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Abstract: Gas hydrate solids occurrence is considered as one of the serious challenges in flow
assurance as it affects the hydrocarbon production significantly, especially in deep water gas fields.
The most cost-effective method to inhibit the formation of hydrate in pipelines is by injecting a hydrate
inhibitor agent. Continuous studies have led to a comprehensive understanding on the use of low
dosage hydrate inhibitors such as ionic liquid and quaternary ammonium salts which are also known
as dual function gas hydrate inhibitors. This paper covers the latest types of quaternary ammonium
salts (2020–2016) and a summary of findings which are essential for future studies. Reviews on the
effects of length of ionic liquids alkyl chain, average suppression temperatures, hydrate dissociation
enthalpies, and electrical conductivity to the effectiveness of the quaternary ammonium salts as gas
hydrate inhibitors are included.
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1. Introduction

In developing deep water gas fields (about 3000 m water depth), the development-gathering
mode of “drilling platform-underwater production submarine pipelines” is often implemented [1].
The submarine pipelines are the crucial components that provide transportation means of natural gas
to flow from the reservoir wellbore to different types of deep water floating platforms such as large
multi-functional semi-submersible platform (Semi-FPS), tension leg platform (TLP) [2], compliant
piled tower (CPT) and deep-draft single column platform (Spar). Due to low temperatures, high
static water pressure, long tieback distance, and the composition of the gas, gas hydrate solids
will possibly occur in riser, subsea trees or subsea pipeline. Gas hydrates are ice-like, crystalline
compounds of gas and water [3] that exist at a suitable range of high pressures and low temperatures.
It consists of variety of gas molecules such as methane, ethane, propane, isobutene, n-butane, nitrogen,
carbon dioxide, hydrogen sulphide, etc. [4]. Gas molecules, known as ‘guest’ are entrapped in the
hydrogen-bonded water molecules, called ‘host’ [5]. Among the unique features of hydrates are; they
are not chemical compounds and are non-stoichiometric crystals [6,7]. Due to no strong chemical
bonds exist between the gas and water molecules [8], there is potential of the gas molecules to be
released from the water molecules cage [9], which contributes to the flow assurance issues. The three
most common gas hydrates structures are structure I (sI), structure II (sII), and structure H (sH), which
differs in cage size and physical shape. Typically, structure I consists of small hydrate lattices that
can only hold small gas molecules such as CH4. Structure II is more complex, quite larger in size,
and able to entrap larger hydrocarbon molecules, whereas structure H is capable to contain much
larger molecules such as isopentane [10]. Figure 1 shows the unit cells of sI, sII, and sH structures
which are composed of different types of water cages. The conditions of gas hydrate solids occurrence
is majorly governed by either its thermodynamic equilibrium or nucleation/growth rate. Chemical
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injection by adding the thermodynamic hydrate inhibitors (THIs) like methanol and mono-ethylene
glycol (MEG) [5] or low-dosage hydrate inhibitors (LDHIs) such as kinetic hydrate inhibitors (KHIs)
and anti-agglomerants (AAs) [11] is a common approach to either shift the equilibrium curve or delay
the nucleation rate [12–17].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 11 

adding the thermodynamic hydrate inhibitors (THIs) like methanol and mono-ethylene glycol (MEG) 
[5] or low-dosage hydrate inhibitors (LDHIs) such as kinetic hydrate inhibitors (KHIs) and anti-
agglomerants (AAs) [11] is a common approach to either shift the equilibrium curve or delay the 
nucleation rate [12–17]. 

   
(a) (b) (c) 

Figure 1. The three common gas hydrate structures with assembling of unit cells. (a) Structure I, (b) 
Structure II and (c) Structure sH 

2. Flow Assurance Issues Related to Natural Gas  

Flow assurance is a term used to evaluate the effects of fluid hydrocarbon solids such as hydrate, 
wax, and asphaltene; and their potential to disrupt production due to deposition in the pipeline 
system [18,19]. Deep water environment that exists at low temperatures and high pressures provides 
the ideal condition for solid deposits such as hydrates to form, with the risk of reducing the 
hydrocarbon production. Essentially, in petroleum production operations, flow assurance activities 
ensure operational and economical sustainability of hydrocarbon streams from the reservoir to the 
surface [20]. Hydrates are often regarded as one of the most serious and challenging problems in flow 
assurance, since the formation rate of gas hydrates are relatively more rapid than other solid deposits, 
such as asphaltenes, scale and wax [21]. Hydrates which are formed inside the subsea flowlines affect 
the production of hydrocarbon significantly, since the formation creates blockage which seriously 
affect the development and production safety of deep water gas fields [22–25]. Gas-dominated wells 
are prone to hydrate blockage since the system cool more rapidly compared to the oil-dominated 
wells, which are typically insulated by design to sustain its high temperature in the flowlines prior 
to arrival to the surface [26]. Furthermore, when the formed hydrate completely restricts the 
pipelines, the pressure contained inside the pipelines will increase sharply and eventually causes a 
serious pipeline safety accident [27,28]. In order to ensure undisturbed flow of hydrocarbon 
transportation to the surface, up to 8% of the total estimated cost, which is equivalent to more than 
USD200 million is spent annually on gas hydrate inhibition techniques, as reported by [29]. 

3. Gas Hydrate Inhibition 

Gas hydrates can be inhibited by either mechanical methods, i.e., pipe insulation, dehydration, 
and depressurization, or by chemical methods through injecting special chemicals called as hydrate 
inhibitors into pipelines [30]. Mechanical methods are considered impractical since they show 
disadvantages, such as dehydration is impossible between the well and the dehydration units, pipe 
insulation is too difficult and expensive to be implemented in the deep sea, and depressurization 
results in reduced transportation capability [31]. Thus, the most practical and economical method is 
by injection of hydrate inhibitor. In general, there are two major classifications of hydrate inhibitors, 
which are thermodynamic hydrate inhibitors (THIs) and low dosage hydrate inhibitors (LDHIs). 

3.1. Thermodynamic Hydrate Inhibitors (THIs) and Low Dosage Hydrate Inhibitors (LDHIs) 

Conventional THIs are usually based on anti-freezing solvents like methanol and mono ethylene 
glycol (MEG) [32], which principally works by shifting hydrate liquid vapor equilibrium (HLVE), 
however once the hydrate formation initiates, they facilitated the hydrate nucleation process and 
demonstrated kinetic promoters characteristics [20,33]. Meanwhile, LDHIs are generally classified 

Figure 1. The three common gas hydrate structures with assembling of unit cells. (a) Structure I,
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2. Flow Assurance Issues Related to Natural Gas

Flow assurance is a term used to evaluate the effects of fluid hydrocarbon solids such as
hydrate, wax, and asphaltene; and their potential to disrupt production due to deposition in the
pipeline system [18,19]. Deep water environment that exists at low temperatures and high pressures
provides the ideal condition for solid deposits such as hydrates to form, with the risk of reducing the
hydrocarbon production. Essentially, in petroleum production operations, flow assurance activities
ensure operational and economical sustainability of hydrocarbon streams from the reservoir to the
surface [20]. Hydrates are often regarded as one of the most serious and challenging problems in flow
assurance, since the formation rate of gas hydrates are relatively more rapid than other solid deposits,
such as asphaltenes, scale and wax [21]. Hydrates which are formed inside the subsea flowlines affect
the production of hydrocarbon significantly, since the formation creates blockage which seriously affect
the development and production safety of deep water gas fields [22–25]. Gas-dominated wells are
prone to hydrate blockage since the system cool more rapidly compared to the oil-dominated wells,
which are typically insulated by design to sustain its high temperature in the flowlines prior to arrival
to the surface [26]. Furthermore, when the formed hydrate completely restricts the pipelines, the
pressure contained inside the pipelines will increase sharply and eventually causes a serious pipeline
safety accident [27,28]. In order to ensure undisturbed flow of hydrocarbon transportation to the
surface, up to 8% of the total estimated cost, which is equivalent to more than USD200 million is spent
annually on gas hydrate inhibition techniques, as reported by [29].

3. Gas Hydrate Inhibition

Gas hydrates can be inhibited by either mechanical methods, i.e., pipe insulation, dehydration,
and depressurization, or by chemical methods through injecting special chemicals called as hydrate
inhibitors into pipelines [30]. Mechanical methods are considered impractical since they show
disadvantages, such as dehydration is impossible between the well and the dehydration units, pipe
insulation is too difficult and expensive to be implemented in the deep sea, and depressurization
results in reduced transportation capability [31]. Thus, the most practical and economical method is
by injection of hydrate inhibitor. In general, there are two major classifications of hydrate inhibitors,
which are thermodynamic hydrate inhibitors (THIs) and low dosage hydrate inhibitors (LDHIs).

3.1. Thermodynamic Hydrate Inhibitors (THIs) and Low Dosage Hydrate Inhibitors (LDHIs)

Conventional THIs are usually based on anti-freezing solvents like methanol and mono ethylene
glycol (MEG) [32], which principally works by shifting hydrate liquid vapor equilibrium (HLVE),
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however once the hydrate formation initiates, they facilitated the hydrate nucleation process and
demonstrated kinetic promoters characteristics [20,33]. Meanwhile, LDHIs are generally classified into
two types, kinetic hydrate inhibitors (KHIs) and anti-agglomerants (AAs). The inhibition mechanism
of LDHIs differs from THIs. The inhibition by KHIs is achieved by delaying the nucleation process
of the hydrate formation [34], whereas AAs allow hydrate formation however avoid agglomeration.
Typically, KHIs are water-soluble polymers like polyvinyl pyrrolidone (PVP) and polyvinyl caprolactam
(PVCap) [35]. Figure 2 shows a schematic diagram of kinetic hydrate inhibition mechanisms via
adsorption and perturbation [36]. Adsorption inhibition shows that inhibitor molecules are adsorbed
on the hydrate crystals, whereas perturbation inhibition works by disturbing the water molecules’
structure. In the past decade, ionic liquids (ILs), amino acids (AACs) and quaternary ammonium
salts (QAS) [37] have been introduced as green hydrate inhibitors, as well as dual function inhibitors,
because they are environmentally friendly and have shown good inhibitory performance as both THIs
and KHIs [38–45]. ILs are salts that are generally composed of heterocyclic cations and inorganic
anions [38]. ILs have been developed as both green chemicals and designer solvents since their
structure and physical properties can be fine-tuned for diverse and specific applications [10,46,47].
ILs are water-soluble, non-volatile, and less toxic than methanol, and the thermodynamic inhibition
performance of some ILs is comparable to that of methanol [19,20]. Therefore, ILs are good substitutes
to methanol as THIs.
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3.2. Quaternary Ammonium Salts

Quaternary ammonium salts (quats) (QAS) are one of the common economical IL compounds
applied in industry [48]. Among their advantageous characteristics include having surface-active
properties, bioactive, and possess anti-microbial activity [49,50]. Over the last decade, researchers have
been investigating on this class of IL and found their improved chemical and thermal stability compared
to imidazolium and pyridinium based ILs, their solvating properties and unique miscibility which can
be utilized in specific applications [45,51–54]. A typical QAS consists of a positively-charged nitrogen
atom attached to four carbon atoms [55]. Figure 3 shows a typical structure of QAS, tetramethyl
ammonium chloride.
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Figure 3. Molecular Structure of tetramethyl ammonium chloride.

Table 1 shows a summary of several studies conducted on QAS for gas hydrate inhibition and a
brief findings on their inhibition performance. In evaluating the performance of QAS for gas hydrate
inhibition, several methods has been applied, such as the T-cycle method and using highpressure
micro differential scanning calorimetry equipment. The Isochoric constant cooling method or T-cycle
method is one of the most used method, carried out by [37,56–62] with different type of gases to
study on the kinetic inhibition of the selected compounds. In this method, 100 mL of liquid sample
is poured into the cell which is then vacuumed thoroughly to remove excess air that may still exist
in the cell [20,63]. The initial gas temperature is set to a temperature above the hydrate equilibrium
temperature to avoid gas hydrate formation during pressurization. Then, the cell was pressurized to
the specified experimental pressure. The reactor was kept for stabilization until the pressure reaches at
its equilibrium with the experimental condition. The pressure and temperature measurements start
getting logged when the temperature begins to decrease by rapid cooling method to facilitate the
hydrate formation as it quickly rises to the desired experimental temperatures [20]. The pressure and
temperature profiles are recorded for every 10 s through data acquisition software.
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Table 1. Summary of studies conducted on ammonium based ionic liquids for gas hydrate inhibition.

Chemicals Chemical
Formula Conc. Operating

Condition Method & Type of Gas Application as Main Findings Year/Ref.

Tetraethylammonium iodide
(TEAI) C8H20IN

1 wt%
5 wt%

10 wt%

274–284.6 K
3.45–8.3 MPa

T-cycle method
CH4

THI

The suppression temperature of TMAB, TEAB, and TEAI at 10
wt% is 1.34 K, 1.07 K, and 0.82 K, respectively. TMAB performed

better than TEAB and TEAI, individually and in combination
with MEG.

2020 [58]
Tetramethylammonium

bromide (TMAB) C4H12BrN

Tetraethylammonium bromide
(TEAB) C8H20NBr

Tetramethyl ammonium
chloride
(TMACl)

C4H12NCl
1 wt%
5 wt%

10 wt%

285.0 K and 8.00
MPa for CH4

283.0 K and 3.50
MPa for CO2

T-cycle method
CO2 & CH4

THI & KHI

TMACl performed efficiently as a potential dual functional
hydrate inhibitor for both CO2 and CH4 gases. The average

suppression temperatures for TMACl at 1, 5, and 10 wt% are 0.70
K, 0.96 K, and 1.42 K, respectively.

2019 [37]

Tetraethyl ammonium iodide
(TEAI) C8H20IN

5 wt%
10 wt%

275.0–283.0 K
2.0–3.50 MPa

T-cycle method
CO2

THI

The suppression temperature of TEAI, TEAB, and TMAB at 10
wt% is 1.17 K, 1.22 K, and 1.57 K, respectively. TMAB performed

better than TEAB and TEAI individually and in mixture with
MEG.

2019 [59]
Tetraethyl ammonium bromide

(TEAB) C8H20NBr

Tetramethyl ammonium
bromide (TMAB) C4H12BrN

Tetraethyl ammonium chloride
(TEACl) C8H20ClN 10 wt% 272.65–298.15 K

4.1–7.1 MPa

Isochoric pressure
search
CH4

THI & KHI TEACl enhances methane hydrate storage capacity and reduce
methane hydrate stability. 2019 [60]

Tetraethylammonium chloride
(TEACl) C8H20ClN

4.77 wt%
9.15 wt%

11.82
wt%

274.6–283.4 K
3.18–7.93 MPa

Isochoric pressure
search
CH4

THI

Addition of 11.82 wt% TEACl and 11.82 wt% of BMIM-BF4
mixture results in more reduction in methane hydrate

equilibrium temperature (average temperature depression of 2.7
K), compared to the other two studied mixtures. The inhibition
effect is also enhanced when the system pressure is increased.

2019 [57]

Tetramethyl ammonium
bromide (TMAB) C4H12BrN

0.05 and
0.1 mass
fraction

282.4–276.8 K
4.2–7.6 MPa

Isochoric pressure
search
CH4

THI
TMAB and TEAB show hydrate formation inhibition effects

thermodynamically.
However, TBAB has shown methane hydrate promotion effect.

2018 [56]
Tetraethyl ammonium bromide

(TEAB) C8H20NBr

Tetrabutyl ammonium bromide
(TBAB) C16H36BrN

Tetraethylammonium iodide
(TEAI) C8H20IN 0.1 mass

fraction 5.1–11.1 MPa
HighPressure Micro

DSC
CH4

THI The presence of TEAI alters the HLVE boundary to a higher
pressure and lower temperature. 2018 [64]

Tetra-n-butylammonium
bromide (TBAB) C16H36BrN 15,000

ppm −0.5 ◦C
Isothermal test and

maximum subcooling
test
THF

THI & KHI
Crystal growth inhibition is the dominant inhibition mechanism
in the gas hydrate system operating in these mixtures. Although

THAB demonstrated poor inhibition effect with PVCap in the
THF hydrate tests, it shows synergy with the gas hydrate system.

2017 [65]

Tetra-n-butylphosphonium
bromide (TBPB) C16H36P·Br 4500 ppm
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Table 1. Cont.

Chemicals Chemical
Formula Conc. Operating

Condition Method & Type of Gas Application as Main Findings Year/Ref.

Tetramethyl ammonium
bromide (TMAB) C4H12BrN 10 wt%

278.94–291.85 K
4.79–14.32 MPa

Isochoric pressure
search
CH4

THI

TMAB, TEAB, or TPrAB slightly alters the phase equilibrium
conditions to a lower temperature and higher pressure region,

which is comparable to NaCl. In contrast, the addition of TBAB
and TPeAB promotes hydrate formation.

2016 [61]
Tetraethyl ammonium bromide

(TEAB) C8H20NBr 10 wt%

Tetrapropyl ammonium
bromide (TPrAB) C12H28BrN 10 wt%

Tetrabutyl ammonium bromide
(TBAB) C16H36BrN 10 wt%

5 wt%

Tetramethylammonium
bromide (TMAB) C4H12BrN 0.62

mol%

279.41–291.85 K
4.79–14.32 MPa

Step-heating pressure
search method

CH4

THI & KHI
TBAB or TPeAB shows semiclathrate hydrate promotion effect.

TMAB, TEAB or TPrAB shows slight inhibition effect. 2016 [62]

Tetraethylammonium bromide
(TEAB) C8H20NBr 0.62

mol%

Tetrapropylammonium
bromide (TPrAB) C12H28BrN 0.62

mol%

Tetrabutylammonium bromide
(TBAB) C16H36BrN 0.62

mol%

Tetrapentylammonium bromide
(TPeAB) C20H44BrN 0.62

mol%
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In order to establish the effects of additional chemicals and salts on water activity, there are
different types of thermodynamic models available, such as the Dickens and Quinby Hunt [58,66]
which is useful in determining the hydrate liquid vapor equilibrium for CH4 hydrates. This model
has also been used by other researchers [67,68] due to its accuracy in predicting the hydrate phases
stability boundaries [69] in the presence of IL solutions and amino acids. In evaluating the performance
of a thermodynamic hydrate inhibitor, the average suppression temperature, ∆T is one of the key
indicator [70]. The suppression temperature (∆T) is calculated by the following formula (1) [20].

T =
∆T
n

=

∑n
i=1

(
T0, pi − T1, pi

)
n

(1)

where T0, pi is the temperature at equilibrium conditions for gas in a blank sample which does not
contain any compound. The equilibrium temperature of gas containing inhibitor is represented by
T1, pi. In both cases, the dissociation temperatures must be determined at the same pressure values.
Symbol ‘n’ denotes the number of points for pressure considered in the experimentation. [58]. In
researches conducted by [58,59] using different types of gases, they demonstrate that as the molecular
weight of the IL reduces, the average suppression temperature, ∆T increases. The average suppression
temperature when inhibitor is tested with CO2 gas is better compared to CH4 gas since it gives a
slightly higher value, as shown in Figure 4.
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Figure 4. Average Suppression Temperature at 5 wt% and 10 wt% for Different Molecular Weight of
AmmoniumBased ILs.

It has been suggested that anions of ILs play a leading role in inhibiting gas hydrates
thermodynamically, while cations can also contribute to gas hydrate inhibition when specific functional
groups, like a hydroxyl group (-OH), are added to them, or their chain length is modified, thus making
them able to interact with water molecules [29,31,38,71]. Furthermore, the thermodynamic gas hydrate
inhibition efficiency for ILs with the same anion attached to shorter alkyl chain (C2) substituent is
better than that of ILs with longer alkyl chain (C4) substituent [10,72]. This indicates that the length of
alkyl chain [73] is one of the factors that contributes to the performance of hydrate inhibitor. Larger
alkyl chain carries hydrophobicity and prohibits cations in ILs to have a bond with the hydroxyl
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ion [58]. In studying the effect of IL cations, the efficiency of ILs as THIs reduced with increasing
chain length of the cation [43,74]. This is further evidenced by a study conducted by [20] using several
ammonium based ILs at 10 wt% by maintaining the same anion, where it shows a similar trend of
increasing average suppression temperature as the molecular weight decreases. It is also observed that
the concentration of ILs is directly proportional to the average suppression temperature, as shown
in research done by [37]. Inhibition performance is also enhanced when higher concentrations of ILs
are used.

∆Hdiss is referred to the gas hydrate dissociation enthalpy. Dissociation enthalpies is calculated by
employing Clausius-Clapeyron equation. For this purpose, derivative of the experimental HLVE data
is obtained. Dissociation enthalpy is calculated by finding slope of hydrate liquid vapor equilibrium
data using the Clausius-Clapeyron equation as the following formula (2) [58].

d ln P
d 1

T

=
∆Hdiss

zR
(2)

where in T is the equilibrium temperature and P is the pressure at which equilibrium temperature
is inspected. Universal gas constant is presented as R and z is the compressibility factor of the gas
used [58]. Hydrate dissociation enthalpy, ∆Hdiss is dependent upon two main factors which are, the
ability of clathrate structure to form hydrogen bond and cage occupancy of gas molecules [75]. Since
the dissociation enthalpy values do not significantly change, it can be concluded that the chemical
compounds used as inhibitor did not contribute significantly in the hydrate crystallization phase [58].

Other than average suppression temperature and hydrate dissociation enthalpy, the performance
of hydrate inhibitor is also evaluated on its electrical conductivity. Recently, Ref. [56] have studied
on the effects of tetrabutyl ammonium bromide (TBAB), tetraethyl ammonium bromide (TEAB), and
tetramethyl ammonium bromide (TMAB), [56] on inhibiting CH4 gas hydrate formation by isochoric
pressure search method. The experiment was conducted at temperature range of 282.4–276.8 K and
pressure range of 4.2–7.6 MPa by varying concentrations, i.e., 0.05 and 0.10 mass fraction. It is observed
that the addition of TMAB and TEAB shifts the phase equilibrium curve of CH4 gas hydrate to lower
temperature and higher pressure regions, whereas the addition of TBAB demonstrates characteristic of
hydrate formation effect. Electrical conductivity experiments results indicate that the shorter alkyl
chain length of the ammonium ILs yield to higher electrical conductivity, and the sequence of electrical
conductivity is TMAB > TEAB > TBAB [56]. The electrical conductivity is also found to be directly
proportional to the concentration. In general, ILs with higher electrical conductivity show higher
thermodynamic hydrate inhibition effects [43,56].

Recently, Fatemeh et al. [57] have studied on the effects of QAS and IL, BMIM-BF4 on the
thermodynamic stability via experiment (isochoric pressure-search method) and modeling. The van
der Waals-Platteeuw (vdWP) theory is the main reference in calculating the chemical potential of water
in hydrate phase [76]. On the other hand, the Peng-Robinson (PR) equation of state [77,78] is referred
to calculate the fugacity in the gas phase. The NRTL activity coefficient model [79,80] is also used
to investigate the water activity in the aqueous phase. It was found that the inhibition performance
of methane hydrate is enhanced when both QAS and IL is combined, in which, it shows average
temperature depression value of 2.7 K, when compared to its individual performances, with 0.8 K and
1.0 K for 25 wt% of TEACl and 25 wt% of BMIM-BF4, respectively.

4. Conclusions

This paper covers on different types of QAS for gas hydrate inhibition for different type of gases
at variety of operating conditions, concentrations, and by using different methods. It also gives a
correlation of length of alkyl chain, average suppression temperatures, hydrate dissociation enthalpies,
and electrical conductivity [81] to the effectiveness of the QAS as gas hydrate inhibitors. The QAS
exhibited hydrate inhibition characteristics that are similar to the traditional thermodynamic hydrate
inhibitors such as methanol and glycol [9], in which they shift the hydrate liquid vapor equilibrium
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curve to a lower temperature and higher pressure. It is recommended that future research works to be
conducted in investigating the synergy effects of QAS with other compounds, via chemical bonding
interactions, such as amino acids, fatty acids and other types of polymers.
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