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Featured Application: A novel data-driven methodology with multiple ranking and classification
techniques combined and compared is proposed for proactively detecting the fraud of cargo loss
risk. Various binary classifiers are compared to derive the suitable predictive model. Bayesian
network performs best overall and visually shows the dependencies between fraud features.

Abstract: The fraud detection of cargo theft has been a serious issue in ports for a long time.
Traditional research in detecting theft risk is expert- and survey-based, which is not optimal for
proactive prediction. As we move into a pervasive and ubiquitous paradigm, the implications of
external environment and system behavior are continuously captured as multi-source data. Therefore,
we propose a novel data-driven approach for formulating predictive models for detecting bulk
cargo theft in ports. More specifically, we apply various feature-ranking methods and classification
algorithms for selecting an effective feature set of relevant risk elements. Then, implicit Bayesian
networks are derived with the features to graphically present the relationship with the risk elements
of fraud. Thus, various binary classifiers are compared to derive a suitable predictive model,
and Bayesian network performs best overall. The resulting Bayesian networks are then comparatively
analyzed based on the outcomes of model validation and testing, as well as essential domain
knowledge. The experimental results show that predictive models are effective, with both accuracy
and recall values greater than 0.8. These predictive models are not only useful for understanding
the dependency between relevant risk elements, but also for supporting the strategy optimization of
risk management.

Keywords: fraud detection; predictive modeling; bulk cargo theft; Bayesian network; port

1. Introduction

The operation in port is closely connected with other organizations, and organizational boundaries
are frequently crossed, which leads to a complicated operation environment. Cargo theft is referred
to as a silent crime, as it accounts for huge losses that frequently go unreported, and can even occur
without the owner being aware until weeks or longer after the theft occurred [1]. In terms of bulk
cargo, the situation can be worse since their cargo yards are normally huge and exposed without
uniform packaging such as the coal yard. Even though more bulk cargo is illegally delivered, port
and cargo owners rarely notice the cargo theft immediately. Most cases are detected in cases where
there is not enough cargo to pick up for the final delivery. Some other cases are detected by prevention
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countermeasures of ports such as sampling inspection in terminals, or informer’s accusations, such as
witness drivers.

According to the China Police Daily, Chinese Public Security Traffic Management Authorities has
cracked more than 4000 criminal cases of port logistics from 2013 to 2017, saving hundreds of millions
Chinese Yuan [2]. This paper aims to detect the fraud risk of bulk cargo theft during truck delivery in
port. More specifically, this means that drivers deliver more bulk cargo during transportation than
the amount in the bill of lading, e.g., by cheating or other illegal means. Up until now, the most
common and effective means against fraud was through sampling inspection during the operation of
truck delivery, which is pristine, reactive, and at enormous expense. According to interviews with
Guangzhou Port Group and Guangzhou Port Security Bureau, delivery trucks mostly execute cargo
theft by reforming or retrofitting trucks to carry heavy filler such as liquid tanks, cement, stones or
scrap when entering the terminal and weighing empty trucks. Then the reformed trucks furtively
unload these fillers in the terminal and ‘steal’ bulk cargo due to the weight deviation of the empty
trucks. Moreover, some common characteristics seem to exist among frauds, such as operational
timing, weather, and locale of truck license. However, bulk cargo theft is difficult to detect manually,
since (a) port terminals are vast, busy and dynamic; (b) various elements contribute to operational
uncertainty, such as cargo type, truck information, and external environment; (c) automatic implements
reduce manual intervention, such as the entry allowance using RFID; and (d) different organizations
are involved in truck delivery, including the cargo owner, the port company, the delivery company, etc.

As IT technologies including IoT are accommodated in port operations, massive data is captured
with implications for the external environment and system behavior [3]. The added value can be
obtained by applying data analytics coupled to IoT, which is the cornerstone technology for proactively
detecting bulk cargo theft. Research has also demonstrated that the amount of data produced and
communicated in the logistics and supply chain is significantly increasing, thereby creating challenges
for organizations that would like to reap the benefits of analyzing real operational data [4,5]. Hence,
a data-driven approach based on Bayesian network is proposed for predicting fraud risk as well as
analyzing risk elements to support better-informed management. The constructed model can be
utilized to help cargo interests and security bureau to understand the inter-relations between the
risk components of bulk cargo theft in port, further supporting early fraud detection and managerial
strategy optimization. A real-world case study for a Chinese bulk port is presented to further evaluate
the proposed data-driven method.

Thus, the contribution of this paper is fourfold:

e  We propose a novel data-driven methodology for proactively detecting bulk cargo theft in port
based on inspection records and operational data. The methodology combines and compares
various ranking and classification techniques for fraud feature selection since algorithms may
significantly differ on different datasets. Then various binary classifiers are compared to derive
the suited predictive model for the theft fraud.

e  We tackle the serious business issue by early detecting and deeply understanding the theft fraud
of bulk cargo delivery in port. Bayesian networks perform best overall for effectively predicting
the fraud, which can also visually show the dependencies between fraud features for optimizing
the management strategy.

e  The proposed methodology is better than traditional methods at detecting cargo theft for less
reliance on expert expertise and survey-based knowledge and with visualization for adaptation.

e A case-based evaluation in real world that shows the successful application of the proposed
methodology in a bulk port.

The remainder of this paper is organized as follows. Section 2 gives an overview of the existing
research on port risk management. Section 3 proposes the data-driven methodology and Section 4
presents the empirical study on a port in China. Section 5 provides discussions in terms of the
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methodology application and experimental results. Finally, Section 6 concludes the paper and sets
future perspectives.

2. Related Work on Port Risk Management

Strategic collaborations in logistics networks, of which ports are a significant node, reduce risks
for all organizations in the network [6]. In ports, high-quality risk management is absolutely necessary
for their sustainable development [7]. The present focus of risk management in ports are rather
high level, mostly on development, management, organization and commercial issues of ports and
terminals. Nevertheless, a few studies have tried to solve risk problems in practical operation of
cargo delivery. In terms of the risk analysis process, both qualitative and quantitative techniques
can be used. Nowadays a variety of techniques of risk analysis have been developed in industrial
settings, normally in response to practical business problems. These techniques, such as physical
inspections, flow charts, safety review, checklist analysis, relative ranking, cause-consequence analysis,
‘what-if” analysis, failure modes, and so forth, all excessively depend on expert knowledge and manual
preprocessing. As a result, in complex operational environments, experts may not be able to be fully
aware of all situations, which may have negative influence on the result of risk detection and analysis.

The widespread use of digital technologies has led to the intelligent port operation paradigm,
the amount of data collected during operational processes is growing at a rapid pace. Data-driven
risk management is emerging to provide companies with better means to obtain early warning from
an increasingly massive amount of data and gain a powerful competitive advantage, especially in the
operational context [8,9]. More specifically, data from surveys, interviews and expert classification
plays a significant role in extant research on port risk analysis. For instance, Ref. [10] qualitatively
assessed the potential risks for ports using data from interviews with the administrations of a container
terminal in an empirical study. Furthermore, Ref. [11] identified 19 port-centric disruptive events
based on the literature and used data from surveys to generate risk metrics for analyzing port-centric
supply chain disruption threats. In [7], fault tree analysis and event tree analysis were used to assess
the risk factors associated with sea ports and offshore terminals operations and management based on
experts’ judgement.

Regarding current research on cargo theft, most studies focus on the problem of theft prevention
by introducing software systems, hardware facilities or a set of managerial measures. For instance,
some algorithms for specific business settings and monitoring methods such as text messaging have
been proposed as patents. A cargo theft information processing system is introduced in [12]. Moreover,
the development of fast-working, nonintrusive X-ray and detection devices has been suggested to
help ensure cargo. In addition to academic papers, there are also some regulations aiming at theft
prevention, for instance the Freight Security Requirement and the Trucking Security Requirement
issued by Technology Assets Protection Association. However, many fail to realize that the programs
designed are not effective enough for preventing theft. To our knowledge, there are no data-driven
methods to cope with cargo theft risk analytics in the real-world operational scenario in general and
bulk cargo port in particular.

This paper aims at proposing a data-driven method in order to apply it to a real-world bulk cargo
port in the south of China to analyze the relations between risk components of cargo theft and early
detection of theft risk. These predictive models are not only useful for understanding the dependency
between relevant elements of fraud risk, but also for supporting the strategy optimization of preventing
bulk cargo theft.

3. Methods

3.1. Bayesian Network

Bayesian networks are acyclic directed graphs that represent the conditional dependencies between
a set of variables [13]. Bayesian networks are also considered to be a graphical inference technique



Appl. Sci. 2020, 10, 1056 40f22

used to express the causal relationship among the variables. Bayesian networks are able to perform
both predictive analysis and diagnostic analysis [14]. Hence, they are widely used in modeling of
complex systems and risk analysis of a wide variety of accidents based on probabilistic and uncertain
knowledge thanks to its flexible structure and reasoning engine.

Many authors have investigated different techniques based on Bayesian network to analyze risks
in logistics or port scenarios, but there is a lack of analyzing the risk of cargo theft using real operational
data. For instance, an expert system for maritime safety management based on Bayesian network
was introduced in [15]. The study [16] provides a Bayesian network-based solution to the problem of
offshore piracy ranging from the detection of a potential threat to the implementation of a response.
A method to generate a Bayesian network from a process model is proposed in [17] to analyze the
lateness risk of container handling. [18] presents a Bayesian network-based model to predict accident
consequences in the Tianjin port.

Clearly, Bayesian networks have been used extensively for port risk analysis where the model
parameters are based on expert elicitation and learning from historical data. It is a powerful technique
for analyzing relations between risk components, visualizing specific risk structures and reasoning
risk potential as well. As a result, Bayesian networks are used in this paper for the risk analysis of
bulk cargo theft based on real theft records from a port security bureau and operational data from
a bulk cargo port. The constructed model can be utilized to help cargo interests and security bureau
to understand the inter-relations between risk components of bulk cargo theft in ports and further
support the risk early detection and risk control strategy optimization.

3.2. Methodology

In this study, we consider cargo theft detection to be a two-class prediction problem. As
a supervised learning problem, the performance of a classifier relies on how effectively it can learn
from the training set. Another aspect is the proper adjustment of the learning process. Our proposed
methodology, shown in Figure 1, consists of three main parts: (a) feature selection; (b) Bayesian network
learning; and, (c) model validation, testing and comparative analysis.

3.2.1. Step A. Exploring Event Logs

The historical records of bulk cargo theft are in the form of unstructured data, such as text, which
were created during the investigation of previous frauds. Hence, word segmentation techniques are
needed to extract meaningful features as structured data, such as license plate numbers, timestamps
and others.

3.2.2. Step B. Extracting Related Attributes of the Fraud

Related operational logs in the logistics information system need to be extracted in terms of license
plate numbers and timestamps, which provide complementary features of the fraud. All irrelevant
features need to be further filtered out from the extracted operational logs. As a result, the initial
dataset involving all relevant features is obtained.

3.2.3. Step C. Preprocessing Multi-Sources Data

After data exploration and data collection, we need to preprocess the initial dataset, which mainly
consists of two tasks: data balancing and data discretization.

From a model-refinement perspective, the fraud fact of bulk cargo theft is the focus of prediction
but has a much smaller sample size than normal operations. Synthetic Minority Oversampling
TEchnique (SMOTE) [19] method is used as the imbalanced classification technique to improve the
model sensitivity on the minority class. On the other hand, we keep binary variables and categorical
variables in the dataset, but use an entropy-based technique: the Minimum Description Length
Principle (MDLP) [20] to discretize continuous variables. More specifically, bulk cargo theft risk is set
as the target variable for the supervised data discretization.
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Figure 1. The methodology of the proposed method for constructing the predictive model of fraud

detection on bulk cargo theft in port. (For a detailed explanation, see previously in Section 3.2.).

3.2.4. Step D. Selecting Key Attributes of the Fraud

After data preprocessing, feature selection is the next step to reduce the dimensionality of the
feature space by removing redundant, irrelevant, or noisy data. A Bayesian network that is constructed
directly from data involving all attributes can be rather complicated and thus lack readability because
too much unimportant data is involved. Feature selection is therefore crucial to obtain the most effective
feature set for the model construction. It supports a faster learning process, improves the data quality
and thereby the performance of prediction, as well as increasing the comprehensibility of the analytical
results [21-23]. Research [24] also shows that there is no best ranking index for different datasets, since
the function of the number of features used may significantly differ. The only way to be sure that
the highest accuracy is obtained in practical problems is testing a given classifier on several feature
subsets, obtained from different ranking indices. Hence, we use feature ranking methods and feature
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selection methods with two basic steps of subset generation and subset evaluation for the ranking of
each feature in every sub-dataset. Ranking methods with different classification algorithms might give
different results for the classification accuracy. Comparative analysis is then performed based on the
result of cross-validation. Finally, we choose the most effective composition of ranking method and
classification technique to select and ensure a subset of features giving the highest effectiveness.

3.2.5. Step E. Learning Bayesian Networks

Learning Bayesian networks includes two major tasks: learning the graphical structure, and learning
the parameters for that structure. We designed comparative experiments for the structure learning by
utilizing combinations of four score functions and heuristic structure search algorithms including Hill
Climbing and Tabu Search. More specifically, score functions include Akaike information criterion (Aic),
Bayesian information criterion (Bic), Bayesian Dirichlet equivalent score (BDe) and k2 algorithm. In
addition, the goal of parameter learning is to obtain the optimal parameter values for a given structure
with a given corpus of complete data. Thus, we could simply use the empirical conditional frequencies
from the data. As parameter learning is straightforward, we will mainly focus on learning the Bayesian
network structure.

3.2.6. Step F. Model Validation

Then, k-fold cross-validation is used to evaluate the performance of classifiers. The classification
error is chosen as the loss function to estimate how accurately the model will perform in practice,
in order to limit problems like overfitting and give insights on how the model will generalize to
an independent dataset.

3.2.7. Step G. Model Testing and Comparative Analysis

All optimal models of different combinations with score functions and heuristic structure search
algorithms need to be tested by applying them to the separate test dataset. The output is a confusion
matrix, which can be used for analyzing the accuracy, the sensitivity and the specificity in order to
choose the optimum predictive model for detecting bulk cargo theft.

4. Empirical Study

In this section, we apply the proposed methodology to a real-word dataset which were extracted
from the sampling inspection of Port Security Bureau and the logistics information system of Port
Company. We present the empirical study, which consists of the feature selection, the structure learning,
the parameter learning, stratified cross-validation and model testing. Because of the limited space,
we use the abbreviations HC for Hill Climbing; HC.Aic for the combination of Hill Climbing and Aic
and TABU.Aic for Tabu Search combined with Aic. For convenience, all combinations adhere to this
naming format.

4.1. Data Description and Preprocessing

The data used in this study originates from Guangzhou Port Group and Guangzhou Port Security
Bureau in China. It consists of inspection records of delivery trucks from September 2013 until May
2014. In total, 5320 records are used, of which 4898 are reports of normal deliveries and 422 are records
of delivery with theft, which we also refer to as fraud delivery. Table 1 presents two examples of fraud
delivery reports from sampling inspection.

First, we apply text segmentation to obtain features with structured storage using Rapidminer
tool. Instead of using text storage with meaningless redundancy and difficult implementation, we
segment these inspection records as structured features including data about the driver, truck, delivery
cargo, operational time, fraud cargo and theft mode, and then store it in respective fields of databases.
Then we further extract related operational records from the logistics information system in terms of
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license plate numbers and timestamps. Based on these data, the domain experts of the practitioner and
the police help us to identify 38 relevant elements of fraud risk as the initial feature set (Table 2).

Table 1. Examples of fraud delivery records from sampling inspection.

ID Event Description
On the night of 14 March 2014, driver Zhou drove the truck with plate number XiangX.
He stole 3.88 tons of brown coal (Indonesia coal, Lower Heating Value: 4400 Kcal/Kg)
1 from terminal A of Guangzhou Port by reforming or retrofitting the water tank of the
truck. The truck came into the terminal A with water in the tank and released the water
before loading. Then he secretly transported the stolen cargo, identified to have a value
of 455 yuan per ton and 1765.4 yuan in total, to the factory B in DongGuan.
On the night of 11 April 2014, driver Cao drove the truck with plate number YueY, and
stole 3.89 tons of coal (Indonesian Steam Coal, Lower Heating Value: 4651 Kcal/Kg)
’ from terminal C of Guangzhou Port by reforming the car hopper of the truck. The truck
came into the terminal C with objects in the car hopper and that were released before
loading. Then he secretly transported this cargo from the theft, identified to have
a value of 518 yuan per ton and 2011.3 yuan in total, to the factory D in DongGuan.
Table 2. Relevant elements of fraud risk on bulk cargo theft in port.
ID Category Features Explanation
1 Age continuous variable
2 Truck Education Background 1: High School and Above, 0: others
3 Driver Credit in Port 0: Low, 1: Medium, 2: High
4 Region 0: Native, 1: Nonnative
0-3: top 4 of largest amount of cargo processed in
5 Cargo Type port, 4: others
6 Bulk Cargo Trade Type 0: domest.ic trade, 1: foreign trade
7 Import or Export 0: import, 1: export
8 Customs Supervision 0: unsupervised, 1: supervised
9 Cargo Price continuous variable
10 Truck Manufacturer 0-3: top 4 of largest number of trucks in port,
4: others
11 Year of Manufacture continuous variable
12 Deli Registration Region 0: province inside, 1: others
13 _F lvekry Truck Category 0-3: top 4 of most common truck registered, 4: others
14 ruc Reformed or Not 0: reformed, 1: unreformed
15 Ownership 0: individual, 1: company
16 Times of Filing 1: three times and above, 0: others
17 Blacklist 1: ever, 0: never
18 Cargo Yard Category 0: outdoor yard, 1: warehouse, 2: others
19 Storage Specialized Yard 0: non-specialized, 1: specialized
20 Yard Cargo Volume continuous variable
21 Consignor Level 0-3: classified based on the volume of business
22 Consignor Contract Category 0: for a single vessel, 1: long-term, 2: others
23 Means of Payments 0: after operation complet'lon, 1: monthly payment, 2:
payment in advance
24 Arrival time 0: 6:00-13:59, 1: 14:00-21:59, 2: others
25 Leave time 0: 6:00-13:59, 1: 14:00-21:59, 2: others
26 Operation Period 0: 2 hours and less, 1: 4 hours and above, 2: others
27 Operah'on .Perlod continuous variable
Deviation
28 Operational Operation Period AFluctuation continuous variable
: Cargo Weight . .
29 Delivery L continuous variable
Deviation
30 Cargo Weight Fluctuation continuous variable
31 Weighbridge of Empty Cargo Truck serial number of weighbridges
32 Weighbridge of Heavy Cargo Truck serial number of weighbridges
33 Arrival Date 0: work day, 1: holiday
34 Shift Category 0: three shifts, 1: two shifts
35 Number of Workers continuous variable, number of workers in operation
36 Number of Machinerics continuous Var@ble, nurr'lber of machineries
in operation
37 Oth Weather 0: rain, 1: no rain
38 ers Busy Degree continuous variable, operational amount per hour
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After data preprocessing, which includes data cleaning, data balancing using SMOTE method
and data discretization using MDLP method, we were left with 9796 records in structure storage with
38 features in addition to the response feature, i.e., normal of risk delivery.

4.2. Feature Selection

Diverse feature ranking and feature selection techniques have been proposed in the machine
learning literature [25]. The purpose of these techniques is to discard irrelevant or redundant features
from a given feature vector. Research also shows that there is no best ranking index for different
datasets and different classifiers accuracy curves, as the function of the number of features used may
significantly differ [24]. In this case, we use different methods to rank the features. Then feature subsets
are generated based on the results of the feature ranking method. These feature subsets are further
evaluated by using various classification algorithms. Finally, we obtain the selected feature subset
which has the optimal performance for classification.

4.2.1. Exploring Event Logs: Feature Subset Generation Based on Ranking Method

We examine the practical usefulness of following commonly used methods including CFS
(Correlation-based Feature Selection), IG (Information Gain), GR (Gain Ratio), Chi (Chi-squared) and
OneR to rank the features, in other words, features in the initial feature set and output different ranking
results. These feature ranking methods are statistical and entropy-based [26], with good performance
in various domains [27]. In Table 3, a lower number means a more relevant feature for cargo theft fraud.

Table 3. Feature ranking results.

Feature CFS 1G GR Chi OneR
1—Age 8 7 9 8 10
2—Education Background 34 34 34 34 34
3—Credit in Port 14 16 15 15 12
4—Region 32 33 31 27 29
5—Cargo Type 18 17 16 16 19
6—Trade Type 30 29 28 33 3
7—Import or Export 38 38 38 38 35
8—Customs Supervision 7 5 7 5 9
9—Cargo Price 33 32 33 32 28
10—Truck Manufacturer 19 19 21 21 20
11—Year of Manufacture 9 10 10 11 13
12—Registration Region 27 31 32 30 33
13—Truck Category 12 13 13 14 14
14—Reformed or Not 1 3 3 3 5
15—Ownership 26 28 29 29 31
16—Time of Filing 15 18 17 18 18
17—Blacklist 11 12 11 9 8
18—Yard Category 6 6 6 7 4
19—Specialized Yard 21 25 24 25 24
20—Cargo Volume 29 26 25 24 27
21—Consignor Level 13 11 12 13 17
22—Contract Category 20 22 19 19 26
23—Means of Payment 5 8 4 4 6
24—Arrival Time 2 2 2 6 1
25—Leave Time 22 20 20 22 21
26—Operation Period 4 4 5 2 7
27—Operation Period Deviation 37 36 36 36 36
28—Operation Period Fluctuation 28 30 26 28 30
29—Cargo Weight Deviation 3 1 1 1 2
30—Cargo Weight Fluctuation 31 27 30 31 32
31—Weighbridge of Empty Cargo Truck 35 35 35 35 36
32—Weighbridge of Heavy Cargo Truck 36 37 37 37 38
33—Arrival Date 24 24 22 20 22
34—Shift Category 25 23 27 26 23
35—Number of Workers 17 15 18 17 16
36—Number of Machines 23 21 23 23 25
37—Weather 10 9 8 10 15

38—Degree of Busyness 16 14 14 12 11
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Based on the feature rankings in Table 3, we find that:

e Different ranking results are obtained by using various feature ranking methods. Some of these
outcomes are similar, especially using IG, GR and Chi.

e  The features ‘Cargo Weight Deviation’, ‘Reformed or Not’, and “Arrival Time” always rank the
highest independent of the method used. This means that these three features are closely relevant
to the theft risk of bulk cargo.

e  The features ‘Education Background’, “Weighbridge of Empty Cargo Truck’, “Weighbridge of
Heavy Cargo Truck’ and ‘Operation Period Deviation” always rank the lowest. This means that
these four features are the most irrelevant features to the theft risk of bulk cargo.

Finally, feature subsets can be generated based on the how relevant the feature is to the theft
risk of bulk cargo. We have 38 features in the initial feature set, so 38 feature subsets are generated
according to the feature ranking result of each ranking method and the top i relevant features constitute
multiple subsets, respectively (Figure 2). For instance, the feature ranking results based on the GR
method are shown in bold and italic in Table 3 and 38 feature subsets are generated including S1 =
{R29}, S2 = {R29, R24}, S3 = {R29, R24, R14}, 54 = {R29, R24, R14, R23}, ..., S38 = {R1, R2, ..., R38}.
Hence, evaluating and selecting the most effective subset of features for classification is the next task.

Ranking Method
(e.9.. GR)

F29 R1 S1={R1}
F24 R2 S2= {R1+R2}
Fl4 R3 N S3= {R1+R2+R3}
F23 R4 M} S4={R1+R2+R3+R4}

Fx Ri Si= {R1+R2+R3...+Ri}

Feature Ranking Feature Subsets

F7 R38 S38={R1+R2+...+R38}

Figure 2. The method of feature subsets generation.

4.2.2. Feature Subset Evaluation Based on Classification Algorithms

A wide range of classification algorithms is available for validating feature subsets, each with
its strengths and weaknesses [28]. We use OneR, Decision Tree (DT), Random Forest (RF), Naive
Bayesian (NB) and Bayesian Network (BN) as classifiers to evaluate the subsets, which are widely
used and perform well in various domains, for instance in [29]. More specifically, OneR is one of the
simplest algorithms for use as a classifier, and its classification result can be used as a benchmark for
others. Additionally, DT is simple to interpret and RF is an evolved version that performs better with
large amounts of data in a short time. An advantage of the NB classifier is that it requires a small
training dataset to estimate the statistical parameters necessary for classification, and BN is an evolved
version for dealing with uncertainty and reasoning. Classification accuracy is estimated using ten-fold
cross-validation. In this practical problem, we test a given classifier on several feature subsets, obtained
from different ranking indices, using classic evaluation indices based on the determined operations of
classification confusion matrix [30].

Specifically, we use accuracy, precision and recall to measure the effectiveness of classification
results. In particular, recall is the key evaluation index because it measures what percentage of all
frauds are correctly predicted. Moreover, variance is used for evaluating the reliability of classification
results. We process 100 rounds of ten-fold cross-validation in total. In each round, a given classifier is
applied to a feature set of one of the ranking methods (5x38%5 times cross-validation in one round).

We decide the final feature set must fulfill the following three criteria: (a) the accuracy must
be above 70%; (b) the precision and recall must be above the zeroR baseline (0.5); (c) the variance
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of the accuracy, precision and recall must be between —20% and 20%. In addition, in every round,
one combination of classifier, selected feature set and ranking method must have the most effective
performance in terms of the recall. More specifically, as the number of selected features increases in
a given composition of classifier and ranking method, the recall of the classification increases until
it reaches a peak and then slightly decreases again. The classification results using the GR ranking
method are presented in Figure 3 as an example.

Ranking Method — GR
0.7 -
5 .
n
" + : . L - ]
-
+ - T .
. & A -
[ ] a 1 A Al A
" -
x * +
0.70 +
¥ u -~ 1
A
. - legend
2 5 . + OneR
< . . + (5.0
o = Random Forest
o +~Naive Bayes
. = Bayesian Network
0.65- J i
+
L]
0.60-
11 13 15 17 19 21 23 25 27 29 31
The Number of Selected Features

Figure 3. The classification results using the GR ranking method based on the Recall index.

Table 4 presents the compositional classification results of all round 10-fold cross-validation, which
shows that the quality of classification for this dataset is obviously influenced by the choice of ranking
indices. When 17 features are selected, most rounds obtain the best performance of cross-validation
with 61 of 100 rounds. Moreover, 47% rounds gain the best performance by using the combination
of GR and Bayesian network. Moreover, classification recall with GR ranking method is the highest
for Bayesian network, and also quite high for other classification algorithms, depicted in Figure 3.
Hence, we select these 17 features using the GR ranking method as the most effective feature set for
classification to construct the predictive model (features in bold and italic of Table 3).

Table 4. Compositional classification results of all rounds.

Rounds Number of Selected Features Ranking Method Classifier
35 17 GR Bayesian Network
21 19 OneR Random Forest
21 17 IG Naive Bayesian
12 15 GR Bayesian Network
6 16 GR Random Forest
5 17 CFS OneR

4.3. Initial Parameter Setting

4.3.1. Parameter Setting within the Structure Learning

Table 5 presents the specific parameter setting in the methodology applied in this empirical study.

e ‘Random restarts’ is a configurable number of perturbing operations and a proceeded initial
network structure, which can be used to avoid poor local maximization or optimization [31]. We
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utilize ‘random restarts’ by setting the parameters of ‘restart’ and ‘perturb’, respectively. More
specifically, ‘restart’ makes it possible to probe more area of the search space and increase the
chance of finding a structure that fits the data better. Meanwhile, we consider the limit of running
time and memory and set them as integers.

o  We set the parameter ‘mapx’ for continuously adjusting the maximum of father nodes in order to
analyze the relationship between the maximum of father nodes and the accuracy of predictive
models. This setting is used to prevent the learnt structure from becoming too complicated, so 7 is
set as the maximum. In Section 4.4.1, ‘mapx’ is determined as 5, with the lowest training error
and cross-validation error during the network structure learning (Figure 4).

e  We measure the strength of directed arcs, compare different network structures and further correct
the dependencies between nodes, which facilitates a more understandable network structure.

Table 5. Parameter setting in the methodology.

Step Parameter Value Explanation

restart 100 For avoiding local optimization

truct L i . . . .
Structure Learning Times of inserting, deleting and

perturb > inverting directed edges at restart
27 Gradually increasing the maximum
mapx number of father nodes
. Setting the theft risk of bulk cargo as
K-fold Stratified target Theft Risk the target node of this prediction
Cross-validation Every time processing the
k 10 cross-validation, the sample dataset
needs to be divided by k
runs 10 Run 10 times 10-fold cross-validation

Training error and cross validation error (HC.k2)

legend
* Training error
= Validation error

Error

a
a
Iy
a
.
.
.
.

as s s BREE

LR TR

b2-

4 5 6 7
Mapx

Figure 4. The training error and cross-validation error using the structure search algorithm with HC,
the score function with k2, the parameter learning algorithm with Bayesian posterior probability estimation.

4.3.2. 10-Fold Stratified Cross-Validation

On basis of our datasets and extant literatures, we set k as 10 in this study. In every sub-dataset,
the proportion of label data is almost the same as it in the original sample by using stratified
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cross-validation. We process 10 times 10-fold stratified cross-validation and calculate the average
accuracy, average sensitivity and average specificity.

4.4. Experimental Results

4.4.1. Structure Learning and Analysis

We first equally divide the whole dataset into three subsets, keeping the same proportion of
risk delivery in each subset as in the original dataset. Then, two subsets are used as the training set
for learning and validating the model. The last subset is used as the test set for testing the model
performance. Bayesian networks are able to graphically present the dependency between features
through its structure topology. However, it could be difficult to understand or explain in case of
overfitting, which means a very complicated network structure. Hence, in this study, we try to choose an
optimal value for the maximum number of father nodes while learning the network structure, in order
to insure that the structure learned is both explainable and effective. As the parameter ‘mapx’ increases,
errors of training and cross-validation decline sharply and the level of using combinations of structure
search algorithms, score functions and parameter learning algorithms as well. Moreover, in the case of
a maximum of five father nodes, errors are at their minimum independent of the combination. Thus,
we determine the maximum number of father nodes as five. Using the structure search algorithm with
HC, the score function with k2, the parameter learning algorithm with Bayesian posterior probability
estimation is presented in Figure 4 as an example. Eight Bayesian network structures were built using
the structure search algorithm with HC and TABU, as well as various score functions. More specifically,
two network structures learnt with HC.k2 and TABU k2 are presented as examples in Figures 5 and 6,
and others are included as Figures A1-A6 in Appendix A. These score-based learning algorithms
are general-purpose heuristic optimization algorithms that rank network structures with respect to
a goodness-of-fit score [31]. The network provides a very clear view of the relevant features of cargo
theft risk during the delivery process, as well as the relationship between the features. In the figures,
a directed arc between nodes indicates the dependency relationship between the two features. More
specifically, the thicker the arc is the stronger the dependency. Moreover, we measure arc strength in
the network structure according to the score gain/loss which would be caused by the arc’s removal,
while keeping the rest of the network structure fixed. In other words, it is the difference between the
score of the network with and without the arc. Negative values correspond to decreases in the network
score and positive values correspond to increases in the network score (the stronger the relationship is,
the more negative the difference). In addition, the arcs in red dotted lines highlight differences between
these network structures.

Even when applying the same structure search algorithms, the learnt Bayesian network structures
are different due to different score functions. Nevertheless, all network structures derived are rather
similar, also in terms of arc strength, especially when HC is applied. Moreover, meaningful insights are
graphically provided in these network structures, especially coupling these results from quantitative
information with qualitative knowledge offered by domain experts. The network structures need
to be further refined based on the domain knowledge and expert expertise, as well as adding
countermeasures. For instance, these network structures indicate that the fraud risk of bulk cargo
theft is directly dependent on the features ‘Cargo Weight Deviation’, ‘Reform or Not’, ‘Arrival Time’,
‘Means of Payment” and “Weather’. The departments of interest should therefore check information
on these features before delivery trucks leave the port. In particular, the feature ‘Cargo Weight
Deviation’ is closely related to the theft risk of bulk cargo. At this point, this insight conforms to
in-use practical tactics of recognizing abnormal cargo weight in delivery trucks for detecting the
cargo theft. Moreover, the dependency relationship between the features ‘Means of Payment’, ‘Cargo
type’, ‘Customs Supervision’ and ‘Arrival Time’ is slightly different in four network structures of
applying HC.
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In addition, the network structures that apply TABU indicate that there is a dependency relationship

between the features ‘Consignor Level” and “Year of Manufacture’ (highlighted by the yellow circle
in Figure 6). This relationship counters the domain knowledge, which should be removed to refine

these network structures.

Vehicle Category

Year of Manufacture

Reformed or Not Blacklist

Consignor Level

‘Times of Filing :
\ l / 2™
e,
= '
Credit in Port Customs Supervision| .
K
1

Arrival time

Operat\on Period

(Cargo Weight Deviation|
Cargo Theft Risk

Figure 5. The Bayesian network structure derived using combinations of heuristic structure search
algorithm with HC and score function with k2.

Age

Consignor Level Vehicle Category

Cargo Type

Weather ‘Busy Degree

\/

Operation Period

Year of Manufacture

\

‘Reformed or Nm‘ | Blacklist ‘ ‘T\mes of Filing

Means of Paymems‘

}Customs Supervwswon‘ ‘ Credit in Port ‘

~

Cargo Weight Deviation

Cargo Theft Risk

Figure 6. The Bayesian network structure derived using combinations of heuristic structure search
algorithm with TABU and score function with k2.
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4.4.2. Parameter Learning and Analysis

To learn from discrete data, Bnlearn provides two methods for parameter learning: Maximum
Likelihood estimation and Bayesian posterior probability estimation [31]. These two methods are
the most popular and effective methods for finding the ‘best fitting” model from a specific class of
models based on a particular dataset, but how they go about it is somewhat different. Maximum
Likelihood estimation views the parameters as quantities whose values are fixed but unknown,
and estimates parameter values by maximizing the likelihood (probability) of observing the actual
training examples. However, Bayesian posterior probability estimation views parameters as random
variables having some known prior distribution and transforms the parameters’ prior distribution
into posterior distribution by observing the actual training examples. Moreover, in Bayesian posterior
probability estimation, when considering new samples, the posterior density function gains sharper
performance, guaranteeing the accuracy of the nearby peak parameters.

In cases where the training dataset is very large, the results of the parameter learning are the
same using these two methods. However, in reality, and especially in our case, the training set is
rather small. Hence, we should consider the choice of these two methods from two perspectives
of computational complexity and computational veracity. On the one hand, Maximum Likelihood
estimation with differential calculus has lower computational complexity than Bayesian posterior
probability estimation with multiple integrals. On the other hand, Bayesian posterior probability
estimation normally exhibits better computational veracity than Maximum Likelihood estimation.

Since the training set is not big, Bayesian posterior probability estimation performs better in
this case. We present an example to analyze experimental results of the parameter learning. For
instance, Figure 7 shows the conditional probability distribution of the ‘Cargo Theft Risk’ node using
the structure learning algorithm with HC, the score function with k2, the parameter learning algorithm
with Bayesian posterior probability estimation and five as the maximum number of father nodes.

Conditional Probability Distribution

02 04 0.6 08
L L I

Risk Levels

T T T
0.2 04 06 08

T T T T
02 04 06 08
EEEEEEEEEEEEEEEEEEEEEEEEEEEEE"

Conditional Probability

Figure 7. The conditional probability distribution of ‘Cargo Theft Risk’ node using the combination of
structure learning algorithm with HC, the score function with k2, the parameter learning algorithm
with Bayesian posterior probability estimation and five as the maximum number of father nodes.
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The subfigure in the bottom right corner (highlight in the red and dotted rectangle) of Figure 7
indicates that the cargo theft risk is highest when ‘Cargo Weight Deviation” equals 2, ‘Means of
Payments’ equals 2, ‘Reformed or Not’ equals 1, “‘Arrival time” equals 2 and “Weather’ equals 1. In
other words, this means that when a reformed truck arrives at the port between 10 p.m. and 6 a.m. to
pick up a delivery of prepaid cargo and the cargo weight deviates greatly from the normal value, then
there is a significant fraud risk of bulk cargo theft.

4.4.3. Model Validation and Model Testing

Cross-validation is performed for model validation. Figures 8 and 9 respectively present the
predictive error of cross-validation using Bayesian posterior probability estimation and Maximum
Likelihood estimation.

Prediction Error

]

0.25 4

0.20

Values

0.15

BB iig

HC.Aic HC.Bic HC.BDe HCk2  TABU.Aic TABU.Bic TABU.BDe TABU.k2

Figure 8. The predictive error of cross-validation using Bayesian posterior probability estimation.

Prediction Error

0.25

o

.20 -

Values

leoes B30

HC.Aic HC.Bic HC.BDe HCk2 TABU.Aic TABU.Bic TABU.BDe TABUk2

Figure 9. The predictive error of cross-validation using Maximum Likelihood estimation.
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In the case of the structure learning algorithm with HC, the medians of the predictive errors with
Aic, Bic, BDe and k2 are similar, and the range is relatively small. Nevertheless, there is an outlier in
the predictive errors of HC.Aic, which indicates the volatility. Moreover, the predictive error of HC.k2
has the smallest range while also being most stable. In the case of the structure learning algorithm
with TABU, the ranges of predictive error are obviously larger than with HC. More specifically,
the TABU.BDe performs best when the structure learning algorithm is TABU.

By comparing the medians of the predictive errors, we see that Bayesian posterior probability
estimation performs better than Maximum Likelihood estimation as a whole. Moreover, HC performs
better than TABU, and the HC.k2 with Bayesian posterior probability estimation performs the best.

Then, Figure 10 presents the results of the model testing with various combinations of structure
learning algorithms and score functions. All models except for TABU.Aic have an accuracy above
80%, which indicates that the risk prediction model based on Bayesian network has high reliability
and accuracy. The predictive model of HC k2 has the highest accuracy and recall, and the predictive
model of HC.BDe has the highest specificity. Considering three indices of accuracy, recall, specificity,
the predictive models using HC performs better than models using TABU.

Model Test Results

A

0.85-

0.80- ¥

Legend
L * Recall
- - Specificity
A = Accuracy

Value

0.75-

0.70-

HC.Aic  HCBDe  HC.Bic HCk2 TABU.Aic TABU.BDe TABU.Bic TABU.k2
Model

Figure 10. The results of the model testing.
4.4.4. Comparison of Classification Methods

In the phase of feature selection, we compared the classification effectiveness of One R, C5.0,
Random Forests, Naive Bayesian and Bayesian network, and Bayesian network performed best in this
case. When applying a predictive model for detecting the cargo theft in practice, comprehensibility
and interpretability of the applied techniques is important, because it helps the port workers and the
port authority to identify risky deliveries faster since they know exactly which features to look for.
Therefore, we compare our proposed technique to the commonly known and widely used classification
technique, i.e., logistic regression which is known for being both intuitive and easily interpretable,
showing clear indication of how the features affect the prediction. As the dataset we used in this case is
imbalanced, i.e., that bulk cargo theft has a much smaller sample size than normal operations, the ROC
curve is utilized to illustrate the performance of the binary classification. Noticeably, Bayesian network
performed better than logistic regression. The results can be seen in Figure 11, which shows values at
the tangent point of ROC curve, indicating the higher sensitivity and specificity of Bayesian network.
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The AUC of Bayesian network, at 0.834, is higher than the AUC of logistic regression, with 0.771. This
result also indicates that Bayesian network performs better for this binary classification.

1.0
\

4 .
= ~

) 70.601 (0868, 0.762)
©*0.545(0.819, 0.720)

0.6
1

Sensitivity

0.4

1 — — - Bayesian network

0.2

{ Logistic regression

na

T T T T T T
1.0 0.8 06 04 0.2 0.0
Specificity
Figure 11. The comparison results of Bayesian network and logistic regression using ROC curve as the

performance measure.

5. Discussion

In this empirical study, we considered the risk prediction of bulk cargo theft as a binary classification
problem. In a real-world setting it is meaningful to focus on the fraction of risky instances that are
correctly predicted as being risky. Therefore, we emphasize that recall is important when evaluating
the effectiveness of our models. According to our results, the predictive model of bulk cargo theft risk
using HC, k2 and Bayesian posterior probability estimation performs best.

Traditional approaches of risk management are mainly based on expert knowledge or data from
interviews and surveys, which may lead to subjectivity and uncertainty. The approach we propose in
this paper uses Bayesian network to construct predictive models from historical data of inspection
records and operational data, which enables us to reduce the risk prediction deviation while also being
less dependent on expert knowledge. However, we do exploit the knowledge of experts in order to
refine the model learned from data and to add countermeasures.

The validation and testing results with indices of accuracy, recall, specificity all above 80% indicate
that the predictive models are capable of effectively predicting the theft risk of bulk cargo in port.
In particular, the optimal predictive model is selected using a comparative analysis considering
a real-world scenario. This predictive model can be utilized for organizations of interest to pre-control
the theft risk and narrow down the list of suspect trucks.

In addition, the predictive model based on Bayesian network provides a visually understandable
representation of the cargo theft risk, with the relations between relevant elements involved. This
makes it possible to translate and exploit the interdependencies and interrelationships among the
large number of variables. Rather than the ‘black box” characteristic of some classification methods,
Bayesian network provides better interpretability, which is essential for management optimization.
The network structure is intuitive for understanding the theft risk of bulk cargo, and is useful to help
decision makers optimize the strategy of risk management. For instance, this predictive model of bulk
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cargo theft is not only useful for the Port Public Security Bureau to optimize the sampling inspection
tactic, but also useful for the port company to optimize the leave-port check in this case. With the
support of the predictive model, the cost of time and people to identify and prevent the cargo theft risk
would be significantly reduced.

6. Conclusions and Future Perspectives

In this paper, we presented a novel data-driven approach to predict the theft risk of bulk cargo in
port. First, key features of theft risk were selected using combinations of feature ranking methods
and classification algorithms. Then Bayesian networks were constructed from the event data of bulk
cargo theft extracted from sampling inspection records of delivery trucks and the operational records
in logistics information systems of ports. Furthermore, we evaluated and comparatively analyzed
these predictive models derived using various structure learning algorithms and parameter learning
algorithms considering real-world scenarios. Finally, domain knowledge and expert expertise were
explored to refine the model and add countermeasures. Potential future work directions are: (a) Test
and validate the predictive model on multiple years of data. (b) Refine the predictive model via
expert interview and practical application. (c) Include additional features in the model to improve the
accuracy and the effectiveness, e.g., currently, we have not considered the communication of driver of
delivery trucks, while these theft risk actually spread through social contact among truck drivers.
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Figure A2. The Bayesian network structure derived using combinations of heuristic structure search
algorithm with HC and score function with Bic.
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Figure A3. The Bayesian network structure derived using combinations of heuristic structure search
algorithm with HC and score function with BDe.
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Figure A4. The Bayesian network structure derived using combinations of heuristic structure search
algorithm with TABU and score function with Aic.
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Figure A5. The Bayesian network structure derived using combinations of heuristic structure search
algorithm with TABU and score function with Bic.
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