
applied
sciences

Article

FirepanIF: High Performance Host-Side Flash Cache
Warm-Up Method in Cloud Computing

Hyunchan Park 1 , Munkyu Lee 2 and Cheol-Ho Hong 2,*
1 Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea;

hyunchan.park@jbnu.ac.kr
2 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea;

dse112@cau.ac.kr
* Correspondence: cheolhohong@cau.ac.kr

Received: 2 January 2020; Accepted: 30 January 2020; Published: 4 February 2020
����������
�������

Abstract: In cloud computing, a shared storage server, which provides a network-attached storage
device, is usually used for centralized data management. However, when multiple virtual machines
(VMs) concurrently access the storage server through the network, the performance of each VM
may decrease due to limited bandwidth. To address this issue, a flash-based storage device such
as a solid state drive (SSD) is often employed as a cache in the host server. This host-side flash
cache saves remote data, which are frequently accessed by the VM, locally in the cache. However,
frequent VM migration in the data center can weaken the effectiveness of a host-side flash cache as
the migrated VM needs to warm up its flash cache again on the destination machine. This study
proposes Cachemior, Firepan, and FirepanIF for rapid flash-cache migration in cloud computing.
Cachemior warms up the flash cache with a data preloading approach using the shared storage server
after VM migration. However, it does not achieve a satisfactory level of performance. Firepan and
FirepanIF use the source node’s flash cache as the data source for flash cache warm-up. They can
migrate the flash-cache more quickly than conventional methods as they can avoid storage and
network congestion on the shared storage server. Firepan incurs downtime of the VM during flash
cache migration for data consistency. FirepanIF minimizes the VM downtime with the invalidation
filter, which traces the I/O activity of the migrated VM during flash cache migration in order to
invalidate inconsistent cache blocks. We implement and evaluate the three flash cache migration
techniques in a realistic virtualized environment. FirepanIF demonstrates that it can improve the
performance of the I/O workload by up to 21.87% compared to conventional methods.

Keywords: cloud computing; flash cache migration; flash cache warm-up

1. Introduction

Over the past decade, cloud computing evolved due to stabilized infrastructure based on reliable
virtualization technologies. With this advanced infrastructure, cloud vendors provide their customers
with the following three types of services: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Service as a Service (SaaS). Cloud computing users can now use a centralized cloud platform with
powerful and limitless computation and storage resources in a reliable and flexible manner. In addition,
owing to open source cloud platforms such as OpenNebula [1] and OpenStack [2], any organization
can build a private cloud for its own purposes [3]. As a next step, cloud computing currently seeks to
enrich the variety of services and also provide a high quality of services (QoS) to its customers [4–6].
Optimizing cloud infrastructure with multi-objectives to improve customer satisfaction and resource
provisioning also has become an important research topic [7,8].

Appl. Sci. 2020, 10, 1014; doi:10.3390/app10031014 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9879-5531
https://orcid.org/0000-0003-4730-950X
http://www.mdpi.com/2076-3417/10/3/1014?type=check_update&version=1
http://dx.doi.org/10.3390/app10031014
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 1014 2 of 18

The introduction of cloud computing contributes to flexibility in the use of computation and
storage resources, but an overcrowded data center host would fail to provide a high QoS to its tenant.
A viable strategy to mitigate this issue is the adoption of virtual machine (VM) migration for load
balancing [9], which can move a VM from a congested host to non-crowded one. To reduce the
downtime of the VM during migration, a shared storage server, which provides a network-attached
storage device, is usually used [10]. Because the disk image file of the VM is located on the shared
storage server and accessible via the network, the image does not need to be copied during migration,
and only the content of the VM memory will be transferred.

To efficiently exploit the shared storage server, a flash-based storage device such as a solid state
drive (SSD) is often employed as a cache per host machine [11]. When multiple VMs concurrently
access the storage server through the network, the performance will decrease due to limited network
and shared storage bandwidth. A host-side flash cache addresses this situation by saving remote data,
which are frequently accessed by the VM, locally in the cache. The local cache architecture does not
only reduce data access time with a shortened data path, but also contributes to resolving network and
shared storage congestion.

However, the effectiveness of a host-side flash cache can be debilitated by frequent VM migration.
In addition to load balancing, VM migration is often performed in a cloud data center for other purposes
such as system maintenance and network optimization [12,13]. However, when a VM migration is
performed, the warm host cache on the source node will be invalidated, and the migrated VM requires
warming up its host-side cache again on the destination machine. This sudden deteriorated cache
locality definitely influences the I/O performance of the migrated VM. As the working set of the
workload increases, performance degradation due to the cold cache can last for a longer period [14].

This study proposes Cachemior, Firepan, and FirepanIF for our exploration of an ideal host-side
flash cache warm-up method for high performance VM migration. Cachemior (Cache migrator) was
introduced in our previous work to enable a hot start of the host-side flash cache [15]. During VM
migration, Cachemior sends a hot cache list, which contains the addresses of frequently accessed cache
blocks, to the destination node. A separate thread in the destination node then warms up the host-side
flash cache by accessing the shared storage server. However, Cachemior incurs storage and network
congestion on the shared storage server, which impacts the performance of the I/O workloads in
the migrated VM negatively. Both Firepan and FirepanIF improve the performance of Cachemior by
directly copying all the contents of the flash cache from the source to the destination node. However,
Firepan does not allow the migrated VM to resume before the completion of flash cache migration due
to a synchronization reason. FirepanIF addresses this issue with an invalidation filter (IF), which traces
the I/O activity of the migrated VM during flash cache migration in order to invalidate inconsistent
cache blocks. We compare the performance of Cachemior, Firepan, and FirepanIF in Section 4.

The contributions of this paper are summarized as follows:

• We propose Firepan and FirepanIF that use the source node’s flash cache as the data source for
flash cache warm-up. They can migrate the flash-cache more quickly than conventional methods
as they can avoid storage and network congestion on the shared storage server.

• We develop FirepanIF that simultaneously achieves rapid flash-cache migration and minimizes
the VM downtime with the invalidation filter, which solves the synchronization problem between
the I/O operations generated by the destination VM and flash-cache migration.

• We implement and evaluate the three different flash cache migration techniques in a realistic
virtualized environment. FirepanIF demonstrates that it can improve the performance of the I/O
workload by up to 21.87% when the size of the flash cache is 20 GB. In addition, the experimental
results confirm that our new approach does not generate any negative effects on the neighbor VMs.

The remainder of this paper is structured as follows: In Section 2, we explain the background
of the SSD caching software and related work. In Section 3, we elaborate on the detailed design of

Appl. Sci. 2020, 10, 1014 3 of 18

Cachemior, Firepan, and FirepanIF. In Section 4, we show the performance evaluation results. Finally,
we present our conclusions in Section 5.

2. Background and Related Work

2.1. SSD Caching Software

Our proposed models are based on EnhanceIO [16] for Linux (github.com/stec-inc/EnhanceIO),
which is conventional SSD caching software. EnhanceIO is implemented as a loadable kernel module,
which can easily extend the Linux kernel for creating, configuring, and analyzing SSD-based cached
environments. Figure 1 shows a Linux system with EnhanceIO. EnhanceIO accelerates repeated I/O
requests by caching disk blocks in the host-side flash cache. The I/O requests from user applications
are sent to EnhanceIO in the kernel space, and EnhanceIO accesses the host-side SSD cache on a cache
hit or the shared storage on a miss. EnhanceIO also supports various cache replacement policies
including Least-Recently Used (LRU); First-In, First-Out (FIFO); and Random. We choose to use LRU
in this study because it generally performs better than FIFO or Random. EnhanceIO provides three
cache write policies: read-only, write-through, and write-back. The read-only method inserts new
cache items only when read requests are performed. If a write request is generated, the corresponding
block in the flash cache is invalidated, and the request is redirected to the shared storage server.
The write-through approach will write a data item simultaneously into both the cache and the storage
server upon a write request. The write-back method first writes a data item into the cache upon a
write request, and later the cached item will be moved to the storage server when the I/O system
becomes idle. This can speed up write requests. In this study, we select the read-only method because
write-through and write-back are not preferred in virtualized environments due to reliability issues,
as discussed in Section 4.

Host-kernel

Virtual Machine

Hardware

Flash cache
management system

Host-side flash cache

Shared storage system

File system and block IO

I/O
s

m
iss

hit

Block and page caches

I/O requests for physical storages

Figure 1. Linux System with EnhanceIO.

2.2. Related Work

Bonfire and Successor are representative examples for page cache warm-up when a VM is
migrated [17,18]. They focused on warming up the page cache in the physical memory rather than

github.com/stec-inc/EnhanceIO

Appl. Sci. 2020, 10, 1014 4 of 18

host-side flash caches, but the introduced mechanisms can also be applied to flash caches without
major changes. Bonfire demonstrated that the migrated VM suffers from its cold page cache and
proposes a rapid page cache warm-up technique with prefetching [17]. After VM migration, Bonfire
transfers the list of cache entries from the source to the destination host. Then, Bonfire starts to warm
up the page cache by loading the entries on the list from the shared storage system. Successor proposes
an advanced prefetching technique that focuses on the start point of the page cache warm-up [18].
Successor performs page cache prefetching and VM migration in parallel so that the migrated VM can
obtain the benefit of its hottest cache earlier than in the case of Bonfire. However, the parallel execution
of VM migration and page cache warm-up leads to a cache inconsistency problem. When the migrated
VM modifies the data on the page cache, following which the cache warm-up thread tries to fetch the
data of the same address from the shared storage server, the latest data will be overwritten. To address
the problem, Successor tracks dirty pages on the destination host and does not prefetch these pages.

Compared to Bonfire and Successor, the main difference with FirepanIF lies in the data source.
Instead of using the shared storage, FirepanIF migrates all flash cache contents from the source to the
destination host. Cache migration generally issues many I/O requests for transferring large bulks
of data, and this consumes huge network bandwidth. As the network path between the source and
destination hosts is less crowded compared to the network path to the shared storage, FirepanIF is
expected to finish the warm-up process earlier than Bonfire and Successor. In our proposed models,
Cachemior also uses the shared storage as the data source and shows worse performance than FirepanIF.
FirepanIF also performs VM and cache migration in parallel, similar to Successor. FirepanIF uses the
invalidation filter to solve the cache inconsistency problem.

Mortar and FVP also provide a flash cache warm-up technique with cache pooling [19,20]. Instead
of transferring the data from the shared storage, upon a respective cache miss, cache pooling fetches
the corresponding data from the flash cache of the source host. This technique is also called remote
read or remote paging. The cache pooling system cannot warm up the cache on the destination host
faster, but it avoids congestion on the shared storage. The disadvantage of cache pooling is that the
flash cache on the source node cannot be freed and reallocated to another VM immediately. In addition,
the access latency can be slowed down according to the network status.

Several studies addressed related issues with flash-based host-side caches. First, studies on
FlashCache, Mercury, and vSphere flash read cache [21–23] demonstrated that the adoption of flash
caches in the data center is effective. Several studies about flash cache management in terms of space
management and cache policies were also conducted. S-Cave, vCacheShare, and CloudCache were
proposed for efficient and flexible use of flash devices [11,24,25]. Because flash-based storage devices
are expensive and present limited resources, the efficient allocation of flash cache space is the key
factor that differentiates performance among multiple VMs. In addition, CacheDedup introduced
an in-line deduplication technique to use the flash cache efficiently and reduce the number of cache
insertions in order to solve the lifetime issue of flash-based devices.

Cache write policies are also important for performance improvement of flash caches.
Byan et al. [22], Koller et al. [26], Holland et al. [27], and Qin et al. [28] analyzed several cache policies
for flash caches with various workloads. They pointed out that write caching is very effective for
providing predictable and high performance on flash caches. In addition, FVP proposed a fault-tolerant
write caching technique by replicating write requests to another host and providing a mechanism to
access the remote flash cache [20]. The flash cache migration techniques proposed in this study do not
depend on such space management techniques and write cache policies.

3. Design

In this section, we introduce the designs of Cachemior, Firepan, and FirepanIF, which are our
proposed models for efficient host-side flash cache warm-up for high performance VM migration.
The proposed models are based on EnhanceIO [16]. However, our design is not specific to EnhanceIO
and can be applied to other SSD caching frameworks such as dm-cache [29] as well.

Appl. Sci. 2020, 10, 1014 5 of 18

3.1. Cachemior

Our previous work devised Cachemior (Cache migrator) to enable a hot start of the host-side flash
cache [15]. As depicted in Figure 2, Cachemior consists of the following three components in each host
server: hot cache monitor, hot cache messenger, and cache warmer.

Source host

Hot cache list
Flash cache

mngt. system

extract

Virtual machine

Destination host

migration

migration

Shared storage system

access

Cache warmer

Cachemior

Flash cache
mngt. system

I/O
 re

qu
es

t

Migrated VM

preloading

Hot cache monitor Hot cache messenger

Figure 2. Components of Cachemior: Hot cache monitor, hot cache messenger, and cache warmer.

The hot cache monitor is implemented in the flash cache management system (i.e., EnhanceIO)
and analyzes the host-side flash cache in the host machine. It identifies which cache block is frequently
used or less recently used. It maintains a sorted list (i.e., the hot cache list in Figure 2) where frequently
accessed cache blocks are placed toward the head of the list. Each cache block is associated with the
logical block address of the shared storage server. As the list only includes the logical block addresses,
the list size is relatively small compared to the cache size. For example, when the size of the host-side
flash cache is 20 GB, the maximum size of the hot cache list is under 20 MB.

The hot cache messenger is in charge of transmission of the hot cache list between host servers.
The messenger in the source node sends the sorted list to the destination node when the migration
occurs, and the messenger in the destination node receives it. After receiving the list, the cache warmer
in the destination node reconstructs or warms up the host-side flash cache by accessing the shared
storage server in the background with a separate thread. As the cache warmer iterates the list from the
head, frequently accessed blocks are restored earlier in time than the less recently used ones. If a target
item in the list is already placed in the cache by the activity of the migrated VM, the corresponding
block does not need to be accessed again. We call this procedure as preloading because the data will be
loaded into the flash cache before they are accessed by the VM.

Limitations: After VM migration, Cachemior starts to warm up the host-side flash cache in the
destination node. The separate thread in the cache warmer continuously copies cache items from the
shared storage server using the hot cache list. However, simultaneously, the VM starts to access the
shared storage server for executing its I/O-intensive workloads, and this situation may cause storage
and network congestion on the shared storage server. As a result, the host-side flash cache would
warm up slowly, and the performance of the I/O workloads on the VM may also deteriorate.

3.2. Firepan

To mitigate the limitation of Cachemior, we develop Firepan, which migrates the hot cache items
in the flash cache management system of the source node to that of the destination node during VM
migration. The basic mechanism of Firepan is simple. As depicted in Figure 3, Firepan copies all the

Appl. Sci. 2020, 10, 1014 6 of 18

flash cache contents from the source’s flash cache management system to the destination node during
VM migration, which is similar to a memory migration method that copies all the memory pages from
the source to the destination node. The VM will be stopped until the flash cache migration procedure
is completed. When the VM migration is resumed, the VM can benefit from the same cache contents
copied by Firepan. This enables the VM to maintain high I/O performance because it will not cause
storage and network congestion on the shared storage server, as in the case of Cachemior.

Source host

Cached data

Flash cache
mngt. system

Virtual machine

Destination host

migration

flash cache migration

Shared storage system

access

Firepan
Flash cache

mngt. system

Migrated VM

access

Figure 3. Flash cache migration procedure by Firepan.

Limitations: Although the I/O workloads on the migrated VM can exhibit high performance after
the VM is resumed, Firepan does not allow the migrated VM to resume before the completion of flash
cache migration. If the VM resumes before cache migration, a consistency problem will arise. Let us
suppose that a cache block is not copied by Firepan yet, and the early resumed VM accesses the same
cache block for updating the data. A compulsory cache miss will be then generated, and a new cache
block will be inserted with new information. However, Firepan would overwrite the same cache block
at a later time with old information. Therefore, the VM should be stopped for consistency until the
cache migration is completed. As flash storage devices are becoming cheaper, the size of the flash
cache will expectedly increase. Then, the required time for copying cache items will also increase.
The lengthened VM suspension time by Firepan will eventually lead to a poor user experience.

3.3. FirepanIF

To overcome the limitation of Firepan, FirepanIF combines Firepan and with an IF. Compared
with Firepan, FirepanIF resumes the migrated VM after memory migration even if the flash cache
migration procedure is in progress. At this moment, the host-side flash cache is not given to the
migrated VM; the migrated VM directly accesses the shared storage before the flash cache is entirely
migrated by FirepanIF. The IF then traces all the I/O requests from the migrated VM and records only
write accesses to the shared storage server in the invalidation table. After all the cache blocks are
copied, the host-side flash cache is attached to the migrated VM.

From this point, the migrated VM is able to use the host-side flash cache. However, some cache
blocks in the host-side flash cache may remain inconsistent with the corresponding storage blocks
because the VM may have issued write requests to the storage blocks during flash cache migration.
FirepanIF can identify which blocks are inconsistent by looking up the invalidation table. Therefore,
when the VM issues an I/O request, the IF examines the invalidation table in order to know whether the
request will access an inconsistent block in the host cache, as depicted in Figure 4. As the invalidation
table is implemented as a hash table with separate chaining, the computational complexity of searching
the inconsistent block is O(logN), where N is several entries in the hash table. If the request is found in

Appl. Sci. 2020, 10, 1014 7 of 18

the invalidation table, the IF redirects the request to the shared storage server. Then, the corresponding
cache block will be invalidated by the filter so that a new cache entry can be inserted into the flash
cache. With this mechanism, FirepanIF solves the consistency problem incurred by Firepan.

Destination host

Migrated
cache data

Migrated VM

Invalidation table

ac
ce

ss
Invalidation Filter

valid access

invalid access (hit the list)

Figure 4. Invalidation procedure by FirepanIF.

Algorithms 1 and 2 describe the detailed behavior of the invalidation filter and the management
of the I/O requests during cache migration. dispatch_with_IF() is the main function that processes
the I/O requests in the flash cache management system. During cache migration, every request will be
served by the shared storage. If the request is a write request, the function inserts the physical address
of the data in a hash chain. After the migration is completed, every request will be inspected whether
it is in the hash table. If it is, the hash entry is removed, and the request is dispatched to either the flash
cache for writing or the shared storage for reading. This is the key behavior of invalidation filtering
to keep the integrity between old data in the migrated cache and updated data in the shared storage
during cache migration. The dispatch_to_ f lash_cache() and dispatch_to_shared_storage() functions
work as an ordinary cache management system. The function looks up its cache for a read request and
serves it on a cache hit or dispatches the request to the shared storage. The dispatch_to_shared_storage()
function sends the request to the shared storage while updating the flash cache entries.

FirepanIF can reduce the downtime of the VM during migration compared with Firepan. FirepanIF
resumes the VM while the cache items are copied from the source to the destination node. As the VM
suspension time becomes much shorter, the user can continue to perform the workloads inside the
VM. However, during cache migration, the VM will access the shared storage server instead of the
flash cache. This can decrease the performance of the I/O workload in the VM for a moment. Despite
this decline in performance, we reveal that FirepanIF significantly outperforms Firepan because the
I/O workloads can be executed during cache migration, as discussed in Section 4.

Appl. Sci. 2020, 10, 1014 8 of 18

Algorithm 1: Dispatch with invalidation filtering.
Input: An I/O request (req) with an operation mode (op), physical block address (pba),

and data to write or to be filled by read (data).
Output: The length of processed data. Zero on error.
Data: hash_size is the size of the hash table.;

IF_chains[hash_size] is an array of hash chains. Each chain has no entry at the start.;
IF_entries is several entries in the hash table. Initialized as 0;

Function dispatch_with_IF(req):
if the flash cache migration is not done then

if req.op = write then
chain← IF_chains[req.pba%hash_size];
entry← allocate a new entry at the end of the chain;
entry.pba← req.pba;
Increase IF_entries by one;

end
return dispatch_to_shared_storage(req);

end
else if IF_entries 6= 0 then

chain← IF_chains[req.pba%hash_size];
for every entry in the chain do

entry = next entry of the chain;
if req.pba = entry.pba then

free and remove the entry from the chain;
decrease IF_entries by one;
if req.op = read then

return dispatch_to_shared_storage(req);
end
else

return dispatch_to_ f lash_cache(req);
end

end
end
return dispatch_to_ f lash_cache(req);
else

return dispatch_to_ f lash_cache(req);
end

end

Appl. Sci. 2020, 10, 1014 9 of 18

Algorithm 2: Dispatch functions for the flash cache and the shared storage.

Function dispatch_to_ f lash_cache(req):
if req.op = read then

if req.pba is found in the flash cache then
data← the cache entry correspond to req.pba;
return the length of data

end
else

return dispatch_to_shared_storage(req)
end

end
else

return dispatch_to_shared_storage(req)
end

Function dispatch_to_shared_storage(req):
if req.op = read then

data← dispatch req for the shared storage;
if flash cache is available then

update the flash cache with req.pba and data;
end
return the length of data

end
else

if flash cache is available then
update the flash cache with req.pba and req.data;

end
dispatch req for the shared storage;
return the length of req.data

end

4. Evaluation

In this section, we evaluate Cachemior, Firepan, and FirepanIF with realistic experiments.
After describing the test equipment and settings, we present the evaluation results.

4.1. Experimental Setup

We use two computing nodes and one shared storage node. Each of the two computing nodes
equip six physical cores, 8 GB main memory, a 250 GB SATA SSD for a host operating system, and a
512 GB NVMe SSD for a host cache. The shared storage node equips four physical cores, 8 GB main
memory, a 120 GB SATA SSD for an operating system, and a 480 GB NVMe SSD, which is used for
the shared storage. Linux kernel 4.15.0-43 is used for all the nodes, and Kernel-base Virtual Machine
(KVM) is used to virtualize the computation and storage resources. Three nodes are connected via
10 Gigabit Ethernet.

Each VM has four virtual cores, 1 GB memory, and 50 GB storage. For the host-side flash cache,
each VM is given 10 GB of NVMe SSD. The host-side cache size is 20% of the VM storage that that
is enough to store the operating system and workload data of the VM. We configure the workload
data size as 20 GB for all the experiments so that the host-side flash cache can store 50% of the VM’s
workload data.

EnhanceIO is used for flash cache management. As explained in Section 2.1, EnhanceIO provides
three cache write policies: read-only, write-through, and write-back. We use the read-only policy for

Appl. Sci. 2020, 10, 1014 10 of 18

our experiments because write caching is not preferred in the virtualized environment due to the
reliability issue. When the flash cache management subsystem in the host crashes, the data of the VM
can be lost with write caching. Please note that although we apply the read-only policy, our models do
not depend on the cache policy.

We use flexible I/O tester (FIO) as a benchmark suite in our experiments [30]. To create a realistic
workload with spatial locality, we configure the FIO benchmark as follows: four threads issue I/O
requests concurrently, and each thread issues random reads and writes with an 8:2 ratio for an exclusive
5 GB file. The requests are directly delivered to the storage device, and the maximum number of
concurrently issued requests is 32 per thread. Because the FIO always tries to issue as many requests
as possible, 128 requests from the four threads wait in the storage device simultaneously while the
benchmark program is running.

In addition, we carefully configure the randomness of the FIO. Because the default configuration
of the FIO uses the same number for a random seed across executions, the FIO generates the same series
of requests for each execution. The behavior is not similar to that of a real file system. Therefore, we
configure the FIO to use fully random numbers for the target addresses of the I/O requests. Moreover,
we configure the FIO such that 80% of the requests are issued for the first 20% of addresses in the target
file to simulate spatial locality. We provide the full configuration of the FIO workload in Figure 5 to
help the reproduction of our experiments.

[global]
name=workload
rw=randrw
rwmixread=80
rwmixwrite=20
direct=1
time_based=1
norandommap
random_distribution=zoned:50/5:30/15:20/80
ioengine=libaio
iodepth=32
size=5G
randrepeat=0

[file1]
bs=4k
[file2]
bs=4k
[file3]
bs=4k
[file4]
bs=4k

Figure 5. Configuration for the FIO workload.

4.2. Effectiveness of Firepan and FirepanIF

The first experiment shows the effectiveness of Firepan and FirepanIF with a realistic I/O
workload compared to Cachemior. Firepan and FirepanIF directly copy the cache contents from
the source to the destination node during migration, whereas Cachemior only transfers the hot cache
list to the cache warmer in the destination node, as explained in Section 3.1. At the beginning of the
experiment, four VMs run on the source host, and three VMs, on the destination host. Each VM runs
the FIO for 3600 s. Then, we migrate a VM from the source to the destination host. We call this VM the
target VM. The six other VMs run the FIO workload with a flash cache for the entire experiment.

Appl. Sci. 2020, 10, 1014 11 of 18

The experimental procedure is as follows: At first, the target VM runs a workload without a
flash cache for the first 400 s. Then, we attach a flash cache to the VM. After 1600 s, the target VM is
migrated to the destination host, and then, we immediately allocate a flash cache to the VM. Next,
the VM continues running a workload during the next 1600 s.

We ran this experiment with four methods: (1) No cache migration (NoCacheMigration), and flash
cache migration using (2) Cachemior, (3) Firepan, and (4) FirepanIF. Figure 6 shows the results of the
I/O operations per second (IOPS) with the FIO benchmark.

0K

2K

4K

6K

8K

10K

12K

14K

16K

18K

20K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

read write

(a) NoCacheMigration

0K

2K

4K

6K

8K

10K

12K

14K

16K

18K

20K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

read write

(b) Cachemior

0K

2K

4K

6K

8K

10K

12K

14K

16K

18K

20K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

read write

(c) Firepan

0K

2K

4K

6K

8K

10K

12K

14K

16K

18K

20K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

read write

(d) FirepanIF

Figure 6. Performance of the target VM with NoCacheMigration, Cachemior, Firepan, and FirepanIF.

First, we explain the result of NoCacheMigration shown in Figure 6a. For the first 400 s, FIO
performs approximately 8K IOPS for read operations without a flash cache, which is akin to the
baseline performance. After the flash cache is provided in the source node, the cache is warmed up
for the next 800 s approximately. After 1400 s of running, the IOPS result seems to stabilize, and the
flash cache hit ratio at this time is approximately 60%. The average IOPS value between 1400 s and the
migration moment is more than 15K, which exceeds a 90% increment from the baseline performance.
At 2000 s, the target VM is migrated, and this operation takes approximately 3 s. After the target
VM is migrated, the flash cache on another host should be warmed up again. Thus, the IOPS value
dramatically drops after the migration, and thereafter, the performance increases again when the flash
cache is attached to the migrated VM. It also takes approximately 800 s for the benchmark to provide
the highest performance. The result of the write operation is similar to that of the read case.

Second, Figure 6b shows the result with Cachemior. Until VM migration at 2000 s, the result
is similar to that seen in Figure 6a because there is no difference in the procedure. After the VM
migration, the cache warmer starts to warm up the flash cache at the destination host. The flash
cache migration continuously loads the hot data from the shared storage by using the cache metadata
transferred from the flash cache management system running on the source host. In this experiment,
we use one asynchronous I/O thread for data preloading. The thread creates up to 128 requests
concurrently for the shared storage. Thus, after 2000 s, the FIO and warm-up thread compete for the
shared storage until the thread ends at 2360 s. During the preloading period, the target VM suffers
from low performance because of the preloading thread’s activity. This is the main drawback of the

Appl. Sci. 2020, 10, 1014 12 of 18

preloading approach. When we analyze the raw data, the VM and preloading thread compete with
each other for the bandwidth allocated for the shared storage. After the warm-up ends, the IOPS value
immediately increases to above 15K, which means that the flash cache migration was successfully
completed. As shown in Figure 6b, however, the performance loss by data preloading is too large
and outweighs the benefit. The average IOPS values after VM migration are 13,946 and 13,672 for
NoCacheMigration and Cachemior, respectively. Thus, flash cache migration with Cachemior does not
provide any benefit.

Next, Figure 6c shows the result of Firepan. Compared to the previous experiments, the IOPS value
does not drop during the migration. However, this is only an illusion for the user-level application.
As the target VM was paused during VM and flash cache migration and starts with its copied flash
cache, the measured IOPS value in the VM shows high performance, as if no migration occurred. In the
real world, the user suffers due to the VM and flash cache migration, which takes approximately 3 and
30 s, respectively. Thus, we further investigate the real effectiveness of Firepan by uncovering the I/O
usages of the host machines.

We trace the bandwidth (MB/s) of the read requests issued by the target VM on the two host
systems, and show the results before and after VM migration in Figure 7. We use the bandwidth metric
instead of the IOPS in this analysis because I/O requests from the VM are fragmented in the host
system, which results in inaccurate measurement. The bandwidth is the sum of two I/O streams for the
shared storage and flash cache device. The results of NoCacheMigration and Cachemior show similar
trends. The performance drops after the migration and then increases slowly while the flash cache is
warmed up. The results are similar to those in Figure 6a,b. In the case of Firepan, the bandwidth was
zero during flash cache migration, which takes approximately 30 s. Then, the bandwidth immediately
increases to the same level as that before the VM migration. We exclude the bandwidth used to migrate
the flash cache in the results of Firepan and FirepanIF.

0

10

20

30

40

50

60

70

80

90

100

1
9

0
0

1
9

2
0

1
9

4
0

1
9

6
0

1
9

8
0

2
0

0
0

2
0

2
0

2
0

4
0

2
0

6
0

2
0

8
0

2
1

0
0

2
1

2
0

2
1

4
0

2
1

6
0

2
1

8
0

2
2

0
0

2
2

2
0

2
2

4
0

2
2

6
0

2
2

8
0

2
3

0
0

2
3

2
0

2
3

4
0

2
3

6
0

2
3

8
0

2
4

0
0

B
a

n
d

w
id

th
 (

M
B

/s
)

Timeline (seconds)

NoCacheMigra!on Cachemior Firepan FirepanIF

Figure 7. Bandwidth before and after VM migration with NoCacheMigration, Cachemior, Firepan,
and FirepanIF.

We provide more detailed results in Table 1. When we compare the average bandwidth for
400 s after VM migration, Firepan provides 13.49% more bandwidth for the target VM despite the
suspension for 30 s compared to NoCacheMigration. Even if we compare 800 s after VM migration,
which is sufficient time for the cache warm up in the other methods, Firepan provides 9.93% and 2.73%
more bandwidth compared to NoCacheMigration and Cachemior, respectively. The benefit is derived
from the immediate restoration of the entire cache state while the other methods gradually restore the
cache state.

Finally, the result for FirepanIF is shown in Figure 6d. After the VM migration, the target VM is
executed immediately without its host-side flash cache while the flash cache migration is in progress.
Thus, the performance drops for approximately 30 s. The average IOPS value during this period is
approximately 6K, which is lower than the performance of NoCacheMigration immediately after the
VM migration (i.e., 8K) in Figure 6a. As flash cache migration requires additional bandwidth for the
network and host-side flash cache, the four FIO threads on the target VM are affected. After the flash
cache migration is completed, the performance immediately recovers to the same level as that when

Appl. Sci. 2020, 10, 1014 13 of 18

the flash cache is fully warmed up. As shown in Figure 7 and Table 1, FirepanIF provides 16.68% more
bandwidth for the target VM after 400 s following the VM migration and 12.00% after 800 s. This
result shows that FirepanIF is the most effective method for host-side flash cache warm-up among the
four methods.

Table 1. Average bandwidth between 400 and 800 s after VM migration.

NoCache
Migration
(Baseline)

Cachemior Firepan FirepanIF

2000s 41.89 45.25 (+8.02%) 43.11 (+2.93%) 48.67 (+16.18%)

2100s 49.58 51.16 (+3.19%) 61.69 (+24.44%) 61.88 (+24.82%)

2200s 53.48 55.90 (+4.53%) 60.13 (+12.44%) 62.18 (+16.26%)

2300s 55.88 58.46 (+4.62%) 62.98 (+12.71%) 61.59 (+10.22%)
avg. (first 400 s) 50.21 52.69 (+4.94%) 56.98 (+13.49%) 58.58 (+16.68%)

2400s 56.09 62.21 (+10.91%) 61.23 (+9.17%) 60.72 (+8.26%)

2500s 57.28 61.66 (+7.65%) 61.04 (+6.57%) 60.42 (+5.48%)

2600s 56.99 63.26 (+11.00%) 62.36 (+9.41%) 61.39 (+7.73%)

2700s 58.57 61.91 (+5.70%) 59.89 (+2.25%) 64.47 (+10.07%)
avg. (total 800 s) 53.72 57.48 (+7.00%) 59.05 (+9.93%) 60.16 (+12.00%)

4.3. Neighborhood Effect

In addition, we examine the neighborhood effect of Cachemior, Firepan, and FirepanIF.
After providing performance models to theoretically analyze the neighborhood effect, we present the
experimental results in this section.

4.3.1. Performance Model for Neighborhood Effect

At first, we provide a performance model that represents each VM’s I/O performance related to
the number of co-running VMs. In the cloud system, VMs share the following resources that influence
the I/O performance: a flash cache, shared storage, and network. These resources are fairly allocated
to the VMs in general cloud systems. In addition, there is another important consideration about I/O
performance when VMs share the flash-based storage: partitioning. Usually, each VM is allocated
limited space of the storage device with a limited partition. Because an SSD cannot maximize the
internal parallelism among multiple flash-chips with the limited partition, each VM receives restricted
performance from the allocated space. For example, we allocate 50 GB space of the 480 GB shared
storage and 10 GB of the 512 GB flash cache for each VM. A 10 GB partition of the SSD cannot provide
the same level of performance that the entire 512 GB SSD can provide. Therefore, the first reason that
limits the I/O performance of each VM is not sharing of the storage with other VMs, but partitioning
of the storage. In other words, the performance of each VM is isolated from the neighbor VM by
its partition.

Equation (1) presents the storage performance in IOPS that can be provided for the kth VM, VMk
i ,

on the ith node based on the above explanation. Sk
i is the maximum performance of the shared storage

partition that is allocated for VMk on the ith node. Fk
i is the maximum performance of the flash cache

partition, and Hk
i is a hit ratio for the cache of VMk on the ith node.

IOPSk
i = Hk

i Fk
i + (1− Hk

i)S
k
i (1)

Equation (2) revises Equation (1) taking into consideration of sharing of the storage and the cache
with other VMs. When the overall performance provided by all the partitions exceeds the maximum
performance of the device, the storage performance will be throttled down. S and Fi are the maximum
performance provided by the shared storage system and the flash cache on the ith node. Ei is the

Appl. Sci. 2020, 10, 1014 14 of 18

number of VMs running on the ith node, and the total number of host nodes is n. We assume that
every VM fairly shares the total bandwidth of the shared storage system and the flash cache.

IOPSk
i = max

{
Fi
Ei

, Hk
i Fk

i

}
+ max

S

n
∑

i=0
Ei

, (1− Hk
i)S

k
i

 (2)

The last factor is the network bandwidth, which can throttle the storage performance. Equation (3)
represents the complete performance model for VMk

i , where Ni is the maximum network bandwidth
between the ith node and the shared storage system, and Bi is the average size of I/O requests in bytes
from the ith node.

IOPSk
i = max

{
Fi
Ei

, Hk
i Fk

i

}
+ max

S

Ni
Bi

,
n
∑

i=0
Ei

, (1− Hk
i)S

k
i

 (3)

4.3.2. Experimental Result

Second, we present the experimental result and analysis. Figures 8 and 9 show the IOPS results
of six other VMs on the source and destination hosts during the experiment in Section 4.2. Each VM
runs the FIO with the same workload and 10 GB of a host-side flash cache. Before the experiment,
we execute the VMs for 30 min to warm up the flash caches. As shown in Figure 8a, when four VMs
are running on the source host, the IOPS results are approximately 15K for each VM until 2000 s.
Although a flash cache is attached to the target VM after the first 400 s, as explained in Section 4.2,
the performance of the three VMs remains steady whether the target VM shares the NVMe SSD or not.
This is because the NVMe SSD for flash caches has already been providing the maximum performance
for the three 10 GB partitions of the three VMs as explained in Section 4.3.1. After the target VM is
migrated, the IOPS results of the three VMs increase to approximately 20K because of the competition
for the shared storage drops. The IOPS changes in the two hosts are similar for every case. When three
and four VMs compete, the average IOPS values are 20K and 15K, respectively.

0K
2K
4K
6K
8K

10K
12K
14K
16K
18K
20K
22K
24K
26K
28K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

vm-1a vm-1b vm-1c

(a) NoCacheMigration

0K
2K
4K
6K
8K

10K
12K
14K
16K
18K
20K
22K
24K
26K
28K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

vm-1a vm-1b vm-1c

(b) Cachemior

0K
2K
4K
6K
8K

10K
12K
14K
16K
18K
20K
22K
24K
26K
28K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

vm-1a vm-1b vm-1c

(c) Firepan

0K
2K
4K
6K
8K

10K
12K
14K
16K
18K
20K
22K
24K
26K
28K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

vm-1a vm-1b vm-1c

(d) FirepanIF

Figure 8. Performance of neighbor VMs on the source host with NoCacheMigration, Cachemior,
Firepan, and FirepanIF.

Appl. Sci. 2020, 10, 1014 15 of 18

0K
2K
4K
6K
8K

10K
12K
14K
16K
18K
20K
22K
24K
26K
28K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

vm-2a vm-2b vm-2c

(a) NoCacheMigration

0K
2K
4K
6K
8K

10K
12K
14K
16K
18K
20K
22K
24K
26K
28K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

vm-2a vm-2b vm-2c

(b) Cachemior

0K
2K
4K
6K
8K

10K
12K
14K
16K
18K
20K
22K
24K
26K
28K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S

Timeline (seconds)

vm-2a vm-2b vm-2c

(c) Firepan

0K
2K
4K
6K
8K

10K
12K
14K
16K
18K
20K
22K
24K
26K
28K

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

IO
P

S
Timeline (seconds)

vm-2a vm-2b vm-2c

(d) FirepanIF

Figure 9. Performance of neighbor VMs on the destination host with NoCacheMigration, Cachemior,
Firepan, and FirepanIF.

4.4. Effect of Flash Cache Capacity

In this section, we investigate the performance impacts of Firepan and FirepanIF with various flash
cache capacities in more detail. Firepan and FirepanIF copy cache items from the source node, and the
required time for copying may impact the I/O performance of the target VM. To reflect this situation,
we conduct additional experiments with 5 and 20 GB capacities of flash caches. The procedure and
workload of the experiment are the same as in the previous experiments.

We provide the bandwidth results before and after the VM migration for the 5 and 20 GB flash
caches in Figure 10a,b, respectively. Please note that the scales of the x-axes differ in the figures.
The results are similar to that of the previous experiment depicted in Figure 7. NoCacheMigration and
Cachemior show a gradual performance increase after the VM migration. For the 20 GB flash cache,
approximately more than 400 s are required to reach the highest bandwidth. Firepan and FirepanIF
require 15 and 60 s, respectively, for flash cache migration, which is similar to the result in Figure 7.
After these periods, the bandwidth is immediately restored to the level before the VM migration.

0

10

20

30

40

50

60

70

80

90

100

1
9

0
0

1
9

2
0

1
9

4
0

1
9

6
0

1
9

8
0

2
0

0
0

2
0

2
0

2
0

4
0

2
0

6
0

2
0

8
0

2
1

0
0

2
1

2
0

2
1

4
0

2
1

6
0

2
1

8
0

2
2

0
0

2
2

2
0

2
2

4
0

2
2

6
0

2
2

8
0

2
3

0
0

2
3

2
0

2
3

4
0

2
3

6
0

2
3

8
0

2
4

0
0

B
a

n
d

w
id

th
 (

M
B

/s
)

Timeline (seconds)

NoCacheMigra!on Cachemior Firepan FirepanIF

(a) With a 5 GB flash cache

0

10

20

30

40

50

60

70

80

90

100

1
9

0
0

1
9

5
0

2
0

0
0

2
0

5
0

2
1

0
0

2
1

5
0

2
2

0
0

2
2

5
0

2
3

0
0

2
3

5
0

2
4

0
0

2
4

5
0

2
5

0
0

2
5

5
0

2
6

0
0

2
6

5
0

2
7

0
0

2
7

5
0

2
8

0
0

B
a

n
d

w
id

th
 (

M
B

/s
)

Timeline (seconds)

NoCacheMigra!on Cachemior Firepan FirepanIF

(b) With a 20 GB flash cache

Figure 10. Bandwidths before and after VM migration with various flash cache capacities.

Table 2 and 3 summarize the average bandwidth values during 400 and 800 s after VM migration,
respectively. Firepan and FirepanIF provide better performance for every flash cache capacity. With the
20 GB flash cache, FirepanIF exhibits 59.41 MB/s as the average bandwidth for 400 s, which translates
into an improvement of 21.87% over NoCacheMigration.

Appl. Sci. 2020, 10, 1014 16 of 18

Table 2. Average bandwidth during 400 s after VM migration.

NoCache
Migration
(Baseline)

Cachemior Firepan FirepanIF

5 GB 43.62 44.55 (+2.14%) 46.23 (+5.99%) 46.23 (+5.97%)

10 GB 50.21 52.69 (+4.94%) 56.98(+13.49%) 58.58 (+16.68%)

20 GB 48.75 48.02 (-1.51%) 56.61 (+16.11%) 59.41 (+21.87%)

Table 3. Average bandwidth during 800 s after VM migration.

NoCache
Migration
(Baseline)

Cachemior Firepan FirepanIF

5 GB 45.64 46.36 (+1.57%) 47.17 (+3.34%) 46.97 (+2.92%)

10 GB 53.72 57.48 (+7.00%) 59.05 (+9.93%) 60.16 (+12.00%)

20 GB 54.86 57.93 (+5.60%) 61.89 (+12.80%) 62.79 (+14.45%)

The results show that the benefits of Firepan and FirepanIF increase with flash cache capacities.
As the size increases, NoCacheMigration and Cachemior require a much longer time to fully warm
up the increased host-side flash cache, as shown in Figure 10b. In the case of Firepan or FirepanIF,
although flash cache migration takes more time than that in the case of a small flash cache, the migration
time is much smaller than the warm up times of NoCacheMigration and Cachemior. Therefore,
the overall performance of Firepan and FirepanIF shows an improvement in this experiment.

5. Conclusions

This study developed and proposed the use of Cachemior, Firepan, and FirepanIF to discover an
efficient method for host-side flash cache warm-up in order to enable high performance VM migration.
Cachemior warms up the host-side flash cache in the destination node with a separate thread after
VM migration. However, it causes storage and network congestion on the shared storage server, thus
achieving a marginal performance gain. As Firepan copies all the cache contents from the source
to the destination node, it exhibits higher performance than Cachemior. However, for reasons of
synchronization, Firepan does not allow the migrated VM to resume before the completion of flash
cache migration. Finally, FirepanIF overcomes the limitation of Firepan by resuming the VM migration
while the flash cache migration procedure is in progress. This is possible due to the IF, which traces
I/O requests from the migrated VM and records write accesses in the invalidation table. FirepanIF
can improve the performance of the I/O workload by up to 21.87% when the size of the flash cache is
20 GB.

Author Contributions: The work presented here was completed in collaboration between all authors.
conceptualization, H.P.; validation, M.L.; formal analysis, H.P. and C.-H.H.; investigation, H.P. and C.-H.H.;
writing–original draft preparation, H.P., M.L., and C.-H.H.; writing–review and editing, C.-H.H.; supervision,
C.-H.H.; funding acquisition, H.P. and C.-H.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIP) (No. NRF-2019R1C1C1011068 and No. NRF-2017R1C1B5016000) and research funds
for newly appointed professors of Jeonbuk National University in 2016.

Acknowledgments: The authors would like to thank the anonymous reviewers of Applied Sciences journal for
their valuable comments and suggestions to improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 1014 17 of 18

References

1. Milojičić, D.; Llorente, I.M.; Montero, R.S. Opennebula: A cloud management tool. IEEE Internet Comput.
2011, 15, 11–14. [CrossRef]

2. Sefraoui, O.; Aissaoui, M.; Eleuldj, M. OpenStack: toward an open-source solution for cloud computing.
Int. J. Comput. Appl. 2012, 55, 38–42. [CrossRef]

3. López, L.; Nieto, F.J.; Velivassaki, T.H.; Kosta, S.; Hong, C.H.; Montella, R.; Mavroidis, I.; Fernández, C.
Heterogeneous secure multi-level remote acceleration service for low-power integrated systems and devices.
Procedia Comput. Sci. 2016, 97, 118–121. [CrossRef]

4. Varghese, B.; Leitner, P.; Ray, S.; Chard, K.; Barker, A.; Elkhatib, Y.; Herry, H.; Hong, C.; Singer, J.; Tso, F.; et al.
Cloud Futurology. Computer 2019, 52, 68–77. [CrossRef]

5. Park, H.; Yoo, S.; Hong, C.H.; Yoo, C. Storage SLA guarantee with novel ssd i/o scheduler in virtualized
data centers. IEEE Trans. Parallel Distrib. Syst. 2015, 27, 2422–2434. [CrossRef]

6. Hong, C.H.; Lee, K.; Kang, M.; Yoo, C. qCon: QoS-Aware Network Resource Management for Fog Computing.
Sensors 2018, 18, 3444. [CrossRef] [PubMed]

7. Badshah, A.; Ghani, A.; Shamshirband, S.; Chronopoulos, A.T. Optimising infrastructure as a service
provider revenue through customer satisfaction and efficient resource provisioning in cloud computing.
IET Commun. 2019, 13, 2913–2922. [CrossRef]

8. Rehman, A.; Hussain, S.S.; ur Rehman, Z.; Zia, S.; Shamshirband, S. Multi-objective approach of energy
efficient workflow scheduling in cloud environments. Concurr. Comput. Pract. Exp. 2019, 31, e4949.
[CrossRef]

9. Osanaiye, O.; Chen, S.; Yan, Z.; Lu, R.; Choo, K.K.R.; Dlodlo, M. From cloud to fog computing: A review and
a conceptual live VM migration framework. IEEE Access 2017, 5, 8284–8300. [CrossRef]

10. Jo, C.; Gustafsson, E.; Son, J.; Egger, B. Efficient live migration of virtual machines using shared storage.
ACM Sigplan Not. 2013, 48, 41–50. [CrossRef]

11. Luo, T.; Ma, S.; Lee, R.; Zhang, X.; Liu, D.; Zhou, L. S-cave: Effective ssd caching to improve virtual machine
storage performance. In Proceedings of the 22nd International Conference on Parallel Architectures and
Compilation Techniques, Edinburgh, UK, 7–11 September 2013; pp. 103–112.

12. Clark, C.; Fraser, K.; Hand, S.; Hansen, J.G.; Jul, E.; Limpach, C.; Pratt, I.; Warfield, A. Live migration of
virtual machines. In Proceedings of the 2nd conference on Symposium on Networked Systems Design &
Implementation, Berkeley, CA, USA, 2–4 May 2005; Volume 2, pp. 273–286.

13. Meng, X.; Pappas, V.; Zhang, L. Improving the scalability of data center networks with traffic-aware
virtual machine placement. In Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA,
14–19 March 2010; pp. 1–9.

14. Arteaga, D.; Zhao, M. Client-side flash caching for cloud systems. In Proceedings of the International
Conference on Systems and Storage, Haifa, Israel, 30 June–2 July 2014; pp. 1–11.

15. Park, J.Y.; Park, H.; Yoo, C. Design and Implementation of Host-side Cache Migration Engine for High
Performance Storage in A Virtualization Environment. KIISE Trans. Comput. Pract. 2016, 22, 278–283.
[CrossRef]

16. Koutoupis, P. Advanced hard drive caching techniques. Linux J. 2013, 2013, 2.
17. Zhang, Y.; Soundararajan, G.; Storer, M.W.; Bairavasundaram, L.N.; Subbiah, S.; Arpaci-Dusseau, A.C.;

Arpaci-Dusseau, R.H. Warming Up Storage-Level Caches with Bonfire. In Proceedings of the 11th USENIX
Conference on File and Storage Technologies (FAST 13), San Jose, CA, USA, 12–15 February 2013; pp. 59–72.

18. Lu, T.; Huang, P.; Stuart, M.; Guo, Y.; He, X.; Zhang, M. Successor: Proactive cache warm-up of destination
hosts in virtual machine migration contexts. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual
IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016;
pp. 1–9.

19. Hwang, J.; Uppal, A.; Wood, T.; Huang, H. Mortar: Filling the gaps in data center memory. In Proceedings
of the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
Salt Lake City, UT, USA, 1–2 March 2014; pp. 53–64.

20. Bhagwat, D.; Patil, M.; Ostrowski, M.; Vilayannur, M.; Jung, W.; Kumar, C. A practical implementation
of clustered fault tolerant write acceleration in a virtualized environment. In Proceedings of the 13th

http://dx.doi.org/10.1109/MIC.2011.44
http://dx.doi.org/10.5120/8738-2991
http://dx.doi.org/10.1016/j.procs.2016.08.287
http://dx.doi.org/10.1109/MC.2019.2895307
http://dx.doi.org/10.1109/TPDS.2015.2493524
http://dx.doi.org/10.3390/s18103444
http://www.ncbi.nlm.nih.gov/pubmed/30322161
http://dx.doi.org/10.1049/iet-com.2019.0554
http://dx.doi.org/10.1002/cpe.4949
http://dx.doi.org/10.1109/ACCESS.2017.2692960
http://dx.doi.org/10.1145/2517326.2451524
http://dx.doi.org/10.5626/KTCP.2016.22.6.278

Appl. Sci. 2020, 10, 1014 18 of 18

USENIX Conference on File and Storage Technologies (FAST 15), Santa Clara, CA, USA, 16–19 February 2015;
pp. 287–300.

21. Kgil, T.; Mudge, T. FlashCache: a NAND flash memory file cache for low power web servers. In Proceedings
of the 2006 International Conference on Compilers, Architecture and Synthesis for Embedded Systems,
Seoul, Korea, 22–25 October 2006; pp. 103–112.

22. Byan, S.; Lentini, J.; Madan, A.; Pabon, L.; Condict, M.; Kimmel, J.; Kleiman, S.; Small, C.; Storer, M. Mercury:
Host-side flash caching for the data center. In Proceedings of the IEEE 28th Symposium on Mass Storage
Systems and Technologies (MSST), San Diego, CA, USA, 16–20 April 2012; pp. 1–12.

23. Documentation of the vSphere Flash Read Cache v6.5. Available online: https://docs.vmware.
com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-07ADB946-2337-4642-B660-
34212F237E71.html (accessed on 17 December 2019).

24. Meng, F.; Zhou, L.; Ma, X.; Uttamchandani, S.; Liu, D. vCacheShare: Automated server flash cache space
management in a virtualization environment. In Proceedings of the 2014 USENIX Annual Technical
Conference (USENIX ATC 14), Philadelphia, PA, USA, 19–20 June 2014; pp. 133–144.

25. Lee, H.; Cho, S.; Childers, B.R. CloudCache: Expanding and shrinking private caches. In Proceedings of the
2011 IEEE 17th International Symposium on High Performance Computer Architecture, San Antonio, TX,
USA, 12–16 February 2011; pp. 219–230.

26. Koller, R.; Marmol, L.; Rangaswami, R.; Sundararaman, S.; Talagala, N.; Zhao, M. Write policies for host-side
flash caches. In Proceedings of the 11th USENIX Conference on File and Storage Technologies (FAST 13),
San Jose, CA, USA, 12–15 February 2013; pp. 45–58.

27. Holland, D.A.; Angelino, E.; Wald, G.; Seltzer, M.I. Flash caching on the storage client. In Proceedings of
the 2013 USENIX Annual Technical Conference (USENIX ATC 13), San Jose, CA, USA, 26–28 June 2013;
pp. 127–138.

28. Qin, D.; Brown, A.D.; Goel, A. Reliable writeback for client-side flash caches. In Proceedings of the
2014 USENIX Annual Technical Conference (USENIX ATC 14), Philadelphia, PA, USA, 19–20 June 2014;
pp. 451–462.

29. Arteaga, D.; Otstott, D.; Zhao, M. Dynamic block-level cache management for cloud computing systems.
In Proceedings of the Conference on File and Storage Technologies, San Jose, CA, USA, 14–17 February 2012.

30. Axboe, J. Flexible i/o Tester. 2016. Available online: https://github.com/axboe/fio (accessed on 17
December 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-07ADB946-2337-4642-B660-34212F237E71.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-07ADB946-2337-4642-B660-34212F237E71.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-07ADB946-2337-4642-B660-34212F237E71.html
https://github.com/axboe/fio
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	SSD Caching Software
	Related Work

	Design
	Cachemior
	Firepan
	FirepanIF

	Evaluation
	Experimental Setup
	Effectiveness of Firepan and FirepanIF
	Neighborhood Effect
	Performance Model for Neighborhood Effect
	Experimental Result

	Effect of Flash Cache Capacity

	Conclusions
	References

