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Abstract: In this study, a system for faults detection using a combination of Support Vector Data
Description (SVDD) with metaheuristic algorithms is presented. The presented approach is applied
to a real industrial process where the set of measured faults is scarce. The original contribution in this
work is the industrial context of application and the comparison of swarm intelligence algorithms
to optimize the SVDD hyper-parameters. Four recent metaheuristics are compared hereby to solve
the corresponding optimization problem in an efficient manner. These optimization techniques
are then implemented for fault detection in a multivariate industrial process with non-balanced
data. The obtained numerical results seem to be promising when the considered optimization
techniques are combined with SVDD. In particular, the Spotted Hyena algorithm outperforms other
metaheuristics reaching values of F1 score near 100% in fault detection.

Keywords: support vector data description; metaheuristics; fault detection; one class classification

1. Introduction

Currently, machine learning and nature-inspired algorithms are being applied in several research
fields to obtain optimal results. Some real applications include medical diagnosis based on the
patient’s symptoms [1], fraud detection in economic transactions [2], identification of patterns of
investment in order to buy/sell in a more efficient manner [3], image detection to predict city
traffic, machine failure and the design of autonomous vehicles, among others [4]. There are
some previous studies regarding fault detection and fault diagnosis based on Dynamic Weight
Principal Component Analysis (PCA) [5], Principal polynomial analysis [6], PCA and a Bayesian
network [7], deep convolutional neural network [8], Hidden Markov Model and Bayesian Network [9],
among others. However, statistical assumptions about the distribution of the process data should
be made in some of these approaches. Support Vector Data Description (SVDD) [10] and Artificial
Neural Networks (ANN) algorithms share the same concept using the linear learning model for pattern
recognition. ANN tries to converge to a local minimum using the gradient descent learning algorithm
and suffers from overfitting problems. On the other hand, SVDD tends to find a global solution during
training since the complexity of the model has been taken into account as a structural risk in SVDD
formation. ANN minimizes only empirical risk learned from training samples and SVDD considers not
only the empirical risk but the structure risk. Thus, SVDD training results show better generalization
capability than those obtained with ANN.
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In industry, machine learning classifiers are implemented to focus on faults detection. In [11,12],
reviews of machine learning applications in the manufacturing industry are presented. The use of
artificial neural networks in the modeling and optimization of processes is emphasized as well as the
application of SVM for quality assessment in industries. Another application of SVM for the early
failure prediction in the oil and gas industry is shown in [13]. In [14], a monitoring platform using
Artificial Neural Network and the Support Vector Machine is proposed and applied to the prediction of
the performance of aeronautical engines and health diagnosis. Nevertheless, conventional algorithms
are also created to perform two-class or multi-class classification tasks. Because of this, data containing
all class of information on the processes are required. Recently, machine learning algorithms have been
used in fault detection, but there is sometimes the downside of having more information available
from one of the kind. For example, if a relatively new machine is in operation, it is very likely that only
the data corresponding to normal operation are available. In this study, a method for fault detection
is proposed which is able to deal with processes or machines where observations or data about the
faults are scarce for the training phase by using the one class classifier known as Support Vector Data
Description (SVDD) [10]. The choice of hyper-parameters is one of the most important features for
SVDD. These parameters are associated with the hyper-sphere as well as with the kernel function
chosen for the classification. In this study, these hyper-parameters are simultaneously optimized using
metaheuristic techniques. Furthermore, a comparison among four optimization techniques is reported
in order to evaluate the quality of the obtained results. The results are satisfactory when applied to a
process of fault detection at low computational cost.

There are some studies covering different SVDD algorithm applications [15–17]—most of them
optimizing the hyper-parameters using approaches like grid search, which is computationally
expensive. To obtain these parameters in a more efficient manner, some authors have considered
metaheuristic algorithms. Particle swarm optimization (PSO) and genetic algorithms can be often
found in literature. Ref. [18] presents a brief general description about hyper-parameter optimization
in Support Vector Machines (SVM). In this context, the ant colony algorithm is chosen in [19] for feature
selection and parameter optimization in SVM for fault diagnosis. Ref. [20] used genetic algorithms
to optimize parameters corresponding to the kernel function. Optimization of the hyper-sphere
parameters together with those associated with the Gaussian radial base kernel function are studied
by [21] using grid search. Ref. [22] obtained optimal results by the combination of grid search and PSO.

In the last few decades, researchers have developed several nature-inspired optimization
algorithms that mimic some biological behaviors or physical phenomena. Techniques based on
swarm intelligence mimic the socially intelligent behavior of groups of species. Search algorithms start
with a group of randomly generated solutions generally naming a population evolving throughout
successive generations and promote the population improvement throughout the iterations. In this
study, a performance comparison is presented corresponding to four of these metaheuristics for
calculation of the hyper-parameters. Besides PSO, which has been widely used for these purposes,
the considered algorithms in this study have demonstrated their efficiency in solving optimization
problems applied to engineering. Furthermore, the performance is tested for the Spotted Hyena
Optimization (SHO) algorithm, Krill herd (KH) algorithm, and Squirrel Search Algorithm (SSA).

The SHO is a recent metaheuristic based on swarms which mimics the social behavior of these
animals in nature. Among the vast amount of metaheuristics, SHO has shown great advantages in the
exploration of diverse search spaces compared to other state-of-the-art approaches [23]. SHO has been
implemented to solve a wide range of engineering problems like prediction of materials resistance
during cutting processes [24]. SHO is used in combination with neural networks to improve the
prediction ability of these algorithms. In [25], two complex engineering problems with restrictions like
the design of bar armor and the design of multiple disk clutch brakes are solved. The results show
the efficiency of SHO in solving these problems compared to other optimization algorithms like PSO
and ACO. It showed its applicability in environments of a high dimension with a low computational
cost. Ref. [26] implements SHO for design optimization in aerodynamic surface and optical buffer



Appl. Sci. 2020, 10, 9145 3 of 17

problems where the obtained numerical results are then compared with algorithms like Grey Wolf
Optimizer, Genetic Algorithm, and PSO, among others. Likewise, the binary version of SHO has
been developed and used to build wrapping approaches for feature selection in different sets of UCI
data [27]. Moreover, SHO has been hybridized with other algorithms like PSO to improve its abilities
to solve various engineering problems [28]. Recently, Ref. [29] implements an SHO version able to
deal with multi-objective problems for the prediction of characteristics in gene selection through its
combination with machine learning algorithms like SVM.

The KH algorithm is a recent nature-based algorithm inspired by the individual krill herding
behavior. This algorithm was introduced in [30]. The KH algorithm works to achieve the minimum
distance between individual krill and the nearest food. This algorithm has been successfully used in
solving many problems of numerical optimization, electric and power system problems, text grouping,
breast cancer detection, and the training of neural networks [31–33]. More recently, the possibility of
applying this algorithm for the grouping of text documents is studied in [34], while the same problem
is addressed in [35] using a hybrid algorithm based on KH. The grouping based on the KH algorithm
is proposed in [36] for the network of wireless sensors. A method for diagnosing bearing failure based
on KH and a kernel extreme learning machine is proposed in [37]. An improvement of KH applied
to fault diagnosis with a Support Vector Machine to solve the power transformers’ fault diagnosis
problem based on the analysis of dispersed gases is presented in [38].

The SSA is a metaheuristic approach based on the behavior of flying squirrels which are a
diversified nocturnal tree rodent group that are highly adjusted to gliding locomotion. The SSA
mimics the dynamic food search behavior of flying squirrels and their effective form of locomotion,
known as gliding, which is a very effective mechanism for traveling long distances. The algorithm has
been recently proposed [39,40]. Moreover, it has proven its good performance in some applications,
for example in [41], is applied for the optimization of a backpropagation artificial neural network
(BPNN) using a multi-objective method based on SSA to optimize the main parameters of a continuous
galvanization process for advanced DP Steels. In [42], SSA is used to optimize a complex problem
where combined heat and energy distribution for various regions is modeled integrating renewable
energy sources. In [43], a hybrid algorithm based on the combination of SSA and the optimization
of invasive weed is proposed. This algorithm is combined with the Support Vector Machine and
the deterministic maximum likelihood algorithm to perform the classification of air quality levels.
Recently, a Chaotic SSA variant for optimum programming of multiple tasks in an infrastructure cloud
environment as service is reported in [44].

The main contribution of this paper consists of a fault detection system using a combination of
SVDD with some optimization methods like SHO, KH, SSA, and the well-known PSO. The effectiveness
of the used different meteheuristics, for the parameters optimization corresponding to the hyper-sphere
as well as those associated with the Gaussian radial basis kernel used in SVDD, is compared. As it
will be shown, promising results are obtained when the mentioned swarm intelligence algorithms are
combined with SVDD and applied to fault detection in a real industrial problem.

The rest of the paper is organized as follows: theoretical background is presented in Section 2,
the proposed methodology for fault detection is described in Section 3, and this is followed by the
industrial application section and finally some conclusions and future work are discussed in the
last section.

2. Theoretical Background

2.1. Support Vector Data Description

Tax and Duin [10] proposed the SVDD classification method which determines a close boundary
around the data set for a given class: a hyper-sphere characterized by a center and a radius R ≥ 0 that
defines a separation between the inner region with high data density and the outer region with low
density. The data that lie right at the limit of the hyper-sphere are called the support vectors while
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those outside are the outliers. Let {xi : i = 1, 2, 3, . . . , N} be a column vector set and x2 = x · x the
training set for which a description must be specified and assume that xi’s show variances in all given
directions. The data set delimitation of the inner region of the hyper-sphere will be minimized with an
error function which minimizes the possibility of accepting outliers and such a function is defined as:

min F(R, a, ξi) = R2 + C ∑
i

ξi

(1)

s.t. ‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i

where ξi are the slack variables that will penalize the largest distances, and C is a control parameter
of the trade-off between volume of the hyper-sphere and the errors [45]. Applying the Lagrange
multipliers method, the following equations arise:

L(R, a, αi, γi, ξi) = R2 + C ∑
i

ξi −∑ αi

{
R2 + ξi −

(
‖xi‖2 − 2a · xi + ‖a‖2

)}
−∑

i
γiξi

(2)

with αi ≥ 0 as Lagrangian multipliers and γi > 0.
The dual formulation of the equations in (2) can be obtained by solving the KKT conditions,

which reads

min ∑
i

αi (xi, xi)−∑
i

∑
j

αiαj
(
xi, xj

)
(3)

s.t. 0 ≤ α ≤ C

In case a given xi satisfies ‖xi − a‖2 < R2 + ξi, then αi = 0; otherwise, when xi satisfies
‖xi − a‖2 = R2 + ξi, the corresponding Lagrange multiplier αi is strictly greater than zero.

The vectors xi corresponding to αi > 0 represent the set of vectors necessary to characterize a set
of data, and this set of vectors can be called support vectors of the description [46]. When there is a
new vector z, the distance to the center of the sphere can be computed. If this distance is smaller than
R, z is accepted as a new vector in the description of the data, that is,

‖z− a‖2 = (z · z)− 2
l

∑
i=1

αi (z · xi) +
l

∑
i=1

l

∑
j=1

αiαj
(
xi · xj

)
≤ R2 (4)

Note that, if the inner product in Equation (2) is replaced with a kernel function K (xi, xi) a
description for nonlinear data sets can then be obtained. In this manner, data are mapped to a
higher dimension feature space by means of the kernel function, and this makes the nonlinear data
separable [47]. Thus, the problem can be reformulated as follows:

min ∑
i

αiK (xi, xi)−∑
i

∑
j

αiαjK
(
xi, xj

)
(5)

s.t. 0 ≤ α ≤ C

where αi remains as the Lagrange multipliers and K
(
xi, xj

)
is a kernel function used as a

functional mapping.
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2.2. Spotted Hyena Optimizer (SHO)

Proposed by Dhiman and Kumar [48], SHO is a recent optimization technique that mimics the
behavior of spotted hyenas when hunting. Spotted hyenas are social animals, and they hunt for prey
by means of trusted friends groups and through their great ability to recognize their prey. These groups
can be of up to 100 hyenas, and this is why the hunting method tends to be very effective and gets
results in short periods of time. The main stages of this algorithm include searching, surrounding,
and attacking the prey, in addition to other spotted hyena-seeking behaviors. In SHO, there is a
search agent leader, and it is assumed that it knows the location of the prey. In this way, the other
agents update their position to form friend groups around the leader. Next, the mathematical models
corresponding to the mentioned several stages of this algorithm are described.

2.2.1. Encircling Prey

In this stage, the best current potential solution is considered like the prey. In that way, the other
hyenas update their position around it. The mathematical model corresponding to this behavior is
as follows: −→

D h =
∣∣∣−→B · −→P p(x)−−→P (x)

∣∣∣ (6)

−→
P (x + 1) =

−→
P p(x)−−→E · −→D h (7)

where
−→
D h determines the distance between the prey and the hyena, x shows the current iteration,

−→
B ,

and
−→
E are the coefficient vectors.

−→
P p is the position vector of the prey while

−→
P is the position vector

of the spotted hyena. The vectors
−→
B and

−→
E are calculated as follows:

−→
B = 2 · r

−→
d 1 (8)

−→
E = 2

−→
h · r
−→
d 2 −

−→
h (9)

−→
h = 5− (iteration ∗ (5/maxiteration)) (10)

where
−→
h decreases linearly from 5 to 0 in the course of the highest number of iterations. r

−→
d 1 and r

−→
d 2

are random vectors in [0, 1].

2.2.2. Hunting

Given that spotted hyenas hunt in “trusted friend” groups, the searching agents must form
conglomerates around the best agent. The following equations model such behavior,

−→
D h =

∣∣∣−→B · −→P h −
−→
P k

∣∣∣ (11)

−→
P k =

−→
P h −

−→
E · −→D h (12)

−→
C h =

−→
P k +

−→
P k+1 + · · ·+

−→
P k+N (13)

where
−→
P h defines the position of the first best hyena,

−→
P k shows the position of the rest of the hyenas,

and N refers to the number of hyenas calculated as follows:

N = Countnos

(−→
P h,
−→
P h+1, ..., (

−→
P h +

−→
M)
)

(14)

similarly,
−→
M is a random vector in [0, 1].
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2.2.3. Attacking the Prey

The mathematical formulation for attacking the prey reads

−→
P (x + 1) =

−→
C h
N

(15)

where
−→
P (x + 1) saves the best solution and updates the positions of other searching agents according

to the position of the best searching agent.

2.2.4. Searching for Prey (Exploration)

The vector
−→
B previously defined provides random values for the exploration during all iterations.

Therefore, this mechanism effectively allows for avoiding local optima even in the final iterations.

2.3. Krill Herd Algorithm (KH)

The KH algorithm is inspired by the simulation of small crustaceans (Krill) behavior which live
underwater. These crustaceans have the ability to form large swarms to avoid predators. The fitness
function in the KH algorithm used to solve global optimization problems is based on the density of
the swarm and the location of the food. Each krill migrates toward the area of highest density and at
the same time continues to search for the places that contain the most food. Increasing density and
foraging are used as a means to bring krill to global optimum levels at the end.

During the moving process, each krill moves towards the best option based on three essential
movements:

(i) movement generated by other krill;
(ii) food search activity;
(iii) physical diffusion.

The equation describing the krill moving process is as follows:

dXi
dt

= Ni + Fi + Di,

where Ni is the motion produced by other krill, Fi is the food search motion, and Di is the random
diffusion of the ith krill individual.

The direction of induced motion αi is decided by the following parts: target effect, local effect,
and a repulsive effect. For a krill individual, this movement can be defined as

Nnew
i = Nmaxαi + ωnNold

i

where Nnew
i , ωn, and Nold

i denote the maximum induced speed, the inertia weight, and the last
motion, respectively.

The food searching motion is influenced by two components: the food location and the previous
experience about food location. For the ith krill, this motion can be expressed as follows:

Fi = Vf βi + ω f Fold
i

where Vi is the feeding speed, ω f is the inertia weight, Fold
i is the last feeding motion, and

βi = β
f ood
i + βbest

i
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The physical diffusion is essentially a random process. This motion can be computed based on a
maximum diffusion speed Dmax and a random directional vector δ as follows:

Di = Dmaxδ

The position in KH from t to t + ∆t is given by the following equation:

Xi(t + ∆t) = Xi(t) + ∆t
dXi
dt

The interested reader is referred to [30] for more detailed information about the KH algorithm.

2.4. Squirrel Search Algorithm SSA

Recently, Ref. [39] proposed an innovative nature-inspired algorithm for optimization, the Squirrel
Search Algorithm, which has been very efficient in solving unconstrained numerical optimization
problems. The algorithm mimics the strategies of flying squirrels in searching for food sources and
escaping predators. A summer and winter phases are considered since the motion dynamics are
different depending on the season. This strategy allows it to escape from local minima, thus raising
the likelihood of reaching the global optimum. The algorithm considers a certain number of flying
squirrels in a forest. It is assumed that each squirrel is located on a tree. Each squirrel searches for
food by gliding among trees looking for the best food source and there are three types of trees: normal
tree (no food), oak tree (acorn nuts food source), and hickory tree (hickory nuts food source). It is
supposed that there is a population of N flying squirrels in the forest, one at hickory tree, N f s at acorn
trees, and the rest (1 ≤ N f s ≤ N) at normal trees. Each squirrel is represented by a vector with D
components corresponding to the dimension of the problem. Initially, the flying squirrels are in a
random position to start the algorithm and the location of the squirrels can be represented by the
following expression:

FSi = FSL + rand(1, D)× (FSU − FSL)

Since each row represents one squirrel, this matrix can be initialized in a random manner with
a uniform distribution between (0, 1) with the lower and upper dimensions of each squirrel as FSU
and FSL, respectively. Considering the full matrix, then the fitness evaluation corresponding to the
location for each squirrel gives a fitness vector with the value of the objective function. This vector is
arranged in ascending order in order to identify the best value associated with the best food source
(hickory tree Fh), another food source (acorn tree Fa), and the squirrels in normal trees Fn, in such a
manner that each squirrel can be identified.

Considering the case when foraging squirrels do not run into a predator, flying squirrels then
look for better food sources in the forest, which implies that Fh remains unchanged. The destination of
Fa is Fh and the destination of Fn is random between Fa or Fh. In the case when they find a predator,
they are forced to seek and find shelter in a random location. Their behavior can be mathematically
described as follows:

Case 1. The flying squirrels in acorn trees move to hickory trees, according to the following equation:

FSt+1
i =

{
FSt

i + dg × Gc × (Ft
h − FSt

i ) if r ≥ Pdp
random location, otherwise

Case 2. Some of the flying squirrels on normal trees move to the acorn trees looking for better
food and some that have already been fed move to hickory trees in order to store food. The new
locations read:

FSt+1
i =

{
FSt

i + dg × Gc × (Ft
a − FSt

i ) if r ≥ Pdp
random location otherwise
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where r ∈ (0, 1) is a random number, Pdp represents the predator appearance probability, t is the
current iteration, Gc a constant, and dg is the gliding distance. The detailed calculation of these
parameters are introduced in [39].

The season changes that help the algorithm to escape from local optima are considered by
calculating the season constant as follows:

St
c =

√√√√ D

∑
k=1

(Ft
ai,k − Ft

h,k)
2 i = 1, 2, . . . , N f s

Smin =
10e−6

(365)t/(T/2.5)

where T is the maximum number of iterations and c is the current iteration. Moreover, the condition
is verified if St

c < Smin. If this happens, the flying squirrels are relocated according to the
following equation:

FSt+1
i = FSL + Lévy(n)× (FSU − FSL)

All parameters suggested in [39] have been used.

2.5. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population search algorithm based on the simulation
of the social behavior of birds, bees, or a school of fishes [49]. In this stochastic search technique,
a multidimensional vector represents a particle in a multidimensional search space. These particles
move toward the next position depending on the velocity vector associated with them. The velocity
is updated based on the current velocity and the best position it has explored so far. This algorithm
used the global best solution concept to obtain the optimal solution. At each iteration, the global best
solution is recorded and updated [50].

Let yi = (yi1, yi2, ..., yid)
t be the i-th particle of the swarm in a d-dimensional search space

with a corresponding velocity vi = (vi1, vi2, ..., vid)
t. Thus, the equations that conduct the particle’s

movements read

vi(t + 1) = wvi(t) + c1φ1(pibest − yi(t))

+ c2φ2(pgbest − yi(t))

yi(t + 1) = yi(t) + vi(t + 1)

where c1 and c2 are acceleration coefficients, and φ1 and φ2 are random variables with uniform
distribution in [0, 1]. pibest and pgbest are the best local and global particle positions so far, respectively.
w denotes the inertia weight which shows the effect of previous velocity vector on the new vector.

3. Methodology for Fault Detection

The methodology presented in this study consists of pre-processing of data, that is, cleaning
and structuring data to obtain a matrix of m observations with n process variables. Once this is
done, the different metaheuristics are implemented to optimize the training of a one-class classifier
(SVDD), that is, the hyper-parameters are optimally found that improve the abilities of SVDD for faults
detection in industrial processes where there is not much faulty information available. In particular,
advantages of the exploration and exploitation of metaheuristic algorithms are taken in order to tune
the hyper-parameters C in SVDD and s for the RBF kernel (16). Once the SVDD training is optimized,
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it will be ready to monitor new data and detect possible faults in the multivariate industrial process.
Figure 1 shows the process of the described methodology:

K(xi, xj) = exp
(
−
∥∥xi − xj

∥∥2 /2s2
)

(16)

Figure 1. Fault detection system.

With the purpose of performance comparison during the optimization and training processes
of SVDD, some metaheuristic algorithms such as SHO, KH, SSA, and PSO are implemented which
show great efficiency in solving engineering problems. Thus, four approaches arise and need to be
compared, that is: (1) SHO-SVDD, (2) KH-SVDD, (3) SSA-SVDD, and (4) PSO-SVDD. The metric
under consideration is the well known F1 score (17) due to the fact that this metric takes into account
precision and sensitivity. Such metric is computed based on the true and false positives (TP and FP)
and negatives (TN and FN) (18) and (19). Moreover, this is highly relevant in the detection of faults
in industrial processes. The F1 score value is found between 0 and 1, that is, a value of 1 means that
the algorithm can detect the faults without errors. In this sense, the possible solutions generated by
the different metaheuristics (particles, group of hyenas, etc.) for both hyper-parameters (C and s)
are used in the training and testing phases of SVDD yielding several values of F1 score. Therefore,
the different metaheuristics will adjust their solutions through the iterations in order to maximize the
F1 score value:

F1 score =
2 · Re · Pr
Re + Pr

(17)

Pr =
TP

TP+FP
(18)

Re =
TP

TP+FN
(19)

4. Industrial Application

The four approaches described above are applied to the injection moulding process of car
pedals in a local automotive industry. The implementation is carry out in a plastic injection machine
with the capability to produce four pieces per cycle and save the relevant information in each run
i.e., the parameters used to produce such pieces are automatically stored in a database. Subsequently,
the pieces are classified as good or bad through several quality tests carry out by the technical staff.
The injection moulding process involves 36 variables listed in Table 1. This data set was selected by the
expert personnel of the process and consists of variables of diverse nature like temperatures, pressure,
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time, etc., corresponding to several machine operational features such as heating power, mold position,
and injection time. Since this machine just recently started operating, the primary data provided by
the company include 154 observations of normal operation mode. Once the data are cleaned up and
structured, the training of the one-class classifier takes place. As soon as the algorithm is trained in
order to determine the system’s capability, 64 new observations provided by the company are tested.
This new data set includes observations corresponding to machine faults, that is, measurements where
the injection process does not meet the quality standards. Then, the F1 score metric is calculated and
the metaheuristics tune the SVDD hyper-parameters in order to achieve a better F1 score.

Table 1. Variables description.

Description

x f1 [F◦], Nozzle 1
x f2 [F◦], Nozzle 2
x f3 [Percent], Heating power zone 1
x f4 [Percent], Heating power zone 2
x f5 [Percent], Heating power zone 3
x f6 [Percent], Heating power zone 4
x f7 [Percent], Heating power zone 5
x f8 [Percent], Heating power zone 6
x f9 [in], Mold position value
x f10 [in], Opening run
x f11 [US ton], Closing force peak value
x f12 [US ton], Closing force real value
x f13 [s], Mold protection time
x f14 [F◦], Oil temperature
x f15 [F◦], Traverse
x f16 [s], Cooling time
x f17 [psi], Backpressure
x f18 [in3], Volume end screw

holding pressure
x f19 [psi], Holding pressure
x f20 [in3/s], Dosage power
x f21 [psi], Pressure at Switchover
x f22 [s], Cycle time
x f23 [lbf-ft], Mean spin
x f24 [lbf-ft], Peak value at spin
x f25 [psi], Specific injection pressure
x f26 [in3], Dosage volume
x f27 [in3], Injection volume
x f28 [s], Dosing time
x f29 [s], Injection time
x f30 [F◦], Cylinder zone 1
x f31 [F◦], Cylinder zone 2
x f32 [F◦], Cylinder zone 3
x f33 [F◦], Cylinder zone 4
x f34 [ft/s], Revolutions
x f35 [Wh], Injection work
x f36 [in3], Switching volume

The parameters of the different metaheuristics were selected according to their authors and the
corresponding values are specified in Table 2. The number of iterations was selected in experimental
testing where it was determined as the maximum amount of iterations that produced changes in the
results. The search range is from 0.001 to 600 for the hyper-parameters. Table 3 shows the different
values and descriptive statistics of the F1 score metric and the computational times corresponding to
30 runs using each of the four approaches. As it can be seen, the SHO algorithm reaches the highest
mean value of F1 score (0.9702) with a small variability i.e., standard deviation (std) equal to 0.0074.
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Furthermore, this approach presents the highest F1 score values in 80% of the experiments while SSA,
KH, and PSO achieve similar performance only in 16, 13, and 0%, respectively. On the other hand,
SHO presents the least computational time in the 100% of the runs achieving execution times two
and even three times less than SSA and PSO. In addition, SHO presents the minimum variability
with respect to the remaining approaches. In order to confirm the statistical significance of the results,
a Mardia test is first performed to determine if the data present multivariate normal distribution.
Since the data set is not normally distributed, the non-parametric ANOVA test of the Kruskal–Wallis is
used. Figures 2 and 3 show the corresponding box plots for the implemented approaches. As it can be
seen in Figure 2, SHO reaches the highest median F1 score value with low variability. On the other
hand, the remaining approaches present the equal median F1 score values. However, KH shows the
highest variability on its results. Although SSA sometimes yields similar results than those of SHO,
they are so sporadic throughout the runs which is the reason for the boxplot to show these values as
outliers. Figure 3 clearly depicts that SHO achieves the best computational times since the highest
outliers of SHO are below of the lowest valued reported by KH. Tables 4 and 5 present the numerical
results of the ANOVA test where for both cases (F1 score and computational time) the p-value is
much lower than the significance level of 0.05. Thus, there is a statistical significance of the difference
between the means of the results obtained by the four approaches. On the other hand, the high error
in the sum of the squares (SS) in the F1 score analysis shows that there is a great variability which
can not be explained by the predictors. Once considerable differences have been detected when using
the Kruskal–Wallis ANOVA, a post hoc Tukey test is performed to determine the mean with the most
significant difference. This analysis compares the means of all treatments with the mean of every
other treatment and the best available method is considered in cases when confidence intervals are
desired (for details, refer to [51]). Figures 4 and 5 show the graph of the estimates and comparison
interval. Each group mean is represented by a little circle and the interval is represented by a line
extending out from the circle. Two group means are significantly different if their intervals are disjoint
and they are not significantly different if their intervals overlap. As it can be seen, the SHO approach
does not overlap with any other in both cases (F1 score and computational times), i.e., the Tukey
test concludes that there is a significant difference between the SHO algorithm and the remaining
approaches. This shows that SHO-SVDD offers a higher performance for fault detection in the plastic
injection machine (F1 score is equal to 0.9702 in average) with a shorter computational training
time. Finally, the overfitting effect is analyzed to test the SHO-SVDD generalization performance.
The complete data set (normal and mixed operation samples) is used to implement a K-fold cross
validation procedure. In addition, 5-fold (test 1) and 10-fold (test 2) cross validation are computed
30 times, and F1 score mean value is calculated i.e., a total of 150 and 300 training-test experiments are
computed, respectively. The obtained F1 score mean values are 0.9701 for test 1 and 0.9714 for test 2,
both are very close to F1 score mean value of 0.9702 obtained in the previous analysis. Considering
this, it is concluded that the SHO-SVDD approach for fault detection presents a good generalization
for this particular data set.

Table 2. Parameters configuration for each algorithm.

SHO KH SSA PSO

Number of iterations 200 200 200 200
Population size 50 50 50 50

v f = 0.02 , N f s = 3 w = 0.5
Other parameters Dmax = 0.005, c1 = c2 = 2,

Nmax = 0.01
wn = 0.1 + 0.8(1− i/200)
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Table 3. F1 score—Times.

F1 Score Time
SHO KH SSA PSO SHO KH SSA PSO

1 0.9620 0.9189 0.9610 0.9189 76.6396 112.7972 139.2550 207.6410
2 0.9744 0.9189 0.9189 0.9189 78.2157 114.3666 149.3458 209.0972
3 0.9512 0.9189 0.9750 0.9189 77.4362 113.8831 129.8195 208.6143
4 0.9744 0.9189 0.9189 0.9189 77.4033 113.4381 149.1254 208.5458
5 0.9744 0.9189 0.9189 0.9189 77.6753 114.3179 147.2649 207.9583
6 0.9750 0.9189 0.9189 0.9189 76.9510 113.6539 155.0708 209.6714
7 0.9744 0.9189 0.9744 0.9189 77.3957 114.0773 142.7828 211.6702
8 0.9750 0.9189 0.9750 0.9333 79.0279 113.6960 128.8649 212.5049
9 0.9750 0.9189 0.9189 0.9189 78.7634 113.6895 143.1924 208.9668
10 0.9744 0.9189 0.9211 0.9189 83.3741 113.5960 142.3234 209.6382
11 0.9630 0.9189 0.9750 0.9189 80.4753 113.8772 116.8845 210.7641
12 0.9750 0.9189 0.9189 0.9189 82.3348 114.1014 151.0041 209.1223
13 0.9750 0.9189 0.9189 0.9189 79.5617 114.0026 149.3981 208.3499
14 0.9750 0.9189 0.9189 0.9189 78.9463 114.1080 146.5968 208.5490
15 0.9750 0.9189 0.9189 0.9189 79.7457 113.7620 151.1163 210.4518
16 0.9744 0.9189 0.9351 0.9189 88.0263 113.7218 135.8897 209.4198
17 0.9512 0.9189 0.9189 0.9189 78.0516 113.8042 147.1367 209.8243
18 0.9620 0.9189 0.9189 0.9189 77.6847 113.7368 147.1347 213.8261
19 0.9744 0.9744 0.9189 0.9189 77.9648 98.1384 145.6228 208.7176
20 0.9620 0.9744 0.9189 0.9189 79.1865 114.2702 152.3700 208.1235
21 0.9744 0.9744 0.9189 0.9189 79.1609 114.2038 146.7939 209.6390
22 0.9750 0.9744 0.9189 0.9189 76.4243 114.1394 148.8082 210.0689
23 0.9630 0.9744 0.9189 0.9189 76.2201 113.5049 147.7095 207.0849
24 0.9750 0.9744 0.9189 0.9189 78.9390 113.6086 145.8267 208.5851
25 0.9750 0.9744 0.9189 0.9189 75.2608 113.7726 149.5031 225.5017
26 0.9744 0.9744 0.9744 0.9189 74.3404 113.8676 129.5610 210.0427
27 0.9744 0.9744 0.9189 0.9189 74.6434 114.3396 148.6370 207.7600
28 0.9620 0.9744 0.9750 0.9189 74.9797 113.4536 131.1206 209.6813
29 0.9620 0.9750 0.9189 0.9189 74.6099 93.0891 154.4285 207.8903
30 0.9750 0.9750 0.9189 0.9189 76.3885 114.4280 157.7352 213.1721
Mean 0.9702 0.9411 0.9321 0.9194 78.1942 112.6482 144.3441 210.0294
Std 0.0074 0.0277 0.0232 0.0026 2.8170 4.6904 9.1777 3.3325

Table 4. F1 score Kruskal–Wallis test.

Source SS df MS Chi-sq p-Value

Columns 56,089.6 3 18,696.5 57.3 2.2188 × 10−12

Error 60,398.9 116 520.7
Total 116,488.5 119

Table 5. Computational times Kruskal–Wallis test.

Source SS df MS Chi-sq p-Value

Columns 135,000 3 45,000 111.57 5.0394 × 10−24

Error 8990 116 77.5
Total 143,990 119
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5. Conclusions and Future Work

In this paper, a methodology for fault detection in multivariate processes is presented.
This proposal is able to work in industrial processes and machines which are recently operated.
It can deal with little data about faults by the implementation of a one class classifier (SVDD).
Such algorithm is optimized during its training stage, that is, its hyper-parameters are tuned using
a recent metaheuristic based on the behavior of spotted hyenas (SHO). In order to evaluate its
computational performance, SHO has been compared with three other metaheuristics (KH, SSA y PSO)
that have been successfully implemented for solving several engineering problems. The approaches
were tested using data taking from a plastic injecting machine in the automotive industry. The results
after 30 runs show that SHO reaches higher values in the F1 score metric, that is, it shows higher
performance for fault detection in considerably shorter computing time with respect to the rest of the
considered approaches. Furthermore, a non-parametric statistical analysis was performed to prove the
statistical significance of the superior performance of SHO. The Kruskal–Wallis test and the post hoc
analysis show that there is a significant statistical difference between SHO and the other metaheuristics.
Moreover, SHO-SVDD was tested for generalization performance using 5-fold and 10-fold cross
validation. The obtained F1 score mean values were 0.9701 and 0.9714, respectively, which are very
close to the F1 score mean value of 0.9702 obtained by the proposed analysis. Considering this, it is
concluded that the SHO-SVDD method presents a good generalization to classify this data set. Based on
this, the SHO-SVDD approach seems to be the best to carry out fault detection for this particular
industrial application. As future work, some feature selection approaches will be implemented
to obtain a subset of variables that allows for performing a fault diagnosis in order to trace back
operational issues or other problems in the process.
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