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Abstract: Traditional methods such as the finite difference method, the finite element method, and the
finite volume method are all based on continuous interpolation. In general, if discontinuity occurred,
the calculation result would show low accuracy and poor stability. In this paper, the numerical manifold
method is used to capture numerical discontinuities, in a one-dimensional space. It is verified that the
high-degree Legendre polynomials can be selected as the local approximation without leading to linear
dependency, a notorious “nail” issue in Numerical Manifold Method. A series of numerical tests are
carried out to evaluate the performance of the proposed method, suggesting that the accuracy by the
numerical manifold method is higher than that by the later finite difference method and finite volume
method using the same number of unknowns.

Keywords: numerical manifold method; discontinuity capture; hydrodynamics; advection equation

1. Introduction

Discontinuity is a very common phenomenon in fluid flow. For example, high speed fluids can
produce shock waves when they pass from subsonic to supersonic speeds. Another example is the
separation of two fluids of different materials by a thin film, which can also produce a discontinuity
when the film is pulled out. Discontinuities are also commonly found in convection-dominated flows,
and this type of discontinuity plays a very important role in fluid dynamics. Therefore, extensive
research was carried out [1–5]. At present, in computational fluid dynamics, dealing with shock wave
problems is mainly achieved by directly solving Navier-Stokes equations by increasing the computing
power of the computer, such as quantum computing [6], or solving molecular dynamics problems [7,8].
However, such calculation conditions are difficult to achieve in engineering. The Methods commonly
used in engineering will be discussed in detail later.

There are several numerical methods commonly used at present. The finite element method (FEM)
is a numerical method that discretizes the entire problem area into units, constructs interpolation
functions on the units, and solves the unknowns by Galerkin method and the principle of variation.
The finite element method is a very good method for continuous solids. However, in order to solve the
solid with cracks and discontinuities, the finite element method needs to refine the mesh during the
solution process, which is not only complicated, but also loses accuracy. In addition, because finite
elements cannot satisfy the law of conservation of mass in the element, it is not convenient to be
applied in the field of fluids. The finite difference method (FDM) is a numerical method that directly
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differentiates and discretizes the strong form of the original equation. Because the finite difference
method directly discretizes the equation, although it can be applied in the field of fluids, it requires
a relatively regular solution area. For complex boundary problems, the finite difference method is
not easy to use. The finite volume method (FVM) is a numerical method that uses conservation of
momentum and conservation of mass to construct equations based on each volume cell. The finite
volume method has the same discrete format and the same accuracy as the finite difference method in
the case of a regular grid. However, compared with the finite difference method, the finite volume
method can solve the problems in complex regions and complex boundary conditions, while losing a
small amount of accuracy. The finite volume method is also one of the most commonly used methods
in computational fluid dynamics.

Numerical discontinuity is very common in computational mechanics. The one type of discontinuity
is material discontinuity, such as cracks, material interfaces, voids. In addition, another type is
numerical discontinuity such as shock waves in hydrodynamics.

The traditional methods mentioned above are all based on continuity hypotheses, in which the
displacement and the density are continuous. For the approximation of non-smooth solution, the above
methods will result in big errors near singularities, leading to false high gradients. In order to achieve
higher accuracy, a very dense deployment of elements or points must be set at the singularities.

However, any effort to study fluid dynamics by numerical simulations must face great challenges
in order to get solutions with high accuracy and stability around discontinuities. Finite volume method
and finite difference method are commonly used methods of computational fluid dynamics. There are
still many problems about FVM and FDM to be resolved: (1) The FVM mesh must be consistent with
the discontinuities; (2) The discontinuity is moving during the process of shock wave propagation
Special techniques known as artificial dissipation or limiting projection have to be designed in order to
avoid the “Gibbs” phenomenon caused by higher order interpolation and its accompanying spurious
numerical oscillation.

However, great efforts have to be input to design such techniques. In order to achieve high accuracy
near discontinuities, many non-oscillation schemes have been proposed. For example, Monotone
Upstream-centered Schemes for Conservation Law (MUSCL), a kind of Total Variation Diminishing
(TVD) schemes, avoids numerical oscillations by adding a flow limiter [9]. TVD schemes ensures that the
physical field in the transition region is monotonic and bounded, but it does not solve the problem of
numerical dissipation.

Numerical manifold methods (NMM) have been invented and applied to numerical computation
and engineering by Shi et al. [10]. NMM are capable of dealing with discontinuities in a unified way.
In NMM, the mathematical cover can be cut into many physical patches by the solution domain,
while the local approximation is constructed directly on the physical patches. The function that
constructs the local approximation can be discontinuous, so the numerical manifold method can handle
discontinuity problems in a natural way. So far, many problems have been well solved by NMM, such as
the seepage problems [11], the wave propagation problems [12], the two-dimensional dynamic crack
propagation problems [13–15], the three-dimensional crack propagation problems [16], the fourth-order
problem [17], the contact problem [18], and so on. It is well known that the analytic solution can be
viewed as a higher-order polynomial. The higher the order of expansion, the higher the accuracy of
the approximation. The NMM is also based on the partition of unit scheme, the global approximation
can be established by multiplying a weight function by local approximations. Like generalized finite
elements, numerical manifold methods can construct higher order global approximation by simply
raising the order of the local approximations or weight function. Currently, there are two main skills
for constructing high accuracy global approximations [19].

At present, the numerical manifold element method is already a very effective method in the
solid field, and it is increasingly used in the field of engineering simulation. For example, hydraulic
fracturing [20,21], pore medium problem [22–24], dynamic consolidation [25], fracture problem [26],
slope stability analysis [27].
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Although there are a few studies on the numerical manifold element method in fluid mechanics,
it has been successfully applied to solve the incompressible and viscous Navier-Stokes equation [28,29].
However, there are no articles about applying numerical manifold element method to fluid
discontinuities. Numerical manifold element method has a universal way in solving discontinuous
problems, so it is very worthwhile to develop it in the field of fluid mechanics.

Facing fluid mechanics problems with the discontinuity, the interpolation of FDM or FVM will
result in the slope at discontinuity. However, the NMM can show great potential to approximate the
discontinuity, making it is necessary to develop NMM in fluid mechanics. This paper is an attempt of the
numerical manifold element method in the field of computational fluid dynamics with discontinuities.

The main contents of this manuscript are as follows. In Section 2, the foundation of the
numerical manifold method is briefly introduced. In Section 3, the construction of local and global
approximations is expounded upon. The new scheme for singular patch reconstruction is presented
in detail. In Section 4, the discretization of equations is carried out. In Section 5, numerical results of
some tests are given and compared with other schemes. The linear dependent issue will be discussed
in detail. Some remarks, conclusions, and prospects are presented in Section 6.

2. Foundation of NMM

This section only introduces the basic concepts of NMM, and more details can be found in
reference [30]. In order to solve continuous and discontinuous problems in a unified framework, NMM
applies two covers, namely the mathematical cover (MC) and the physical cover (PC) [30]. In this
manuscript, MC will be constructed by mathematical mesh of a regular segment.

In NMM, MC is composed of a series of simply connected small domains, each of which is
named as a mathematical patch (MP), consisting of all the elements or intervals sharing the same node.
For example, in Figure 1, the one-dimensional problem domain Ω is divided into five intervals, each of
which has two nodes. M1 (the red circle) and M3 (the purple circle) are MPs. It is noteworthy that in
NMM, MC does not have to match the problem domain but needs to cover it, which means that NMM
does not have to deploy a mesh that matches the shock waves, making it very suitable for dealing with
the discontinuities in problems. For simplicity in presentation, here let nodes M1 and M6 coincide
with the problem domain ends

discontinuity

mathematical patches

physical patches

star point

M1
M2

M3 M4 M5 M6

P1

P2-1

P2-2

P3-1

P3-2

P4

P5

P6

Figure 1. Schematic diagram of 1D NMM with discontinuity.

The physical cover is formed by a combination of all the physical patches, which are obtained
by cutting all mathematical patches with the problem region components. Here, a problem region
component might be boundary segment, a discontinuity or a material interface. Cutting a MP, at least
one PP can be generated. In Figure 1, for example, cutting M2 with the discontinuity marked by
the blue dot, leads to the generation of P2− 1 and P2− 2, marked by yellow segments. Each PP
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corresponds to a “star point” (also called “NMM node” or “generalized node”) as exhibited with red
circles in Figure 1.

In NMM, the local approximation is defined on PPs. That is to say, the degrees of freedom are
attached at NMM node. For convenience, the “NMM nodes” in the rest of this article will be referred
to as “nodes”. There are two types of PPs in NMM as given in Figure 1. The one type is called
non-singular patch which does not contain a crack tip in its domain, such as PP2. Another type
is singular patch which contains a crack tip in its domain, such as PP3 and PP5. Different local
approximations will be constructed according to different types of physical patches.

In Figure 1 P1 is generate by M1 cut by left domain boundary, P2− 1 and P2− 2 are generated
by M2 cut by the discontinuity (blue dot). It should be noticed that the physical patches generated by
same mathematical patch have different star points at the same position.

3. Construction of Local and Global Approximations

NMM is based on partition of unity (PU), thus the global approximation is obtained by the
weighted average of the local approximations of all the physical patches, reading

φ∗ = ∑
ij

wiaijLij (1)

where wi is the weight function of the ith mathematical patch, and the subscript i represents the ith
mathematical patch. j stands for the jth physical patch cut out of the ith mathematical patch, Lij is the
local approximation function, aij are called generalized degrees of freedom of physical patch j.

The weight function wi can be any function which just needs to satisfy the PU condition ∑ wi = 1
and the property of compact support.

The local approximation function can be any function which can express the properties of solution
on the physical patch. The polynomial bases are usually chosen, since the polynomial bases are easy
and simple to approximate the real solution.

In this study, for convenience, if the weight function is hat function

wi =
1
2
(
|x− xc| − |x− xb|

|xc − xb|
− |x− xb| − |x− xa|

|xb − xa|
) (2)

where xa and xc are the left and right boundary of ith MP, respectively. xb is the position of the star point.
The weight function has the δ property. In Figure 2, the weight function only depends on the

mathematical patch, regardless of whether there is discontinuity or not in it.

discontinuity

mathematical patches

M1
M2

M3 M4 M5 M6

P2-1

P2-2

P3-1

P3-2 P5

P6

Figure 2. Local approximation to a discontinuous function ϕ(x).
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3.1. Local Approximation of Zero Order

The local approximations are built on the physical patches, so the local approximation can be
influenced by discontinuities. In Figure 2, the goal function to be approximated has two parts

ϕ(x) =

{
ϕ1(x) x < xd

ϕ2(x) x ≥ xd
(3)

where xd represents discontinuous position.
The discontinuity at xd cut the physical patch P2 into P2− 1 and P2− 2 and cut P3 into P3− 1

and P3− 2.
We first consider the local approximation on the ordinary physical patches, such as P5 in Figure 2,

in which no discontinuities exist. There are many options we can choose, such as MLS-based function [31].
Since polynomials can uniformly converge to any continuous function, the polynomials are chosen.
The zero-degree Legendre polynomial can be used, namely, Lij = 1. The global approximation turns out
to be linear interpolation

φ∗ = ∑
ij

wiaij (4)

If the physical patch consists of many parts, such as P2− 1 and P2− 2 in Figure 2, the local
approximation can be also cut into the same parts. As above, local approximation on P2 is first
established, and then the parts both P2− 1 and P2− 2 inherit the origin function on interval [x1, xd]

and [xd, x3] respectively. The number of star point has increased and the value of star points is different
at same position. This property can be used to describe the discontinuity, in which the value of two
sides from the interface is different.

3.2. Local Approximation of High Order

The accuracy of the local approximation depends on the size of space. The Legendre polynomials
have excellent properties including orthogonality. The orthogonality can adjust the properties of
coefficient matrix. The basis function Ln(x) of n degree will be defined on the interval [−1, 1] as

Ln(x) =
1

2nn!
dn

dxn (x2 − 1)n (5)

When n = 0, it is the above case (Lij = 1). The nodes are uniformly preset in the domain, and star
points are located at different positions. The original Legendre polynomials should be moved or scaled
to satisfy the boundary of mathematical patch, which can maintain the good properties of Legendre
polynomials. Thus, the final high order NMM approximation is

φ∗ = ∑
ijk

wiak
ijL

k
ij (6)

where k is the order of Legendre polynomials and ak
ij is the degrees of freedom of the kth order.

The higher order of the polynomials is used, the closer to real solution the approximation will be,
due to polynomial base is dense in space C[a, b] (continue function space on interval [a, b]).

If discontinuity occurred as mentioned above, the new physical patches generated by old
patches and discontinuities will inherit the old function of original patches. In many fields, however,
the increased order may result in “linear dependence” (LD) issue, in which the global matrix is rank
deficient even after sufficient constraints are coerced. Encouragingly, in this paper, no LD issue is
incurred while obtaining high accuracy, which will be verified in follow section.
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3.3. Local Approximation on Singular Patch

The purpose of NMM to introduce the mathematical cover lies in generating the weight functions.
A better global approximation can be reached by selecting proper local approximations of the physical
patches. Therefore, once we know the local behaviors of solution, we can exploit them in the construction
the global approximation. Supposing we know the analytical solution near the discontinuity and the
the analytical solution in the neighborhood of discontinuity is gl(x), we can further use the property of
partition of unit and the weight function s, then the global approximation is defined below

φ∗ = ∏
l
(1− sl(x))∑

ijk
wiak

ijL
k
ij + ∑

l
sl(x)gl(x) (7)

where s is the weight function and can be any function that less than or equal to 1. The value of sl is
more than zero at the lth singular patch, but is zero at other domains.

For example, s can be selected as
sl = e−k(x−xl)

2
(8)

where k is a positive number, xl is the position of the lth discontinuity.

4. Discrete Equations

The basic idea of NMM is to construct the local approximation, and further form global approximation.
Substituting the global approximation into the original functions or equations can obtain the coefficient aij.
Next, we will explain how to construct the solution and the process of solving.

4.1. Known Function with Discontinuities

Suppose the exact solution is f (x) with discontinuities of first kind and the NMM approximate
solution is

f ∗ = ∑
ij

wiaijLij (9)

where the subscript i denotes the ith mathematical patch and j the jth physical patch in each mathematical
patch, Lij are Legendre polynomials, and aij is the value at each star point of physical patch.

To get the weak form of the equation, a test function space must be specified. The form of test
function can be any base of compact space on piecewise continuous function space, but not all bases
are suitable because LD issue may be caused [32]. Giving the test function space {wl Llm}, which will
be verified not causing LD problem in the following sections, we will get weak form as below:∫

Ω
f ∗wl LlmdΩ =

∫
Ω

f wl LlmdΩ (10)

following that, we can get a linear equations systemKkn = wiLijwl Llm

bk =
∫

Ω
f wl LlmdΩ

(11)

where k and n represent the positions of physical patches, and both of them are closely related to i, j
and l, m.

Figure 3 gives a method to calculate the coefficient, which is basic in NMM approximating
a solution.
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Start

Input: Initial mesh with no discontinuity,
and the position of initial discontinuities

generate mathematical cover

generate initial physical patches

cut the physical patches with initial discontinuities

add, remove or move discontinuity and generate physical patches

calculate K and b

solve Kx = b, find aij

Output

time end

Stop

yes

no

Figure 3. Algorithm flow chart and calculation steps.

This method can easily capture discontinuity, but there are still some problems to be resolved.
Like NMM in solid, we must first confirm where discontinuity is. In fracture mechanics, we can
determine the position of discontinuity by initial crack and propagation. In hydrodynamics, there are
also some methods to determine the position of discontinuity, such as the exact solution of Riemann
problem, and the capture of shock wave.

4.2. The Derivative

Some equations contain derivative, such as the advection equation:

∂u
∂t

+
∂ f (u)

∂x
= 0 (12)
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or Euler equation 
∂ρ

∂t
+

∂ρv
∂x

= 0

∂ρv
∂t

+
∂(ρv2)

∂x
+ c2 ∂ρ

∂x
= 0

(13)

which contain the derivative term ∂ϕ/∂x.
The derivative can be expressed as below:

∂ f ∗

∂x
= ∑

ij
aij

∂(wiLij)

∂x

= ∑
ij

aij(
∂wi
∂x

Lij + wi
∂Lij

∂x
)

(14)

where f ∗ is a scaler variable.

5. Numerical Tests

Both the robustness and accuracy of the proposed NMM-1D-LK (Legendre base K order 1D
NMM) model are verified by a series of experiments such as linear advection equations and analytical
function. In this section, all physical units have been standardized, and m, n express the total number
of the mathematical patches and physical patches in the computational model, respectively.

For the numerical tests, relative error based on numerical methods is expressed as follows:

ed =

√∫
Ω(uex − unum)2dΩ∫

Ω(uex)2dΩ
(15)

where the uex represents the exact solution, and unum represents the numerical solution.
The integral is sometimes not easy to be calculated, the following formula is used:

ed =

√
∑n

i=0(uex − unum)2

n
(16)

where n shows the number of sample points.

5.1. Checking the Linear-Dependence Issue and Stability

To checking the linear dependence issue, a series examples are given. First, we need to check
whether the exact solution is a continue function f = 1 on interval [0, 10]. All the physical patches
are not cut. As shown in Figure 4, as the number of physical patches is increased, and the coefficient
matrix has a proper rank when the physical patches are not cut. The physical patch numbers are
2, 5, 10, 20, 50, 80, 160, respectively. The number of physical patches is equal to that of mathematical
patches when no cutting is involved.

As shown in Figure 5, the artificial discontinuities are added at position points of 1, 2, 3, 4,
which are only used to cut the physical patches, but the exact solution is still continuous. PPs is
equal to rank with the increasing of PPs and unknowns, thus artificial discontinuities will not produce
LD problem.

The next example is to demonstrate the ability of NMM to approximate the discontinuous function
which is discontinuous at 3.5, 5, 7.5, as expressed below:

f (x) =

 1 x ∈ [0, 2, 5) ∪ [5, 7.5)
1
2

x ∈ [2.5, 5) ∪ [7.5, 10]
(17)
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The numbers of initial mathematical patches are 2, 16, 32, and the analytical solution is given in
Figure 6. In Figure 6a, all physical patches are not cut, and in Figure 6b, the physical patches are only
cut at 2.5, and that of Figure 6c are cut at both 2.5 and 5, and that of Figure 6d are cut at 2.5, 5, 7, 5,
showing that the NMM approximation has guaranteed the exact solution. We can see if the physical
patches are not be cut, only locals are influenced. In Figure 7, the initial MPs is 2, 16, 32, it shows that
although the physical patch is not be cut, the number of physical patches is equal to the rank, with no
linear dependence incurred. So, the robustness is very well.

1 2 3 4 5 6 7

the number of PPs (log
2
)

1

2

3

4

5

6

7

ra
n
k
 n

u
m

b
e
r 

(l
o
g

2
)

number of PPs

the rank

Figure 4. Without discontinuities, the rank of the coefficient matrix is always equal to the number of
physical patches.

0 0.5 1 1.5 2 2.5 3 3.5 4

Cut number

1

1.5

2

2.5

3

3.5

4

4.5

5

th
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 n

u
m

b
e
r 

o
f 
M

P
s
, 
P

P
s
, 
R

a
n
k
 (

lo
g

2
)

number of MPs(2)

number of PPs

the rank

number of MPs(16)

number of PPs

the rank

number of MPs(32)

number of PPs

the rank

Figure 5. When the number of initial mathematical patches is different, as the number of discontinuities
increases, the rank of the matrix and the number of PPs also change. The initial number of MPs are
2, 16, 32.
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(a) MPs = 32, cut number d = 0

0 1 2 3 4 5 6 7 8 9 10
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(b) MPs = 32, cut number d = 1

0 1 2 3 4 5 6 7 8 9 10
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1.1
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(c) MPs = 32, cut number d = 2

0 1 2 3 4 5 6 7 8 9 10
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1

1.1

NMM

EXACT

(d) MPs = 32, cut number d = 3

Figure 6. As the number of cuts increases, the function approximation becomes more and more accurate.
When the number of discontinuities is equal to the number of cuts, the function in the figure can be
accurately approximated. The discontinuities of the function are at 2.5, 5 and 7.5.
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the rank

number of MPs(16)

number of PPs
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number of MPs(32)

number of PPs

the rank

Figure 7. As the number of cuts increases, the number of physical patches is always equal to the rank
of the matrix, thus avoiding the problem of linear correlation causing equations that cannot be solved.
Using the method in this article, the robustness will be better.
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5.2. The Convergency with More Initial Mathematical Cover

NMM contains two kinds of convergences, including the point number and the order of
local approximation.

As exhibited in Figure 8 the object function is below according to points number:

f (x) =



1 x ∈ [0, 2, 5)

(2x− 5)
5

x ∈ [2.5, 5)

(x− 5)2

6
x ∈ [5, 7.5)

cos
(

π

5
x− 3π

2

)
x ∈ [7.5, 10]

(18)
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(a) MPs = 2, cut number d = 3
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(b) MPs = 4, cut number d = 3
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(c) MPs = 8, cut number d = 3

0 1 2 3 4 5 6 7 8 9 10

-1.5

-1

-0.5

0
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1
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EXACT

(d) MPs = 16, cut number d = 3

Figure 8. Cont.
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0 1 2 3 4 5 6 7 8 9 10
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0

0.5

1

1.5

NMM
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(e) MPs = 32, cut number d = 3
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-1.5
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0.5

1

1.5

NMM

EXACT

(f) MPs = 64, cut number d = 3

Figure 8. With the increase in the number of mathematical patches, the result of using NMM approximation
is getting closer and closer to the real solution. Therefore, the convergence of this method can be verified.

The numbers of mathematical cover are 2, 4, 8, 16, 32, 64 as show in Figure 8a–f, and Table 1
summarizes that the error has reduced with the increasement of mathematical cover. Although the
initial mathematical cover is less, more physical patches will be generated by cutting the original PPs.

Table 1. The convergency of NMM with initial mathematical cover, the error is decreasing when the
initial MPs is increasing.

MPs Number Discontinuities Number PPs Number Err lg(Err)

2 3 8 0.05 −1.301029996
4 3 10 0.352 −1.453457337
8 3 14 0.0139 −1.8569852
16 3 22 0.0034 −2.468521083
32 3 38 8.17 × 10−4 −3.087549428
64 3 70 2.01 × 10−4 −3.696587929

The next examination is to verify the relation between the error and the order of local approximation.

5.3. The Convergency with Higher Order Local Approximation

The object in this example is the same as the previous one. Constant function, polynomial of the
first degree, polynomial of the second degree, cosine function, are tested in four parts. If the local
approximation is zero order, then the solution will at least approximate the first two part. Meanwhile,
the first three functions can be approximated more accurately if the degree of the local Legendre
polynomials is one. All the cases above only have two mathematical covers, but the preprocessing
produce more physical patches to satisfied the problem domain and the boundary. The related result
can be seen in Figure 9a,b, the zero-order case and the first order case, which have error 0.0499 and
0.0041 respectively.
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Figure 9. In the case of the same number of mathematical patches, as the order of local approximation
increases, the result of global approximation becomes more and more accurate.

5.4. 1D Advection Equations

This example exhibits a linear advection equation:

∂u
∂t

+ c
∂u
∂x

= 0 (19)

When the wave speed c = 1, the initial condition is

f (x, 0) =


e−(x−ct−3)2

10
x ∈ [0, 3)

3e−(x−ct−3)2

10
x ∈ [3, 10]

(20)

The calculation results are shown in Figure 10a,b. Figure 10a indicates the analytical solution and
some general finite volume methods, such as Upwind scheme, Lax Wendroff, Beam Warming, Fromm,
Minmod phi, Superbee, MC phi, van Leer, and analytical solution at t = 0.5, and the discontinuity can
be always been maintained by these methods. Figure 10b shows the result of NMM.
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Figure 10. (a) The result of using the traditional finite volume method to solve the convection equation
at time 0.5. (b) Using the method in this paper to solve the convection equation at time 0.5.
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We can see that NMM can approximate the exact solution well and has higher accuracy when
discontinuity occurs. NMM has successfully shown more flexibility in using analytical solutions such
as the speed of shock wave calculated by the Ranking condition.

6. Conclusions

In this paper, a general NMM is developed in general equations with initial discontinuity, where the
local approximation is a composition of Legendre polynomials. The hat function is used to construct
the PU. We tested NMM using several examples, and there are some conclusions shown as follows:

1. NMM can approximate the solution using different local approximation, and the local
approximation can be any order.

2. The higher order NMM has bigger kernel space with providing better precision.
3. NMM can be successfully used to deal with the discontinuity capture, due to the divisible

physical patches.
4. Although there are discontinuities, the “rank problem” (linear dependence) will not occur

when the physical patches are cut. The uniqueness and existence of solution can be verified
by numerical examples.

5. For dealing with discontinuities, we can cut the physical patches at discontinuities, and add more
equations at discontinuities. We can also cover the discontinuity with mathematical patches by
using exact solver such as Riemann solver.

6. The speed of the discontinuities should be determined by the Ranking condition when
discontinuities occur.
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Abbreviations

The following abbreviations are used in this manuscript:

NMM Numerical manifold method
FEM finite element methods
FDM finite difference methods
FVM finite volume methods
ENO essentially non-oscillatory behavior
TVD Total Variation Diminishing
MUSCL Monotone Upstream-centered Schemes for Conservation Law
LAs local approximations
GFEM generalized finite element methods
MC mathematical cover
PC physical cover
PPs physical patches
GFEM generalized finite element methods
MLS Moving Least-Squares
LD linear dependence
PU partition of unity
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