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Abstract: Motion planning is one of the most important technologies for free-floating space robots
(FFSRs) to increase operation safety and autonomy in orbit. As a nonholonomic system, a first-order
differential relationship exists between the joint angle and the base attitude of the space robot, which
makes it pretty challenging to implement the relevant motion planning. Meanwhile, the existing
planning framework must solve inverse kinematics for goal configuration and has the limitation
that the goal configuration and the initial configuration may not be in the same connected domain.
Thus, faced with these questions, this paper investigates a novel motion planning algorithm based on
rapidly-exploring random trees (RRTs) for an FFSR from an initial configuration to a goal end-effector
(EE) pose. In a motion planning algorithm designed to deal with differential constraints and restrict
base attitude disturbance, two control-based local planners are proposed, respectively, for random
configuration guiding growth and goal EE pose-guiding growth of the tree. The former can ensure the
effective exploration of the configuration space, and the latter can reduce the possibility of occurrence
of singularity while ensuring the fast convergence of the algorithm and no violation of the attitude
constraints. Compared with the existing works, it does not require the inverse kinematics to be solved
while the planning task is completed and the attitude constraint is preserved. The simulation results
verify the effectiveness of the algorithm.

Keywords: free-floating space robot; motion planning; sampling-based motion planning;
nonholonomic robot

1. Introduction

Free-floating space robots (FFSRs) are composed of a manipulator and a base spacecraft. The base
attitude and position control system is closed, and the base attitude is adjusted by joint motion. This
mechanism has the advantages of saving fuel and prolonging system life. Therefore, FFSRs are widely
employed for on-orbit services [1]. Motion planning is one of the fundamental technologies for FFSRs
to achieve autonomy [2]. For a manipulator, it is required that the joint motion is planned so that
the end-effector (EE) moves from the initial pose to the goal pose. The general motion planning
framework for a manipulator consists of three steps [3]. First, inverse kinematics is used to map the
goal EE’s pose to a goal configuration. For a fixed base manipulator, the configuration space is the
joint space, and the configuration space for FFSRs includes joint space and base attitude space. Then,
the path from the initial configuration to the goal configuration is generated through a sampling-based
planning algorithm or other algorithms. Finally, the generated path points are interpolated to obtain the
trajectory. This framework works well for a base-fixed manipulator, while it is not suitable for FFSRs.
FFSRs have nonholonomic characteristics, and a first-order differential relationship exists between joint
angles and base attitude. In addition, this planning framework still has the following disadvantages.
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First, it is difficult to obtain the analytical inverse kinematics resolution. Second, the obtained goal
configuration and the initial configuration may not be in the same connected domain.

For the motion planning of an FFSR, scholars have studied the steering problem at an early
stage, where obstacles were not considered in their methods. The FFSR can move from an initial
configuration to a goal configuration by using action series generated by these steering methods.
Based on the virtual manipulator (VM) model [4], Vafa, Z. et al. developed the self-correcting motions
method [4] and the disturbance map (DM) method [5]. In the self-correcting motions method, periodic
joint motions are used to adjust base attitude. In the DM method, the joint space is divided into grid
points, and the joint motion directions with the largest and smallest base attitude disturbances are
drawn at each point. Based on this, the path with less base attitude disturbance is selected. Nakamura,
Y. and Mukherjee, R. [6] used Lie brackets and the Frobenius theorem to discuss the nonholonomic
characteristics of FFSRs and proposed the bi-directional approach using the Lyapunov function. In this
method, the base attitude and the joint position are simultaneously controlled by using only the motion
of joints. Fernandes, C. et al. [7] proved that the cat-falling problem is equivalent to the nonlinear
controllability problem. Then, they proposed the steering method of coupled rigid bodies and used this
method to control the base of an FFSR. The above methods emphasize the nonholonomic characteristics
of FFSRs. Joint motion is used to manipulate the base attitude in these methods. However, obstacles
are not considered, and they did not discuss the situation where the initial configuration and the goal
configuration are not in the same connected domain.

The second method is to convert the motion planning of an FFSR into a nonlinear optimization
problem through direct and indirect methods. Yamada, K. [8] used the variational method to plan the
joint path, and the base attitude can be arbitrarily changed in this method. Suzuki, T. and Nakamura,
Y. [9] extended Yamada, K.’s method, and the spiral perturbation was used to approximate joint motions.
The pose of EE and the base attitude can be arbitrarily changed by only controlling 6-degree-of-freedom
joints in the method proposed by Suzuki, T. and Nakamura, Y. In 2010, Lampariello, R. [10] studied the
motion planning problem of capturing a spin target for space robots, and the problem was converted
into a nonlinear optimization problem. The success of this optimization-based approach for robotic
motion planning [11–13] inspired scholars to apply this idea to the motion planning of space robots.
Misra, G. et al. [14] studied the motion planning problem of a space robot with task constraints in 2017,
and the problem was constructed as a convex quadratic programming problem. Inspired by Schulman,
J. et al. [11], Virgili-Llop, J. et al. [15] used convex optimization to develop a motion planning method for
a space robot to capture a spin target. This method divides the process of capturing the spin target into
the whole system transfer phase and the internal reconstruction phase. Therefore, the whole planning
process is divided into two suboptimization problems. However, the aforementioned methods are
not aimed at a space robot working in free-floating mode. Due to the advancement of nonlinear
optimization technology and the promotion of various open-source optimization tools, regarding
robotic motion planning problem as an optimal control problem is receiving more and more attention.
However, this method can lead to local minimum results.

The last type of method is specially developed for FFSRs and is called the approach based on
direct kinematics (ABDK). Polynomials with unknown coefficients are first used to parameterize
joint trajectories, and then the initial and final configurations of FFSRs are used to eliminate some
unknown coefficients of polynomials. The remaining unknown parameters are finally regarded as
parameters to be optimized. The objective function is set as a base attitude disturbance at the final time,
and the motion planning problem is converted into a nonlinear optimization problem. The nonlinear
optimization problem can be solved using particle swarm optimization [16], genetic algorithm [17],
differential evolution algorithm [18], and other metaheuristic algorithms. Optimization-based approach
for robotic motion planning (OPMP), such as CHOMP (covariant Hamiltonian optimization for motion
planning) [12] and STOMP (stochastic trajectory optimization for motion planning) [13], also convert
motion planning problems into nonlinear optimization problems, but they are different from ABDK.
The trajectory is discretized into N-1 segments in OPMP, and then positions of N discrete points are
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selected as the variables to be optimized. Therefore, the trajectory shape is easy to be controlled
by optimizing N discrete points, and the no-collisions constraint is also easily formulated. Finally,
in OPMP, the optimization problem is solved using fast convergence optimization methods based on
gradient or the Hessian matrix. In ABDK for FFSRs, the trajectory is parameterized, with only the
initial and final configurations, so the trajectory shape cannot be controlled. Finally, ABDK for FFSRs
does not consider obstacle avoidance, so the researchers who use this method do not consider whether
the initial configuration and the target configuration are in the same connected domain.

Sampling-based motion planners (SBMPs) can efficiently solve the motion planning problem
for robots with high degrees-of-freedom (DOF), and local minima can also be avoided in SBMPs.
Among existing SBMPs, rapidly exploring random trees (RRTs) are especially suitable for motion
planning with differential constraints. Basic RRTs usually take the initial configuration and the goal
configuration as input to construct a tree data structure. The initial configuration is selected as the
root node, and the goal configuration is used as a heuristic. The tree is grown in the iterative process,
and local planning is performed from one selected node of the tree in each iteration; we call this node a
node to be extended. During the process of local planning, a guiding point is used to guide the growth
of the tree. The guiding point can be a randomly selected configuration or the goal configuration. Goal
configuration guiding growth ensures the rapid convergence of the algorithm, while random guiding
growth prevents the algorithm from falling into a local minimum. However, this framework also has
the following problems. First, it is difficult to obtain an analytical inverse kinematics resolution for a
manipulator. Second, the target configuration and the initial configuration may not be in the same
connected domain [19]. In order to solve this problem, Weghe, M. V. et al. [20] gave a solution based
on the basic framework of RRTs and called this method Jacobian transpose-directed rapidly exploring
random trees (JT-RRTs). The goal EE pose was used in goal guiding growth in JT-RRTs. Moreover,
in order to deal with local planning in goal guiding growth, the error of the EE pose was mapped to
the configuration space through the transpose of the Jacobian matrix. The JT-RRTs method is very
powerful for the motion planning of a base-fixed manipulator, but it is not enough for the motion
planning of FFSRs for the following two reasons. First, FFSR is a nonholonomic system with differential
constraints, while JT-RRTs can only give a geometric path. Second, the local planning approach for
goal guiding growth in JT-RRTs cannot ensure that there is no violation of base attitude constraints.

Faced with these questions, this paper investigates a novel motion planning method based on
RRT for an FFSR from an initial configuration to a goal EE pose. The main problem in motion planning
of FFSRs is that it is a system with differential constraints, and the base attitude disturbance must
be restricted in the final trajectory planned for it. The final trajectory is composed of several locally
planned trajectories when using RRTs for motion planning. In order to meet the above requirements,
the following specific local planners are designed.

i. For random configuration guiding growth, three local planning schemes can be found for the
motion planning of robots with differential constraints. The first scheme selects a random
action and integrates for a certain period of time from the node to be extended with this
action. The selected action is treated as a constant during the integration. The second scheme
solves a two-point boundary value problem. The third scheme gives several actions that are
reasonably distributed in the action space and then integrates for a certain period of time
from the node to be extended with these actions. The selected actions are also treated as
constants during the integration. Finally, the action with an integration result that is closest
to the guiding point is chosen. Obviously, the first and third schemes are not convenient
for considering the base disturbance, and the second scheme is time-consuming. This paper
proposes a control-based local planner for random configuration guiding growth of the tree.
Actions are selected according to the error between the guiding point and the point to be
expanded in this local planner. This local planner can achieve rapid local planning and restrict
the base attitude disturbance.
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ii. For goal EE pose guiding growth, the requirements of base attitude disturbance cannot be
omitted. For JT-RRTs, only the error of EE needs to be considered in the local planning of
goal EE pose guiding growth. In JT-RRTs, the DOF of the EE pose is 6, while the DOF of joint
space is 7, which is redundant relative to the former. However, the local planner for FFSRs
must deal with not only the error of EE but also the base disturbance, which has another 3
DOF. This paper proposes a control-based goal EE pose guiding local planner (CB-EEPG-LP)
for goal EE pose guiding growth. Different from the local planner in JT-RRTs, CB-EEPG-LP
can not only guide the tree toward the goal pose but also coordinate the base attitude when
necessary. The actions are designed based on two kinds of errors: the first is the error between
the goal EE pose and the EE pose corresponding to the configuration to be expanded, and the
second is the error between the reference goal base attitude and the attitude corresponding
to the configuration to be expanded. The proposed local planner can complete the goal EE
pose guiding growth and avoid singularity as much as possible. Moreover, the base attitude
disturbance meets the requirements.

The rest of this paper is organized as follows. Motion equations for FFSRs are presented in Section 2.
The proposed motion planning algorithm is introduced in Section 3. In Section 4, two scenarios of
numerical simulations are carried out to validate the proposed motion planning algorithm. Section 5
concludes the work.

2. Motion Equations of an FFSR

The motion model is fundamental for the motion planning and control of a robot, and this part
establishes the motion equation of FFSRs. In this paper, RRTs are used for the motion planning of
FFSRs, which uses a random configuration and the goal EE pose to guide the growth of the tree. We call
them random configuration guiding growth (RC-GG) and goal EE pose guiding growth (GEE-GG),
respectively. The Jacobian matrix related to the state transition is needed to perform local planning
in RC-GG. For local planning of GEE-GG, the generalized Jacobian matrix and the Jacobian matrix
related to base attitude will be used, of which the former is used to reduce the end error and the latter
is used to adjust the attitude of the base. In order to detect whether an FFSR is in collision, a method is
proposed to calculate the centroid position of each rigid body of the FFSR.

The derivation of the above equations is based on the geometric relations between links. However,
the special characteristic also needs to be considered when establishing the motion equations of FFSRs.
Therefore, this section also gives the linear momentum and angular momentum conservation equations
in velocity form and the linear momentum conservation equation in position form. The symbol
definition is the same as that of general space robotics literature.

2.1. Basic Equations of Motion in Position Form

The basic equations of motion in position form only considers that the geometric relationship
between rigid bodies belongs to the FFSR. From the base to the nth link, the attitude transformation
matrix between the fixed coordinate systems of adjacent rigid bodies is i−1Ri, i = 1, 2, . . . , n, and it is a
function of the joint angle: i−1Ri = f1(θi), i = 1, 2, . . . , n. IR0 denotes the attitude transformation
matrix from the base coordinate system to the inertial coordinate system. It is a function of the base
attitude angle IR0 = f2(Ψb). Through the chain transformation, the attitude of each rigid body can be
obtained, and it can be described by the attitude transformation matrix from the coordinate system of
each rigid body to the inertial coordinate system:

IRi =
I R0

0R1
1R2 . . .

i−1 Ri (1)

As mentioned before, the configuration space for FFSRs includes joint space and base attitude

space. Therefore, the configuration parameter of FFSRs includes Θ =
[
θ1 θ2 . . . θn

]T
and Ψb.

The above formula reflects the mapping relationship between the attitude of each rigid body and the
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configuration parameter. Let r0 denotes the centroid position vector of the base; the centroid position
vector of each rigid body can be obtained recursively from r0:

ri = r0 + b0 +
i−1∑

j = 1

(
a j + b j

)
+ ai, i = 1, 2, . . . , n (2)

The position vector of the end of each rigid body is still recursively obtained from r0:

pi = r0 + b0 +
i∑

j = 1

(
a j + b j

)
, i = 0, 1, 2, . . . , n (3)

Vectors can be added only if they are expressed in the same coordinate system. Therefore,
the above vectors must be expressed in the inertial coordinate system when performing the calculation.
Representations of bi, ai in the inertial space are denoted as Ibi, Iai. Ibi, Iai, depending on the
configuration parameter, so in order to calculate ri and pi, r0 and the configuration parameter must be
known. In Section 2.3, we will show how to calculate r0 when the configuration parameter is given.

2.2. Basic Motion Equation and Momentum Conservation Equation in Velocity Form, Jacobian Matrix

The momentum conservation equation in velocity form is employed to derive the Jacobian matrix
related to state transition, the generalized Jacobian matrix, and the Jacobian matrix related to base
attitude. In order to obtain the momentum conservation equation in velocity form, the velocity equation
of each link must be given. The angular velocity of each link is

ωi = ω0 +
i∑

j = 1

k j
.
θ j, i = 1, 2, . . . , n (4)

The linear velocity of the mass center of each link is

vi =
.
ri = v0 +ω0 × (ri − r0) +

i∑
j = 1

[
k j ×

(
ri − p j

)] .
θ j, i = 1, 2, . . . , n (5)

In addition, the linear velocity of EE is

ve =
.
pe = v0 +ω0 ×

(
pe − r0

)
+

n∑
j = 1

[
k j ×

(
pe − p j

)] .
θ j (6)

According to Equations (4) and (6), the linear velocity and angular velocity of the EE can be
obtained. The matrix form is [

ve

ωe

]
= Jb

[
v0

ω0

]
+ Jm

.
Θ (7)

where Jb and Jm are the Jacobian matrixes relative to the base and the joint angle, respectively.

Jb =

[
E3×3 −p̃0e
03×3 E3×3

]
, p0e = pe− r0e, Jm =

 k1 ×
(
pe − p1

)
k1

k2 ×
(
pe − p2

)
k2

. . .
kn ×

(
pe − pn

)
k1


Given two vectors v =

[
x y z

]T
and w, the cross-product operator is defined as follows:

ṽ =


0 −z y
z 0 −x
−y x 0

, v×w = ṽw
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The linear momentum is

P = m0
.
v0 +

n∑
i = 1

(
mi

.
vi

)
= m0

.
r0 +

n∑
i = 1

(
mi

.
ri
)

(8)

Additionally, the angular momentum is

L =
n∑

i = 0

[
Iiωi + ri ×

(
mi

.
vi

)]
=

n∑
i = 0

[
Iiωi +

.
ri ×

(
mi

.
ri
)]

(9)

Substituting (4) and (5) into the above formulas and sorting them into matrix form, we can get the
linear momentum equation:

P =
[

ME M̃rog
T

][ .
v0

ω0

]
+ JTw

.
Θ (10)

where

rog = rg − r0, JTw =
n∑

i = 1

(miJTi)

JTi =
[

k1 ×
(
ri − p1

)
k2 ×

(
ri − p2

)
. . . ki ×

(
ri − pi

)
0 . . . 0

]
The angular momentum is

L =
[

M̃r0g Hw
][ .

v0

ω0

]
+ Hwφ

.
Θ (11)

where

Hw =
n∑

i = 1

(
Ii + mĩr0i

T̃r0i
)
+ I0, Hwφ =

n∑
i = 1

(IiJRi + mĩr0iJTi),r0i = ri − r0

JRi =
[

k1 k2 . . . ki 0 . . . 0
]

Put linear momentum and angular momentum equations together, and we can get[
P
L

]
=

[
ME M̃rog

T

M̃r0g Hw

][ .
v0

ω0

]
+

[
JTw
Hwφ

]
.

Θ (12)

Let

Hb =

[
ME M̃rog

T

M̃r0g Hw

]
, Hm =

[
JTw
Hwφ

]
where Hb is always invertible. The linear momentum and angular momentum of the FFSR are
conserved. The initial momentum of the system is assumed to be 0, and the base velocity can be
expressed as a linear function of the joint angular velocity:[ .

v0

ω0

]
= −Hb

−1Hm
.

Θ = HbΘ
.

Θ =

[
Hv

Hω

]
.

Θ (13)

Combining Equation (7), we can get [ .
ve

ωe

]
= Jg

.
Θ (14)
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where Jg is the generalized Jacobian matrix

Jg = −JbHbΘ + Jm

According to (13), we can also get
ω0 = Hω

.
Θ (15)

where Hω is called the Jacobian matrix related to base attitude. For the rigid body, the relationship
between the first derivative of attitude angle and angular velocity is

ω = N
[ .
α

.
β

.
γ

]T
(16)

where

N =


1 tan(β) ∗ sin(α) tan(β) ∗ cos(α)
0 cos(α) − sin(β)
0 sin(α)/ cos(β) cos(α)/ cos(β)


ω is expressed in the coordinate system of the base in Equation (16). Considering the Formulas

(15) and (16), the state transition equation of the FFSR can be gotten .
Θ
.

Ψb

 =

 En×n

N−1
(
IR0

)T

 .
Θ = Jx

.
Θ (17)

where Jx is the Jacobian matrix related to state transition.

2.3. Calculation of the Location of Feature Points Based on Configuration Parameters

In Section 2.1, basic equations of motion in position form only give the relationship among
the centroid position of each rigid body, the position of the base, and the configuration parameter.
Therefore, this section will give a method for calculating the base centroid position according to the
configuration parameter. Then, the centroid position of each rigid body can be calculated.

The linear momentum conservation of FFSRs is a holonomic constraint. It can be integrated into a
positional form. The equation of this integral form is shown in Equation (18). It means that the centroid
position of the FFSR, multiplied by the total mass of the system, is equal to the composition of the
centroid position of each rigid body multiplied by its mass.

Mrg = m0r0 +
n∑

i = 1

(miri) (18)

Bring Equation (2) into the above equation and merge the terms related to the position of the base
centroid; we can get

Mrg = m0r0 +
n∑

i = 1

(miri) = Mr0 +
n∑

i = 1

mi

b0 +
i−1∑

j = 1

(
a j + b j

)
+ ai


 (19)

where r0i = b0 +
i−1∑

j = 1

(
a j + b j

)
+ ai represents the position vector of the centroid of each link relative

to the base centroid. Therefore, the above formula can be written as

Mrg = Mr0 +
n∑

i = 1

(mir0i) (20)
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3. Motion Planning Algorithm for FFSRs

In this paper, an RRT-based planning algorithm is designed for FFSRs from an initial configuration
to a goal EE pose. In this method, it is not necessary to solve the inverse kinematics to obtain a goal
configuration corresponding to the target EE pose. RRTs have a tree data structure, and this data
structure includes vertexes and edges. Vertexes are configurations of FFSRs, and edges are local
trajectories. In the basic version of RRTs, the tree takes root in the initial configuration and grows in an
iterative manner. In each iteration, local planning is performed from one node of the existing tree to
generate a new edge and a new node. The algorithm is not terminated until EE reaches the goal or the
number of iterations reaches the upper limit.

In the process of local planning, guide points are used to guide the growth of the tree. Guide
points can be a random configuration or the goal EE pose, respectively called random configuration
guiding growth (RC-GG) and goal EE pose guiding growth (GEE-GG). GEE-GG ensures the rapid
convergence of the algorithm. RC-GG guarantees that the algorithm does not fall into a local minimum
caused by goal bias. For the RRT algorithm, when using the goal EE pose to guide the growth of the
tree, the tree will be directly extended toward the area closer to the goal EE pose, and this will speed up
the convergence of the algorithm. However, if the tree only extends directly toward the goal EE pose,
sometimes it will be stuck by obstacles or configuration limits, which means that the algorithm falls
into a local minimum. When using a random configuration to guide the growth of the tree, the tree
will be extended toward the unexplored area, and this will guarantee that the algorithm does not
fall into the local minimum caused by GEE-GG. RRTs introduce GEE-GG to a certain probability;
otherwise, it will perform random guided growth. That is, in each iteration of RRTs for FFSRs, Line 3
of Algorithm 1 generates a random number within 0~1. If this generated random number is smaller
than the constant p_g, the goal EE pose will be selected as the guiding point. Otherwise, a random
configuration will be selected as the guiding point. p_g is a constant between 0 and 1. After selecting
the guiding point, according to certain criteria, the node closest to the guide point in the existing tree is
selected as the node to be extended. We define this node as qExtended. Then, the algorithm performs
local planning, which can extend the tree toward the guiding point. Collision detection is performed
when necessary during local planning. The result of local planning includes a new node and a local
trajectory, and they can be added to the tree if they meet some requirements. The pseudo-code of the
basic RRT algorithm is shown in Algorithm 1. RC-GG and GEE-GG are subalgorithms of Algorithm 1.
RC-GG is used in Line 6 of Algorithm 1 and GEE-GG is used in Line 4 of Algorithm 1. Variables and
functions used in Algorithm 1 are defined in Table 1.

Algorithm 1 RRTs for Free-Floating Space Robots

1 Tree.V.init(q_I)
2 for i = 1 to K do
3 If1 rand() < p_g
4 [q_new, Local_Traj, is_Reaching_Goal, Is_Extend] = Extend_Toward_Goal()
5 Else
6 [q_new, Local_Traj, Is_Extend] = Extend_Randomly()
7 End if1
8 If2 Is_Extend = true
9 Tree.Add(q_new, Local_Traj)
11 End if2
12 If3 is_Reaching_Goal = true
13 Break;
14 End if3
15 End for
16 Return tree
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Table 1. Variables and functions used in Algorithm 1.

1 Tree Tree data structure generated by the algorithm

2 V Vertex of the tree

3 rand() A function that generates a real number between 0~1

4 q_new New vertex (configuration) generated by the local planner

5 Local_Traj Local trajectory generated by the local planner

6 is_Reaching_Goal A mark indicating whether the goal has been achieved

7 Is_Extend A mark indicating whether the local planner is successful

8 Tree.Add A function that adds the generated new node and local
trajectory to the tree

9 Tree.V.init(q_I) Initialize the tree

10 Break Jump out of the loop

3.1. Overview of the Algorithm

For RRTs, the key steps include random sampling, selection of qExtended, local planning, and collision
detection. FFSRs are nonholonomic, and their attitude disturbance during the motion cannot exceed a
certain range. Therefore, the following problems must be considered and solved when using RRTs for
motion planning of FFSRs:

A. Random sampling: The configuration space of the FFSR includes the joint space and the space
of the base attitude. In order to meet the constraint on base attitude disturbance, it is necessary
to limit the sampling space of the base attitude.

B. Selection of node to be expanded: Different selection criteria should be considered for GEE-GG
and RC-GG when selecting qExtended. For the former, the requirement of avoiding larger base
disturbances must be considered, so greater weight to the change of base attitude should be
provided during the design of the metric. For the latter, the pose change of the EE should be
used as the major part of the metric design.

C. Local planning: This article designs two types of local planner; one of them is for RC-GG,
another is for GEE-GG. The details of these two local planners will be presented in Section 3.2.

D. Collision detection: First, in order to test whether a certain configuration is in collision,
the centroid position and attitude of each rigid body of the FFSR can be calculated through
the related methods in Part 2. Combined with the size parameters of each rigid body, the area
occupied by each rigid body in space can be calculated. Then, collision detection can be
completed according to the corresponding collision detection algorithm. Second, according to
the previous statement, we can see that every local planning scheme has an integration process
Each integration will produce a new configuration. The new configuration may change very
little from the last configuration because the step length of the integration may be very small.
Therefore, it is not necessary to detect the new configuration generated in each integration. In the
collision detection module of the planner, a new mechanism is introduced to determine when to
perform collision detection. This mechanism will be stated in the local planning section.

3.2. Local Planning

3.2.1. Local Planner for Random Configuration Guiding Growth

The purpose of local planning corresponding to RC-GG is to grow node qExtended toward a random
guiding configuration to generate local trajectories and new nodes. It is not necessary to reach the
random guiding configuration in this local planner. This paper proposes a control-based local planner
for RC-GG. The planner runs in an iterative manner. The action in each iteration is designed according
to the error between the current configuration and the random guiding configuration. The purpose of
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this local planning is to extend the tree toward the random guiding configuration instead of reaching
the random configuration. Hence, it does not require the convergence of the error between the current
configuration and the random guided configuration.

The pseudo-code of this algorithm is shown in Algorithm 2. Variables and functions used
in Algorithm 2 are defined in Table 2. The basic principle of the algorithm is as follows. First,
a configuration in free configuration space is randomly sampled and the nearest node in the existing
space relative to it is found as qExtended. Second, iterative local planning from qExtended is performed,
and the iteration continues until the termination condition is reached.

Algorithm 2 Extend_Randomly with Control Based Local Planner

1 q_Sample = Random_Config()

2
q_Near = Nearest_Node(Tree, q_Sample);
q_Present = q_Near;
Last_Checked_Config = q_Present

3 Shall_End = false
4 While (Shall_End = false)
5 J_Base = Jacobian_Base(q_Present)
6 J_x = [J_Base; eye(n, n)]
7 Delta_q = q_sample − q_present

8
Dot_Joint = pinv(J) * Delta_q;
Dot_Base = J_Base * Dot_Joint

9 q_Present = q_Present + [Dot_Base; Dot_Joint] * time_step
10 If Max(q_present − last_Checked_Config) ≥ Collision_Check_Tresh_Hold
11 Is_Collision = Collision_Check(q_Present)
12 last_Checked_Config = q_Present
13 End if
14 Shall_End = is_Collision or is_q_Present_over_Tresh_Hold or is_Extend_over_Tresh_hold
15 End while
16 Is_Extend = if q_Present is far enough from q_Near
17 Return

Table 2. Variables and functions used in Algorithm 2.

1 q_Sample A randomly sampled configuration

2 Random_Config() A function that can generate a random configuration

q_Near Nearest node in the tree with respect to q_Sample

q_Present The current configuration in local planning

3 Last_Checked_Config Last detected free configuration

4 J_Base The Jacobian matrix related to base attitude

5 Jacobian_Base() A function which calculates J_Base

6 J_x Jacobian matrix related to state transition

7 Dot_Joint/Dot_Base First derivative of joint angle/base attitude angle

8 Collision_Check_Tresh_Hold A threshold that indicates the need for collision detection

9 Collision_Check() A function that used for doing collision checking

10 is_q_Present_over_Tresh_Hold A mark indicating whether the q_Present meets the limit

11 is_Extend_over_Tresh_hold A mark indicating whether the extension is far enough from the
node to be extended

A. Iterative local planning: This process corresponds to Lines 4 to 15 of the pseudo-code. Firstly,
the configuration error between qExtended and the random configuration is calculated; we defined
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this error as ∆q. Secondly, Hω at qExtended is calculated, which can be used to obtain the Jacobian
matrix Jx. Through the pseudo-inverse of Jx, ∆q can be mapped to the action space to get joint
angular velocity

.
Θ

.
Θ = Jx

+∆q (21)

∆q can be reduced if the robot moves with
.

Θ at qExtended. By multiplying
.

Θ by Hω,
.

Ψb

corresponding to
.

Θ can be obtained. Integrating
.

Θ and
.

Ψb from qExtended, a new configuration is
obtained, and we let this configuration be the next qExtended. Repeat the above process until the
termination condition of local planning is triggered, then exit local planning and return to the
new configuration and trajectory.

B. Collision detection mechanism: The collision detection mechanism corresponds to Lines 2 and
10–12 of the pseudo-code. In the second line of the algorithm, qExtended is selected from the tree
and is collision-free. Therefore, qExtended is recorded as the last detected free configuration.
During iterative local planning, the configuration is gradually changed. The algorithm
determines whether collision detection is required, corresponding to the 10th line of the
algorithm. The judgment condition is whether the difference between the current configuration
and the last detected free configuration reaches a certain threshold. If collision detection is
performed after the judgment, the current configuration is recorded as the new last-detected
free configuration.

C. Termination conditions and return for iterative local planning: (1) The collision detection
program detects a collision; (2) the configuration exceeds the limit, that is, the base attitude
disturbance exceeds the limit or the joint angle exceeds the range; (3) among the configuration
parameters, the maximum expansion value reaches a certain threshold. When any one of
these three conditions is met, iterative local planning is terminated. Then, in Line 17 of the
pseudo-code, the algorithm tests if the tree is extended far enough from the initial qExtended.
If the generated new configuration is very close to qExtended, then we let Is_Extend equal to false,
and the local planning results will not be added to the tree.

D. Remark of parameter setting: In Algorithm 2, there are some parameters that need to be
set. (1) Collision_Check_Tresh_Hold: This is a threshold that decides the number of collision
detections when running the algorithm. It cannot be set too large or the collision detection will
miss some configurations in collision. Additionally, it cannot be set too small or unnecessary
collision detection will be carried out and the algorithm will be too slow. This threshold is
set at 1 degree in the simulation study, and it worked well. (2) is_Extend_over_Tresh_hold:
This is a mark that indicates whether the extend is far enough from the node to be extended.
Additionally, it relates to a threshold. This threshold is similar to the step length in geometric
path planning using RRTs. Unlike RRTs for geometric path planning, choosing this threshold
properly is not very important. In geometric path planning using RRTs, we should choose a
proper step length for the local planner. If the step length is too large, the collision is easy to
detect and local planning will easily fail. If the step length is too small, the algorithm will be
slow. Collision detection in this paper is different from that of geometric path planning using
RRTs, which is based on dichotomy. Therefore, we can choose a large value for this threshold.
This threshold is set at 90 degrees in the simulation study, and it worked well.

3.2.2. Local Planner for Goal EE Pose Guiding Growth

The local planner for GEE-GG is similar to the local planner for RC-GG in Section 3.2.1. Both
planners are run in an iterative manner. The action is generated based on the error in each iteration.
However, it is different from the latter in terms of termination conditions and the mechanism of
generating actions for each iteration. In addition, local planning for GEE-GG tries to extend qExtended as
close as possible towards the goal EE pose.
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The pseudo-code of this algorithm is shown in Algorithm 3, the variables and functions used in
Algorithm 3 are defined in Table 3. The basic principle of the algorithm is as follows: First, among all
the existing nodes on the tree, the node qExtended is found, and the EE pose of qExtended has the smallest
difference from the target EE pose. Then, the iterative local planning process starts and continues until
the termination condition is reached.

Table 3. Variables and functions used in Algorithm 3.

1 X_Goal Goal EE pose

2 General_J Generalized Jacobian matrix

3 General_Jacobian() A function that is used for calculating General_J

4 f_EE() A function that is used for calculating EE pose

5 Delta_X The error between the goal EE pose and the EE pose at q_Present

6 q_Goal_Base The reference goal base attitude

7 Delta_q_Base The error between q _Goal_Base and q_Present_Base

8 q_Present_Base The current base attitude in local planning

9 Dot_Joint_For_EE Joint velocity that can reduce the EE pose error

10 Base_Adjust_Tresh_Hold The base attitude error threshold that indicates the need for base adjust

11 Dot_Joint_For_Base_Adjust Joint velocity that can reduce the base attitude error

12 Null A function that can calculate the null-space of a matric

A. Iterative local planning: This process corresponds to Lines 3 to 19 of the pseudo-code. For local
planning corresponding to GEE-GG, the purpose is to extend the node qExtended toward the goal
EE pose as much as possible. Moreover, the base attitude disturbance is required to be within a
certain limit. First, in each iteration, two kinds of errors are calculated. The first kind is ∆xe,
which denotes the error between the goal EE pose and the EE pose at qExtended. The second kind is
∆Ψb, which denotes the error between the referred target base attitude Ψb

r and the base attitude
Ψb at qExtended. Ψb

r is not the target base attitude that the planner needs to achieve accurately.
Ψb

r is only used as a reference for starting the base coordination mechanism. Secondly, Jg and
Hω at qExtended are calculated. Based on the pseudo-inverse of Jg, ∆xe is mapped to the action

space to get joint angular velocity
.

Θ1.

.
Θ1 =

(
Jg

)+
∆xe (22)

∆xe can be reduced if the robot moves with
.

Θ1 from qExtended. If ∆Ψb reaches a certain threshold
∆Ψb

r, base attitude coordination is triggered. Then, the base attitude is adjusted using the
pseudo-inverse of Hω within the null space of Jg, and an action

.
Θ2 that can reduce ∆Ψb

is generated.
.

Θ2 =
(
Hω•Null

(
Jg

))+
∆Ψb

Null
(
Jg

)
= En×n − Jg

+Jg
(23)

If base attitude coordination is triggered,
.

Θ2 is combined with
.

Θ1 to form the final action
.

Θ for
a single iteration.

.
Θ =

.
Θ1 + Null

(
Jg

) .
Θ2 (24)

Otherwise, the final action for a single iteration only includes
.

Θ1. Then, multiplying
.

Θ by Hω,
.

Ψb corresponding to
.

Θ can be obtained. Integrating
.

Θ and
.

Ψb from qExtended, a new configuration
is obtained, and we let this configuration be the next qExtended. Repeat the above process until the
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termination condition of local planning is triggered, then exit local planning and return to the
new configuration and trajectory.

B. Base coordination mechanism: The base coordination mechanism corresponds to Lines 4 and
7–11 of the pseudo-code. The reason for designing this mechanism is as follows: First, the joint
space has 7 DOF, while the EE pose task has 6 DOF and the base attitude has 3 DOF. Secondly,
the main task of the planner is to plan a trajectory for the EE to reach the goal pose, and the base
attitude is not required to reach a certain value accurately. Actually, the base attitude just needs
to be coordinated to keep its disturbance within a certain range. Moreover, adjusting the base
attitude within the null space of the generalized Jacobian matrix is prone to singularity. It should
be avoided as much as possible. Therefore, this paper introduces a reference goal base attitude
Ψb

r and a threshold ∆Ψb
r to guide the adjustment of the base attitude. Ψb

r is designed according
to the base attitude disturbance limit interval

[
Ψb−min Ψb−max

]
. It is usually chosen at the

center of this interval. ∆Ψb
r is less than half of the length of

[
Ψb−min Ψb−max

]
. ∆Ψb denotes

the error between the base attitude corresponding to qExtended and the reference target base
attitude. In each iteration of local planning, if ∆Ψb is less than ∆Ψb

r, the base attitude will not be
adjusted. If ∆Ψb is greater than ∆Ψb

r, the base attitude is adjusted. In this way, this base attitude
coordination mechanism avoids the occurrence of singularities in each iteration of local planning
as much as possible. Meanwhile, the base attitude disturbance can meet the requirements.

Algorithm 3 Extend_Toward_Goal

1
q_Near = Nearest_Node(Tree, X_Goal);
q_Present = q_Near;
Last_Checked_Config = q_Present

2 Shall_End = false
3 While (Shall_End = false)

4
J_base = Jacobian_Base(q_Present);
General_J = General_Jacobian(q_Present)

5
Delta_X = X_Goal − f_EE(q_Present);
Delta_q_Base = q _Goal_Base - q_Present_Base

6 Dot_Joint_For_EE = pinv(General_J) * Delta_x
7 If Max(Delta_q_Base) > Base_Adjust_Tresh_Hold
8 Dot_Joint_For_Base_Adjust = pinv(J_base * Null(General_J)) * Delta_q_Base
9 Else
10 Dot_Joint_For_Base_Adjust = 0
11 End if

12
Dot_Joint = Dot_Joint_For_EE + Null(General_J) * dot_joint_For_Base_Adjust
Dot_Base = J_base * dot_joint

13 q_Present = q_Present + [Dot_Base; Dot_Joint] * Time_Step
14 If Max(q_Present − Last_Checked_Config) ≥ Collision_Check_Tresh_Hold
15 Is_Collision = Collision_Check(q_Present)
16 last_Checked_Config = q_Present
17 End if

18
Shall_End = Is_Collision or Is_Q_Present_Over_Tresh_Hold
or Is_Reaching_The_Goal or Is_Over_Iteration

19 End while
20 Is_Extend = if q_Present is far enough from q_Near
21 Return

C. Collision detection mechanism: The collision detection mechanism is the same as that in
Section 3.2.1
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D. Termination conditions and return for iterative local planning: (1) The collision detection
module detects a collision; (2) the configuration exceeds the limit, that is, the base attitude
disturbance exceeds the limit or the joint angle exceeds its range; (3) the target is reached; (4) the
number of iterations reaches the upper limit. When any one of these four conditions is met,
iterative local planning is terminated. Then, in Line 17 of the pseudo-code, the algorithm tests if
the tree is extended far enough from the initial qExtended. If the generated new configuration is
very close to qExtended, then we let Is_Extend equal to false, and the local planning results will not
be added to the tree.

4. Simulation

The selected object for simulation is an FFSR with a base satellite and a 7-joint manipulator.
The dynamic parameters and size parameters of the space robot are shown in Table 4. The D-H
parameters are shown in Table 5. In order to simplify the calculation, the base satellite and links of the
manipulator are rectangular. The obstacles are also rectangular. Three rectangular obstacles are given
in the environment. The centroid positions and sizes of obstacles are (1, 1, 2.8) m, 2/1/1 m, (4, 0, −1) m,
1/2/2 m, (6, 1.5, 2.5) m, and 1/2/2 m, respectively.

Table 4. Dynamic and geometric parameters of the FFSR.

Rigid Body No. Mass/kg Length/Width/Height (m) Ixx (kg.m2) Iyy (kg.m2) Izz (kg.m2)

0 900 1/1/1 6000 12,000 8000

1 20 0.35/0.16/0.16 20 20 30

2 20 0.35/0.16/0.16 20 20 30

3 40 4/0.16/0.16 1 40 40

4 40 4/0.16/0.16 1 40 40

5 20 0.35/0.16/0.16 20 20 30

6 20 0.35/0.16/0.16 20 20 30

7 40 1.2/0.16/0.16 10 8 4

Table 5. D-H parameters of the FFSR.

i ai−1(m) αi−1(◦) di(m) θi(◦)

1 0 0 2.5 600

2 0 90 0.35 20

3 0 90 0.35 20

4 4 0 0 40

5 4 0 0.35 40

6 0 90 0.35 20

7 0 90 1.2 20

The geometry of the space robot and obstacles is far more complex than rectangular in practice.
However, shape complexity will only increase the complexity of the collision detection algorithm.
The purpose of this article is to study motion planning issues, not collision detection problems. Collision
detection is only a module of the planning algorithm. Therefore, the simplified geometric model does
not affect the verification of the algorithm. Collision detection includes two parts. The first part is the
collision between the robot and the obstacle. The second part is the collision between the robot’s own
parts. Collision detection is realized based on the separation axis theorem.

Moreover, there is no big difference between motion planning with stationary obstacles and
motion planning with movable obstacles that have predictable trajectories. If we know the trajectories
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of obstacles, we will know the position of each obstacle at any time. As we know the position of each
obstacle at any time, it is easy, for collision-checking, to test if the point in the trajectory is in collision
or not. Additionally, this paper focuses on dealing with the differential constraints and restricting
base attitude disturbance, so in order to simplify the simulation process, we do not consider the
movable obstacles.

The simulation in this paper is divided into two parts: the first part verifies the advantages of
the local planner for goal EE pose guiding growth; the second part verifies the effectiveness of the
proposed RRTs for an FFSR.

4.1. The Advantages of a Local Planner for Goal EE Pose Guiding Growth

This paper proposed a local planner that can adjust the attitude of the base when necessary.
We compare it with the local planner based on the general Jacobian matrix and the local planner based
on the extended Jacobian matrix by simulation. The former does not adjust the base attitude in the
whole local planning process, and the latter always adjusts the base attitude in the whole local planning
process. The local planner based on the general Jacobian matrix chooses actions according to the EE
pose error in each iteration:

.
Θ =

(
Jg

)+
∆xe (25)

The local planner based on the extended Jacobian matrix chooses actions according to the EE pose
error and the base attitude error in each iteration:

.
Θ =

([
Hω

Jg

])+[
∆Ψb
∆xe

]
(26)

For these three local planners, the configuration parameters at the initial time are all set to 0
◦

.

The centroid position of the system is set to
[

0 0 0
]T

m. The base attitude disturbance range is set

as ±35◦. The joint angle limit is set as ±300◦. The reference goal base attitude is set as
[

0 0 0
]◦

for the local planner for goal EE pose guiding growth proposed in this paper. For these three local

planners, the goal EE position is
[

6.8 1 2
]T

m and the goal EE attitude is
[

50 60 70
]◦

.
Simulation results are shown in Figures 1–3. From these results, we can see that the local planner

based on the general Jacobian matrix can well achieve the EE pose goal, but the attitude of the base
cannot meet the limit for this local planner. The local planner based on the extended Jacobian matrix
can adjust the base attitude to a very low value. As the extended Jacobian matrix has more rows than
columns, the local planner based on the extended Jacobian matrix cannot eliminate the EE pose error.
Actually, for an FFSR, we only need to ensure that the base attitude disturbance meets the requirements.
The main task for the motion planning of FFSRs is to drive its EE to a goal pose; there is no need to
adjust its base attitude all the time. The local planner for the goal EE pose guiding growth proposed in
this paper can not only ensure that the base attitude disturbance meets the requirements but also drive
EE to a goal pose.
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Figure 1. Time histories of EE position error, EE attitude error, base attitude trajectory, and joint
trajectory for the local planner based on the general Jacobian matrix. (a) Time histories of EE position
error; (b) time histories of EE attitude error; (c) time histories of base attitude trajectory; (d) time
histories of joint trajectory.
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4.2. Verification of the Effectiveness of the Proposed RRTs for Free-Floating Space Robots

The simulation for the second part is divided into two scenarios: (1) Starting from the initial
configuration and finally reaching the target EE position; (2) starting from the initial configuration
and reaching the target EE pose. For these two scenarios, the configuration parameters at the initial

time are all set to 0
◦

. The centroid position of the system is set to
[

0 0 0
]T

m. The base attitude
disturbance range is set as ±35◦. The joint angle limit is set as ±300◦. The reference goal base attitude

is set as
[

0 0 0
]◦

. For Scenario 1, the goal EE position is
[

4 2 1
]T

m. For Scenario 2, the goal

EE position is
[

4 3 1
]T

m, and the goal EE attitude is
[

50 60 70
]◦

.

4.2.1. Simulation Results of Scenario 1

After 36 iterations, the FFSR reaches the target EE position. A generated configuration meets the
requirements, as shown in Figure 4a. Figure 4b shows the movement history of the space robot from
the initial configuration to the goal EE position and that the space robot does not collide with obstacles.
Moreover, the rigid bodies of the space robot do not collide with each other. The joint trajectory and
the base attitude disturbance trajectory are shown in Figure 5. It can be seen from Figure 5 that during
the movement, the base attitude disturbance is effectively adjusted before reaching its limit.
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Figure 5. Joint trajectory and base attitude disturbance trajectory for Scenario 1. (a) Joint trajectory; (b)
base attitude disturbance trajectory.

4.2.2. Simulation Results of Scenario 2

After 76 iterations, FFSR reaches the target EE pose. The generated configuration meets the
requirements, as shown in Figure 6a. Figure 6b shows the movement history of the space robot from
the initial configuration to the goal EE pose and that the space robot does not collide with obstacles.
Moreover, the rigid bodies of the space robot do not collide with each other. The joint trajectory and
the base attitude disturbance trajectory are shown in Figure 7. It can be seen from Figure 7 that during
the movement, the base attitude disturbance is effectively adjusted before reaching its limit.
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Scenario 2.
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Figure 7. Joint trajectory and base attitude disturbance trajectory for Scenario 2. (a) Joint trajectory; (b)
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5. Conclusions

Based on the RRT framework, this paper designs a motion planner for FFSRs from an initial
configuration to a goal EE pose. Compared with the existing works, it does not require us to solve the
inverse kinematics. The differential constraints of FFSR can be handled by the designed local planners.
Moreover, the planned trajectory meets the requirement that the attitude disturbance of its base does
not exceed its limit. The main contribution is that two local planners are proposed to handle the special
needs of motion planning of FFSRs:

i. A control-based local planner for random configuration guiding growth of the tree. This
planner uses the configuration error as a reference to select actions. It can achieve rapid local
planning while taking into account the disturbance of the base.

ii. A control-based local planner for goal EE pose guiding growth of the tree. This local planner
can adjust the attitude of the base when necessary. This planner mainly uses the EE pose
error as a reference to select actions. Moreover, a reference goal base attitude and an error
threshold for the base are introduced as a trigger for base attitude adjustment. The local planner
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based on this mechanism can make the base attitude disturbance meet the limit while avoiding
singularity as much as possible.

iii. Finally, for collision detection, this paper proposes a method for calculating the position of the
mass center of each rigid body of FFSRs in a certain configuration.

Sampling-based motion planning is an efficient way to deal with motion planning problems.
This article systematically shows how to apply this kind of method to deal with the motion planning
problem of FFSRs. Based on the framework proposed in this article, planners that can handle special
planning problems of FFSRs can be easily designed.
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Abbreviations

The following abbreviations are used in this manuscript:

FFSR Free-floating space robots
RRT Rapidly exploring random tree
EE End-effector
VM Virtual manipulator
DM Disturbance map
DOF Degrees-of-freedom
ABDK An approach based on the direct kinematics
OPMP Optimization-based approach for robotic motion planning
CHOMP Covariant Hamiltonian optimization for motion planning
STOMP Stochastic trajectory optimization for motion planning
SBMP Sampling-based motion planner
JT-RRTs Jacobian transpose-directed rapidly exploring random trees
CB-EEPG-LP Control-based goal EE pose guiding local planner
RC-GG Random configuration guiding growth
GEE-GG Goal EE pose guiding growth
VM Virtual manipulator
DM Disturbance map
RRT Rapidly-exploring random tree
dof Degree-of-freedom
FFSR Free-floating space robot
CHOMP Covariant hamiltonian optimization for motion planning
STOMP Stochastic trajectory optimization for motion planning
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