angular momentum of a particle, and orthogonal
components of spin angular momentum [3–5]. In 1929, Robertson [6] extended Kennard’s relation
Equation (1) to an arbitrary pair of observables A and B as

∆(A)∆(B) ≥ | 1
2i
〈ψ|[A, B]|ψ〉|, (2)

with the commutator [A, B] = AB − BA. Robertson’s uncertainty relation in turn follows from a
slightly stronger inequality namely the Schrödinger uncertainty relation [7] which is given by

∆(A)∆(B) ≥ |〈ψ|{A, B}|ψ〉 − 〈ψ|A|ψ〉〈ψ|B|ψ〉|2 + | 1
2i
〈ψ|[A, B]|ψ〉|2, (3)

introducing the anti-commutator {A, B} = AB + BA.

Figure 1. Experimental procedure to measure preparation uncertainty relations. Each particle that is
emitted by the source preparing identical states |ψ〉 either undergoes a measurement of observable A
or B.

In Kennard’s and Robertson’s uncertainty relations Equations (1) and (2) the uncertainty is
expressed in terms of standard deviations. This is, however, not the only way to express uncertainties
and sometimes not a well-suited measure [8]. For illustration consider the well-known single-slit
experiment, which is schematically illustrated in Figure 2a. An incoming monochromatic plane wave
represents an incoming beam of particles. The particles with momentum p0 pass a slit of width 2a
and are detected on a screen (or photographic plate) placed at a distance l. The diffraction of particles
by such a single slit is frequently used as an illustration of the uncertainty principle [9,10]. The wave
function at the screen (z = 0) may be represented by the following Fourier transform pair illustrated
in Figure 2b (for l � a� l/po and l � |q| this is a good approximation of a Fourier transform). The
uncertainty in momentum ∆p corresponds to the width of the central peak, which contains about 95
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(a)                                                                                                     (b)

Figure 2. Experimental procedure to measure preparation uncertainty relations, where each particle
undergoes a measurement of observable A or B. (a) schematic illustration of the single-slit configuration.
(b) Distributions of the canonical conjugated variables position q and momentum p.

The uncertainty relation as formulated by Robertson in terms of standard deviations
∆(A, |ψ〉)∆(B, |ψ〉) ≥ 1

2 |〈ψ|[A, B]|ψ〉| has two flaws: (i) the standard deviation is not an optimal
measure for all states, as discussed above. (ii) the boundary (right-hand side of any uncertainty
relation) can become zero for non-commuting observables (this is also the case for our neutron spins for
a combination of |ψ〉 = |x〉, A = σx and B = σy). At this point, it should be mentioned, that the reason
for the existence of that bound is the well known canonical commutation relations (CCR) of position
and momentum of a quantum particle. An algebraic structure in the form U (A, B, ψ) ≥ B(A, B)
(in words: the uncertainty U of the observables for a quantum state, must always be larger than
some state-independent bound B) is desirable for an uncertainty relation. Note that Heisenberg’s
(and Kennard’s) inequality ∆Q∆P ≥ h̄

2 has that form, but its generalization Equation (2) does not.
In order to represent a quantitative physical notion of uncertainty, U must at least possess the following
elementary property: If and only if ψ is a simultaneous eigenstate of A and B may U become zero.
From this, we can infer a property of B, namely that it must vanish if and only if A and B have an
eigenstate in common.

One way to avoid just mentioned problems is to use another measure of statistical dispersion.
The first entropic uncertainty relation was formulated by Hirschman [11] in 1957 for the position and
momentum observables, which was later improved in 1975 by Beckner [12] and Bialynicki–Birula and
Mycielski [13] resulting in

h(Q) + h(P) ≥ log(eπh̄), (4)

where h is the differential entropy defined as h(Q) = −
∫ ∞

∞ Γ(q)log Γ(q)dq, with probability
density Γ(q). Equation (4) actually implies Kennard’s relation Equation (1). The extension to
non-degenerate observables on a finite-dimensional Hilbert space was given by Deutsch in 1983 [14]
and later improved by Maassen and Uffink [15] yielding the well-known entropic uncertainty relation

H(A) + H(B) ≥ −log c, c := maxi,j| 〈bj|ai〉 |2, (5)

where H denotes the Shannon entropy and c is the maximal overlap between the eigenvectors.
At this point we want to turn to the main topic of the present review article, that is measurement

uncertainty relations, which include (1) joint measurability, i.e., the fact that certain pairs of observables
cannot be measured simultaneously, and (2) measurement disturbance, i.e., the concept that in
successive setups there exist certain pairs of observables that cause a disturbance on the second
measured operator as shown in Figure 3. Measurement uncertainty is a topic gaining much attention
in current research, both from the theoretic [16–20] and experimental view [21–29]. In light of
these recent developments Buscemi and Hall proposed information-theoretic definitions for noise
and disturbance in quantum measurements and a state-independent noise–disturbance uncertainty
relation—an entropic formulation of measurement uncertainty relations [30].



Appl. Sci. 2020, 10, 1087 4 of 19

Figure 3. Experimental procedure to measure observables A or B in a successive manner. Instead of
precisely measuring A an approximate measure of A, denoted as OA is performed in order to reduce
the disturbance on B.

The distinction between the two kinds of uncertainty types led to a resurgence of the
corresponding research, in particular for qubits. In the first noise–disturbance investigations,
an experiment is performed which successively measures the neutron spin in two maximally
non-commuting directions [31]. The obtained result brings important insights, first that it is possible
to improve the uncertainty relation by reverting some of the correlation losses, and second that it
is difficult to find out which measurement configuration allows us to reach the lowest uncertainty.
In fact, a little later, a violation of the presented noise–disturbance inequality was found [32]. Because
a mathematical analysis of the noise–disturbance case is very difficult, an experimental investigation
of the simpler noise–noise case is made [33]. In the following, a concise overview of the theory and a
detailed picture of the neutron optical experiments is offered.

2. Theory

For an observable A with finite, non-degenerate spectrum {ai} the expectation value is defined
by 〈A〉 = ∑N

i=1 ai p(ai) where the probability p(ai) = |〈ai|ψ〉|2 is given by Born’s rule. The standard
deviation quantifies the statistical dispersion around the mean in many repetitions of the same
configuration, written out as

∆(A) =

√√√√ N

∑
i=1

p(ai)(ai − 〈A〉)2 . (6)

There are of course other quantities that can describe the dispersion, peakedness or uniformity
of probability measures. Associate to the outcomes ai the random variable A, then the Shannon
entropy [34] of the distribution is defined by

H(A) = −
N

∑
i=1

p(ai) log(p(ai)). (7)

This entropy quantifies the average information content of probabilistic data and becomes larger
the more uniform the distribution is. The striking difference between the standard deviation and
the Shannon entropy is that the former explicitly depends on the outcome value ai, while the latter
depends on nothing but the probabilities p(ai). Considering a probability distribution as a pair of
values (ai, p(ai)), it is quickly realized that the Shannon entropy is not affected by any relabeling or
shuffling of ai.

The entropic noise operator N(M, A) quantifies the average information that the apparatus
M [35] gains in a measurement of the operator A. For that purpose an a priori distribution of
eigenstates {|ai〉} is considered which are prepared with uniform probability p(ai) = 1/d, where d
denotes the dimension of the system state. This source of equiprobable input states is then sent to
the instrumentM, modeled as a completely positive, trace non-increasing quantum operation with
outcomes mj belonging to M. The noise operator is defined as the conditional entropy H(A|M),
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N(M, A) := H(A|M) = −∑
i,j

p(ai, mj) log(p(ai|mj)). (8)

This is to be interpreted as the possibility to infer the unknown eigenstates of A by the instrument.
If the outcomes mj are perfectly correlated to ai, then a certain guess of the initial state can be made,
otherwise, if the instrument can not discriminate the input states perfectly then the measurement is
considered as noisy and not well calibrated.

Let the observable B be an operator that generally does not commute with A. The entropic
disturbance operator D(M, B) is modeled similar to the noise operator. Uniformly distributed
eigenstates {|bi〉}with eigenvalues bi associated with random variable B are fed to the same instrument
M from which a post-measurement state ρmj = Mmj(|bi〉〈bi|)/Tr(Mmj(|bi〉〈bi|)) emerges. In the
disturbance configuration there is, however, an additional subsequent measurement of observable
B with outcomes {b′j}. Due to the disturbing nature of the measurement apparatus M, generally,
a loss of correlation occurs. A subtle, yet important addendum to the concept of disturbance are error
corrections. After measurement byMmj , the state decomposed to the eigenstates of the measurement
observables can be further transformed by a quantum operation Emj dependent on the pointer value mj
of the apparatus. The disturbance operator is defined as the conditional entropy H(B|B′),

DE (M, B) := H(B|B′) = −∑
i,j

p(bi, b′j) log(p(bi|b′j)). (9)

The error correction is hidden in the probabilities

p(bi, b′j) = ∑
k

p(b′j|bi, mk)p(bi, mk) = ∑
k
〈b′j|Emk (ρmk )|b

′
j〉 p(bi, mk) . (10)

The entropic disturbance is to be interpreted as the possibility to infer the unknown eigenvalues
bj of B from the outcomes of b′j after the intermediate apparatusM induced a disturbance on the initial
state and an appropriate correction transformation Emj is made. If a perfect guess is possible from the
measurement results there is no disturbance, else if the instrument has reduced the correlation to some
extent the inference of the initially unknown eigenstates |bi〉 is faulty. The optimal error correction
is defined as the transformation Emj that, for a given measurementMmj , minimizes the disturbance
D(M, B) = infE DE (M, B).

From the definitions of the entropic noise and disturbance it becomes apparent that if [A, B] 6= 0,
it is not possible to make noiseless and disturbance-free joint measurements. Generally, two different
kinds of uncertainty relations arise in this framework, first derived in [30].

• Noise–noise uncertainty relation

N(M, A) + N(M, B) ≥ − log(max
i,j
| 〈ai|bj〉 |2). (11)

This tradeoff expresses the inability for the deviceM to jointly discriminate the eigenstates |ai〉
and |bi〉 to arbitrary precision.

• Noise–disturbance uncertainty relation

N(M, A) + DE (M, B) ≥ − log(max
i,j
| 〈ai|bj〉 |2). (12)

This inequality implies that the measurement apparatus cannot be noise and disturbance-free for
both eigenstates of the non-commuting operators A and B.
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At this point, it makes sense to point out a difference in the uncertainty relations involving
entropy or standard deviations, respectively. From Equations (6) it is apparent that the formula
depends generally on the input state |ψ〉, while the definitions of noise and disturbance involve only
the observables’ eigenstates which makes Equation (11) and (12) state independent. Furthermore, the
noise–noise and noise–disturbance inequalities look identical to the well-known Maassen–Uffink [15]
relation which describes preparation uncertainties.

One of the biggest challenges in exploring uncertainty relations is finding the smallest boundary
and the saturation conditions, i.e., the conditions under which the uncertainty relations acquire equality.
Optimization studies are rather tough and therefore tight solutions have been proven only for a few
selected cases. The Maassen–Uffink relation, for example, is only saturated for mutually unbiased
(MUB) states and can not reach equality for other states. In the approach [32] the region of obtainable
values is written out as

RNN(A, B) = {N(M, A), N(M, B)} , (13)

RND(A, B) = {N(M, A), DE (M, B)}. (14)

Finding this set of points reachable by joint measurements is an ongoing task. For two-dimensional
quantum systems promising results have been derived in the first instance.

2.1. Entropic Measurement Uncertainty Relation for Qubits

The principle idea behind the optimization of the uncertainty relation is based on finding the
minimum of the sum of entropies H(A) + H(B). For dichotomic observables there are only two
outcomes and the binary Shannon entropy hb(x) in its symmetric form can be compactly written as

hb(x) = − 1+x
2 log2

(
1+x

2

)
− 1−x

2 log2

(
1−x

2

)
, x ∈ [−1, 1]. (15)

Let A =~a ·~σ and B =~b ·~σ then calculation of the extreme values [36,37] for qubit systems show
that for |~a ·~b| & 0.391 an analytic expression of the uncertainty relation can be provided. According to
the details of [32] the noise–noise uncertainty relation is expressed as

g
(

N(M, A)
)2

+ g
(

N(M, B)
)2 − 2|~a ·~b| g

(
N(M, A)

)
g
(

N(M, B)
)
≤ 1− (~a ·~b)2, (16)

where g is the inverse function of the binary entropy Equation (15), hence g(hb(x)) = x, ∀x ∈ [0, 1].
However for |~a ·~b| . 0.391, not all obtainable values by joint measurements are contained in the
region demarcated by relation Equation (16). Geometrically, when the modulus of the inner product
of the two Bloch vectors |~a ·~b| is larger than the critical angle ≈ 67◦ the shape of the area becomes
non-convex. According to the proposition [32] the entire region of obtainable values for qubits is given
by the convex hull of the subset constituted by Equation (16), i.e.,

RNN(A, B) = conv
{
(s, t) | g(s)2 + g(t)2 − 2|~a ·~b| g(s) g(t) ≤ 1− (~a ·~b)2}. (17)

Let P±(~ri) = 1
2 (1±~ri ·~σ) be two-dimensional, orthogonal projectors, where the Bloch sphere

coordinates are used to parametrize~ri =~ri(θi, φi) by the polar θi and azimuthal angle φi. The entire
region including the lower boundary of RNN(A, B) can be obtained by measuring four-outcome
POVMs corresponding to a statistical mixture of two projectors weighted by q and 1− q,

Mm = {qP+(~r1), qP−(~r1), (1− q)P+(~r2), (1− q)P−(~r2)} . (18)

A generally valid and optimal uncertainty relation between the entropic noise N(M, A) and
the disturbance D(M, B) has not been found so far, not even for two-dimensional quantum systems.
At least for two Pauli observables σi, σj which are orthogonal Tr(σiσj) = 0 and a measurement
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apparatus that performs projective measurements M = {P+(~r), P−(~r)} the following inequality
does hold

g(N(M, σi))
2 + g(D(M, σj))

2 ≤ 1. (19)

Apart from this special case, an entropic uncertainty relation for N(M, A) - D(M, B) has yet to
be found. For a detailed survey and conjectures see [32].

3. Measurement of Entropic Noise–Noise Uncertainty Relation

3.1. Set-Up

The experiments presented here use neutrons generated by a nuclear reaction at the TRIGA
Mark II reactor in Vienna. The neutrons, after being monochromatized, arrive at the experimental site
through an outlet of the shielding in the reactor wall. A polarizer at the beginning of the beamline
eliminates one spin component, leaving only monoenergetic neutrons with up spin. A schematic view
of the experimental setup is depicted in Figure 4.

Figure 4. Experimental arrangement for determining the noises and thus the uncertainty relation. In (a)
the full set-up is shown. In the projective case q = 1 in (b), the configuration consists of 2 coils, DC-Coil
2 generating one of the possible eigenstates (|±a〉 , |±b〉) uniformly at random and DC-Coil 3 adjusted to
make a selection of the state with orientation~r1(θ1). For the positive operator-valued measure (POVM),
the four-outcomes are implemented by ‘splitting’ the total neutron counts to two partitions in the rose
colored area. For that purpose, the DC-Coil 1 changes the angle incident to Analyzer 1 and reduces the
probability to be transmitted to the experimental backstage to q = | 〈+z|+ ψ〉 |2 = | 〈+z|UDC1|+ z〉 |2.
Whenever the experiment is set to q, Analyzer 1 makes a projection onto P(~r1(θ1)), but when the
probability of transmission is inverted to 1− q = | 〈+z|−ψ〉 |2, the second stage is conditioned to
analyze P(~r2(θ2)).

Neutron spins can be manipulated precisely with static magnetic field generated by solenoid
coils. When a neutron propagates in the y-direction and has a spin-up |+z〉, then a magnet field in the
perpendicular x-direction creates a unitary Larmor precession UDC by an angle α

UDC |+z〉 = eiασx |+z〉 = cos
α

2
|+z〉+ i sin

α

2
|−z〉 . (20)

The angle of rotation is proportional to the magnetic field strength and the time of passage of
the neutron through the coil α = γBxt, γ being the gyromagnetic ratio. Since the transition time t is
constant, the spin state is entirely controlled by the electric current that generates the magnetic field Bx.
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Because the neutron is sensitive to magnetic fields, there are also unwanted disturbances from the
earth’s magnetic field or magnetic materials in the vicinity of the setup. To avoid irritations of the
neutron spin, the entire beamline is surrounded by a 13G vertical guide field. In order to leave the
field’s axis in the coils unchanged in x-direction, the external field is compensated by a local field in
the opposite direction.

A supermirror analyzer makes a spin-dependent projection by taking in the input quantum
system |ψ〉 and producing the outcome |+z〉. The use of a coil placed in front of an analyzer, working
according to Equation (20), allows any state to be generated before entry. A coil after the analyzer, in
turn, allows an arbitrary initial state to be re-established. A measurement in the analyzer, therefore,
consists of a combination of coil and supermirror, the usual sequence is the following: the state
|ψ〉 = UDC1 |+z〉 is generated by DC-Coil 1 and fed to the analyzer 1, the outcome |+z〉 appears with
probability |〈+z|ψ〉|2, which in turn is transformed by DC-Coil 2 after the analyzer to UDC2 |+z〉.

The idea for the realization of the POVM Equation (18) is as follows. At q = 1 the neutrons,
as indicated on the right of Figure 4, propagate along the y-axis with |+z〉 and are transformed by
DC-Coil 2 to the eigenstates |±a〉, respectively |±b〉. The entropic concept of the noise demands that
the two eigenstates are initially unknown and equally likely p(a) = p(b) = 1/2. For this purpose,
the coils are driven by a power supply whose current is controlled by a random number generator
(RG) operated by a computer. This RG will produce the desired eigenstates with equal probability
distribution at random. In DC-Coil 3 the current is adjusted to make an analysis of the eigenstates in
the direction~r1(θ1, φ1), i.e., the probability to pass the Analyzer 2 before the detector is 1

2 (1 +~a ·~r1)

(likewise for~b). The angle θ1 is controlled once more by the current in the coil while the azimuthal
angle φ1 is a function of the distance between DC-Coil 2 and DC-Coil 3. In the case 0 < q < 1, the
pink-colored section in Figure 4 is integrated into the setup. The incoming neutron is set to pass to
the second stage of the instrument with probability q = |〈+z|ψ〉|2, where |ψ〉 is generated according
to Equation (20) by DC-Coil 1. Then, as usual, the second coil produces one of the eigenstates of
A, B at random before analysis in direction~r1. After some time, however, the incoming state |ψ〉 is
inverted and changes the probability of passing to 1− q = |〈+z|−ψ〉|2. If that is the case, DC-Coil 3 is
conditioned to make a measurement along~r2.

At the end of the beamline, a count rate of about 40 neutrons per second remains, whereby all
particles are registered in the detector independently of the spin. The efficiency of the detector is close
to 1 owing to the high absorption cross-section of boron for thermal neutrons. The statistics of the
counting rate follows a Poissonian distribution, hence the error of one standard deviation is equal
to the mean value. The largest systematic error stems from the limited efficiency of resolving the
polarization at the supermirror analyzers which causes a loss of state fidelity from 1 to approx. 0.98.
To deal with the error, the insufficiency is compensated by marginally rescaling the values such that
they cover the full range from 0 to 1.

3.2. Measurement Results

To determine the noise, all probabilities must be measured. This was done by counting the
neutrons in a certain configuration each. The frequency of occurrence of an event in relation to all other
possible events gives the probability. The Figures 5 and 6 show the raw form of the measured data in
the case of the input state |+a〉, respectively |+b〉. Each bar in the chart corresponds to the counted
neutrons for a particular m and either an angle θ or a weighting q. If one denotes the counted neutrons
as Ia,m and Ib,m then measuring the count rate for all combinations a = {−1,+1}, b = {−1,+1} and
m = {1, 2, 3, 4} allows to obtain all necessary probabilities via

p(a, m) =
Ia,m

∑a,m Ia,m
, p(b, m) =

Ib,m

∑b,m Ib,m
(21)
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and
p(a|m) =

Ia,m

∑a Ia,m
, p(b|m) =

Ib,m

∑b Ib,m
. (22)

The regarded observable are A = ~a ·~σY := σz and B = ~b ·~σ := sin(β)σy + cos(β)σz, the
second operator is therefore only varied over the y-z plane. The first measurement was made in
the projective case q = 1 so that Equation (18) becomes Mm = {P+(~r1), P−(~r1), 0, 0}. The Bloch vector
~r1 = (0, sin θ1, cos θ1)

T is rotated from 0 to π, hence depending on how close~r1 is to~a or~b the count
rate is either large or small. Figure 5 shows the neutron count rate in the MUB case for the input states
Figure 5a |+a〉 = |+z〉 and Figure 5b |+b〉 = |+y〉. In order to obtain the total noise, the intensity
distribution for the negative eigenstates is also necessary, which is not shown here. For each angle θ

the four outcomes are detected each for the positive and negative eigenvectors with a total of 2500
neutrons recorded in 60 seconds.

a b

Figure 5. The neutron count rate for (a) I+a,m and (b) I+b,m of the four-outcome POVM at a probability
weighting of q = 1 in the case A = σz and B = σy. Each histogram illustrates the change of counted
neutrons depending on the angle θ of the measurement direction ~r1 = (0, sin θ1, cos θ1)

T with an
increment of ∆θ1 = 20◦. The maximal height in the 60s measurement are approximately 2500. At the
initial angle θ1 = 0, outcome m = 1 corresponds to the projector P+(~r1) = P+(~a) and therefore a
maximal count rate occurs in (a), while m = 2 is associated with P−(~r1) = P−(~a) and no neutrons are
detected. A rotation of the projectors by angle θ leads to a decrease of counts in m = 1 and an increase
of measured events in m = 2 for the input state |+a〉. Likewise, (b) shows the histogram for an input
state |+b〉, which is a distribution phase-shifted to I+a,m by θ = 90◦. Outcomes m = 3 and m = 4 from
Equation (18) do not occur in the projective limit q = 1.
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a b

Figure 6. The neutron count rate for (a) I+a,m and (b) I+b,m of the four-outcome POVM at polar angles
θ1 = 0◦ and θ2 = 90◦ in the case A = σz and B = σy. Both histograms display a variation in the
count rate depending on the probability weighting q with an approximate change rate of ∆q = 0.1.
In (a) the measurement start with the projective case q = 1 and therefore |+a〉 is measured perfectly
by P+(~r1) = P+(~a). Alternation of the statistical mixture means that outcomes m = 3 and m = 4
measuring in direction~r2 =~b contribute more and more to the statistics the more q decreases. As for
(b), the measurement of A with the eigenstate of |+b〉 starts with half the count rate and then decreases
equiprobably the more q is decreased. Meanwhile m = 3 corresponing to (1− q)P+(~r2) = (1− q)P+(~b)
registers more neutrons the closer q gets to 0, while m = 4 associated with (1− q)P−(~r2) = (1− q)P−(~b)
remains practically zero for the input state |+b〉.

In contrast to Figure 5 the bar chart in Figure 6 illustrates the alteration of count rates for varying
statistical mixture q in Equation (18) but with static, unchanged measurement directions~r1 = ~ez and
~r2 = ~ey. This means that if q is 0.7 for example, the neutron spins were measured by the operators M3

and M4 with a prefactor of 0.3, hence all four outcome slots are contributing to the statistics.
Putting the results together using Equation (8) for both observables A and B, the noise is plotted

as a function of the rotation angle in Figure 7. The noises vary between 0 and 1; for θ1 = 0 a perfect
measurement of A is made byM which results in a noisefree determination of the eigenstates |±a〉
given by the blue data points, while on the other hand |±b〉 are maximally unpredictable at this
point. When the projectors P±(~r1) =

1
2 (1+~r1(θ1, φ1 = π

2 ) ·~σ) are rotated closer towards observable
B, a trade-off between the noises occurs making the discrimination of |±a〉 more difficult and the
differentiation of |±b〉 easier. This impossibility of jointly distinguishing the two eigenstates of the
non-commuting observables of A, B is known as the measurement uncertainty principle.

Generally, we were interested in the region RNN(A, B) Equation (13) of all obtainable pairs of
noise values. For that purpose, an analytic approach to finding the minimal and maximal values was
necessary. The idea behind maximizing the noise is simple: since~a,~b ∈ R3 are confined to the y-z
plane, rotating the measurement operator~r′1(θ1, φ1) such that it lies outside the plane~r′1 · (~a×~b) 6= 0
increases the entropy. The purple points at π

6 , π
3 and π

2 in Figure 7 are lifted to the maximal value
through this procedure. To understand the strategy of finding the minimal value, it is necessary to look
at the black curve representing the sum N(M, A) + N(M, B). Apparently, the sum of the entropic
noises has two local minima in Figure 7 at θ1 ' 5◦ and θ2 ' 74◦ in the region 0-π/2, calculable from
the first derivative. The idea to obtain the lowest bound of the uncertainty region is to build the convex
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combination of the projectors P±(~r1) and P±(~r2) at exactly these minima. The linear progression of the
noises as a function of the scalar parameter q is shown in Figure 8. The statistical weighting varies by
about 0.1 and the two noises run with opposite proportionality, the sum always being at the minimum
value of 0.96 (the same minima as in Figure 7).

N[ℳ,A]

N[ℳ,B]

N[ℳ',B]

N[ℳ,A]+N[ℳ,B]

0 π

6
π

3
π

2
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3
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6

π
0

0.25

0.5

0.75

1

1.25

angle θ1

N
o
is
es

Figure 7. The measurement results of noises N(M, A) in blue and N(M, B) in red for A = σz and
B ' sin(79◦)σy + cos(79◦)σz together with the theoretical predictions given by the solid curves in the
projective case. In addition, the purple data points show how variation of the azimuthal angle φ1, which
moves the measurement operator P±(~r1) out of the plane spanned by~a-~b, increases the total noise and
makes the noise-noise trade-off worse. The black curve is equal to the sum N(M, A) + N(M, B) and
has two notable minima in the interval 0 ≤ θ1 < π, which are necessary to identify the optimal values
for the POVM.

N[ℳ,A]
N[ℳ,B]
N[ℳ,A]+N[ℳ,B]
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Figure 8. Theoretical lines plus measurement points of N(M, A) in blue and N(M, B) in red for
A = σz and B ' sin(79◦)σy + cos(79◦)σz for varying statistical weighting q. To obtain this plot the
operators P±(~r1) and P±(~r2) are fixed to the extreme values θ1 = 5◦ and θ2 = 74◦ corresponding to the
minima in Figure 7. The black line shows that the sum of the entropy remains constant at the lowest
value of Figure 7. As a result, realizing the POVM Equation (18) reduces the overall noise.

Uncertainty relations are best viewed through a parametric representation as exhibited in Figure 9.
The figure shows for Bloch vector~a = ~ez and varying~b how the uncertainty region gradually changes.
The white hatched part marks all the points which are not reachable by a joint measurement. Starting
from the MUB case given in the first picture, it is seen that the amount of achievable points is sinking
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ever lower. On the other hand, the green area marks the POVM region, which only becomes relevant
for far-off observables A and B.

Figure 9. Parametric plots of noises in observable A =~a ·~σ and B =~b ·~σ which indicate the accessible
joint measurement uncertainty region RNN(A, B), with the blue curve being the result of projective
measurements in the plane spanned by~a-~b, the orange colored region obtainable by arbitrary projectors
and finally the green area demarcating the lowest pairs of noise values only reached by POVMs. The
upper panel shows the improvement on the uncertainty relation by choosing the convex combination
of the operators P±(~r1) and P±(~r2) controlled by q, whose color coding is listed for (a) ~a ~̂b ' 90◦,
(b) ~a ~̂b ' 85◦ and (c) ~a ~̂b ' 79◦. In the lower panel, the included angle is very close or below
the critical value of ≈ 67◦. Apparently the orange region is already becoming convex and further
improvements by POVMs are not feasible for (d)~a ~̂b ' 69.5◦ or possible for (e)~a ~̂b ' 60◦.

4. Measurement of Entropic Noise–Disturbance Uncertainty Relation

4.1. Set-Up

The setup bears some resemblance to the configuration shown in Figure 4. In the first stage of
the set-up the necessary eigenstates of the observables under consideration are prepared in DC-1,
which makes up four states in total. Afterwards, a successive measurement is conducted, first, the
M-measurement in the middle, purple colored section shown in Figure 10 and then the B-measurement
at the end of the set-up. The projection M is given by the combination DC-2 + Analyzer + DC-3:
first, the initially prepared state is transformed to the eigenstate |±m〉 in DC-2, which interacts with
the analyzer and is then recovered by DC-3 preparing the post-measurement state |±m〉 with the
probability of occurrence being | 〈±m|+z〉|2. Both coils adjacent to the first analyzer control the polar
angle θ of the spin according to Equation (20) and are used to prepare and then conditionally recreate
a particular state. The procedure for the B-measurement is analogous, i.e., the fourth coil DC-4 is set to
transmit state |+y〉maximally through the 2nd-analyzer and the orthogonal state |−y〉 with minimum
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probability. The reconstruction of the state before the detector is irrelevant since the registration of the
neutron in the counting tube is spin-insensitive.

The error correction is a decisive aspect of the considerations of optimal noise–disturbance
uncertainty relations. Practically, it is implemented by DC-3 which can not only be used to generate
|±m〉, but any other state. As it turns out, the optimal error-correction can be achieved by unitarily
transforming the post-measurement state to the eigenvectors of observable B.

Figure 10. Experimental realization for the measurement of noise N(M, A) and disturbance DE (M, B).
In the preparation phase, the monochromatic neutrons are transformed to the observables’ eigenstates,
indicated by the left Bloch sphere. DC-2 controls the incident angle θ of the spin. As noted in the
middle Bloch sphere, the analyzer transmits best in the z-direction and gets worse as the operator
M = sin θ σy + cos θ σz turns away from the poles. DC-3 can either be used to produce the uncorrected
eigenstates |±m〉 or perform the optimal correction and generate the spins |±b〉 = |±y〉. This different
mode of operation is characterized by the light green color mark. In the dark green area, the second,
subsequent projection takes place, in which DC-4 transforms the incoming vectors in such a way that B
is measured optimally.

4.2. Measurement Results

The evaluation of the data is similar to the methods of the last section. However, each count rate
has now three subscripts Ia,m,b′ , as well as Ib,m,b′ , the first index denoting the prepared eigenstate and
the latter two indicate the result of the outcomes of the m and b′-measurements. The conditional and
marginal probabilities required for the entropies are

p(a) =
∑m,b′ Ia,m,b′

∑a,m,b′ Ia,m,b′
, p(b) =

∑m,b′ Ib,m,b′

∑b,m,b′ Ib,m,b′
, (23)

p(m|a) = ∑b′ Ia,m,b′

∑m,b′ Ia,m,b′
, p(b′|b) = ∑m Ib,m,b′

∑m,b′ Ib,m,b′
. (24)
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Unlike for noise–noise uncertainty relations, an error correction procedure of the post
measurement state |m〉 must be taken into account which can drastically change the degree of
disturbance. Setting the experimental observable to A = σz, B = σy and M = cos θ σy + sin θ σz

the oscillation of the conditional probabilities depending on the angle θ have been recorded and are
plotted in Figure 11. The left panel Figure 11a illustrates a sine/cosine behavior as expected for the
probability of preparing the input state corresponding to the eigenvalue a and receiving measurement
outcome m. Based on the course of the conditional probabilities, one realizes for 0 ≤ θ ≤ π that
|p(b′|b)− 1

2 | ≤ |popt(b′|b)− 1
2 |, that is the modulus of the probability (centered at 1

2 ) when leaving
the post measurement state as |m〉 is surpassed by the curve, where the optimal error correction is
employed.
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Figure 11. Measurement results of the conditional probabilities for (a) p(m|a), (b) p(b′|b) and
(c) pcorr(b′|b). From θ = 0 to θ = π/2 the increment is π/18 and changes to π/9 from 5π/9 on.
At the angle θ = 0 the measurement operator is σz and the probability to receive m = ±1 given the
value of the initial eigenvector is a = ±1 is maximal in (a), while the results with opposite signs
a = ∓1 are impossible to occur. Rotating the measurement direction leads to a sinusoidal change of the
probabilities. The center (b) and right graph (c) show the probabilities for receiving b′ given state b.
The maxima and minima are shifted in phase to the first panel by π/2. The uncorrected curve in the
middle has not the same wide arc form compared to the curve where the optimal correction procedure
is conducted.

The comparison of the respective curves and the shape of the noise can be seen well in Figure 12.
The theoretical prediction of noise and uncorrected/optimally corrected disturbance for projective
measurements are

N(M, A) = h(cos θ) , Duncorr(M, B) = h(sin2 θ) , Dopt(M, B) = h(sin θ). (25)

The interpretation of the blue noise curve is all clear by now: the measurement starts perfectly
correlated leading to vanishing noise and loses its correlation the closer M is to observable B before
further rotation increases the anti-correlation and makes N(M, A) smaller again. The disturbance has a
reciprocal form to the noise. The information about the initial states is maximally destroyed by the first
apparatus and there is no certainty about the second measurement outcome. The more approximate
B is measured in the first apparatus the better the correlations are conserved. The red-colored data
points show Duncorr(M, B), the disturbance when no correction is made and the b′-measurement is
made on |m〉. However, as the green curve in Figure 12 implies, the situation can be improved by
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correlating the random variable B′ of the second apparatus with the random output variable M of the
first measurement instrument. In terms of complete positive trace-preserving maps, this can be written
as the operation

E(|m〉) :=

{
|+b〉 ~b ·~r ≥ 0
|−b〉 ~b ·~r < 0

. (26)

The green-colored result, therefore, shows the minimal disturbance, where the second apparatus
makes a measurement on the state |±b〉, the state rotated onto the closest eigenvector of B. Finally, it
remains to have a look at the plot of noise vs. disturbance. In Figure 13 three curves are shown. The
red curve corresponds to the uncorrected uncertainty relation and the green one to the corrected in
accordance with the color-coding of Figure 12. The white-hatched area is the region not reachable
by sharp, projective, joint measurements M of the two non-commuting observables A, B. The
green boundary of the uncertainty region Equation (19) is saturated for this particular case, while
the Maassen–Uffink like relation N(M, A) + D(M, B) = 1, given by the black line, displays an
underestimation of the obtainable noise–disturbance values.
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Figure 12. Entropic noise N(M, A) in blue and uncorrected/optimally corrected disturbance DE (M, B)
in green/red as a function of the angle θ of the measurement operator. The noise for observable A = σz

at θ = 0 is minimal, while the eigenstates of |±b〉 are maximally disturbed at this angle. Rotating
the polar angle closer to the observable B = σy reduces the disturbance at the expanse of increasing
the noise. After the first apparatus an additional rotation of the output state |m〉 onto the closest
eigenvector of B reduces the loss of correlation in parts and reduces the disturbance furthermore. At
θ = π/2 the measurement apparatus makes a perfect measurement of B inducing no disturbance,
being however maximally noisy with respect to a measurement of |±a〉.



Appl. Sci. 2020, 10, 1087 16 of 19

N
+

D
=

1

g(N) 2
+

g(D) 2
=

1

g(N) 2
+

g(D) 2
<

1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Noise N[ ,A]

D
is

tu
rb

an
ce

D
[

,B
]

𝓜

𝓜

Figure 13. Noise disturbance uncertainty relation for projective measurements for the uncorrected case
in red and the corrected set-up in green. The data points are either on the green curve Equation (19) or
above. It is apparent that the generally predicted Equation (12), given by the black dashed line, is not
saturated for qubits except for the case where either noise or disturbance is maximal.

However, the inequality Equation (19) is to be treated with caution, as it is indeed possible to
violate it when loosening some of the restrictions made in the presented measurements. Indeed,
Abbott et al. [32] have proven that for POVMs the noise–disturbance uncertainty relation for
two-dimensional quantum systems can be further improved and g(N(M, σi))

2 + g(D(M, σj))
2 > 1

is possible. A generally tight, entropic noise–disturbance uncertainty relation for arbitrary pairs of
non-commuting observables in two dimensions has however not been found or tested so far.

5. Conclusions

We have shown that uncertainty relations can be described very well by means of Shannon
entropies and are well tested in neutron optics. The impossibility of the simultaneous distribution
concentration in measurements of non-commuting observables is expressed by the trade-offs of
information-theoretical noise and disturbance. After the theoretical basics were briefly explained in
Section 2, we presented the experiments and the corresponding results in Sections 3 and 4. In the
simpler case of noise–noise uncertainty, POVMs are used to get the lowest boundary. Physically, this
was realized by putting together a stochastic filter and a spin-dependent measurement. It is shown
that, depending on the angle between the Bloch vectors, the region of accessible values can be obtained
by projective measurements depicted in Figure 9d,e or by the formation of the convex hull as shown in
Figure 9a–c, which corresponds to the statistical mixture of the projectors. In the more complex case
of the noise–disturbance relation, the study was limited to dichotomic, projective measurements for
MUB states. An essential difference in the case of successive measurements is that the quantum state is
affected by the first measuring device, so that corresponding corrections are possible afterwards. The
effects of error correction are clearly shown in the Figures 12 and 13. In this regard, the investigation
of the noise–disturbance relation for non-projective measurements will remain as an important task
in the future, especially because it has been shown that it is possible to find pairs of measurement
operators that are further below the green curve in Figure 13.

The presented experiments show an extract from a large catalog of entropic uncertainty relations.
In information theory, many similar definitions of information gain or loss are known to exist,
e.g., the Rényi entropy [38,39], Tsallis entropy [40,41], the Kullback–Leibler divergence [42] and
many more. A good entropic measure for uncertainty relations must satisfy many requirements, in
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particular, it should allow a saturable generalization to uncertainty relations in higher dimensions,
for three and more observables, mixed and entangled states, systems with memory, projective and
non-projective measurements. In addition, information entropies are also applied in related topics
such as complementarity [43], non-locality [44,45] and quantum correlations [46,47] in general. We
think that neutron optics can make a big contribution to the testing and development of these various
concepts.
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