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Abstract: Fractional calculus is a relatively old yet emerging field of mathematics with the widest
range of engineering and biomedical applications. Despite being an incredibly powerful tool, it,
however, requires promotion in the engineering community. Rheology is undoubtedly one of the
fields where fractional calculus has become an integral part of cutting-edge research. There exists
extensive literature on the theoretical, experimental, and numerical treatment of various fractional
viscoelastic flows in constraint geometries. However, the general theoretical approach that unites
several most commonly used models is missing. Here we present exact analytical solutions for
fractional viscoelastic flow in a circular pipe. We find velocity profiles and shear stresses for fractional
Maxwell, Kelvin–Voigt, Zener, Poynting–Thomson, and Burgers models. The dynamics of these
quantities are studied with respect to normalized pipe radius, fractional orders, and elastic moduli
ratio. Three different types of behavior are identified: monotonic increase, resonant, and aperiodic
oscillations. The models developed are applicable in the widest material range and allow for the
alteration of the balance between viscous and elastic properties of the materials.

Keywords: Riemann–Liouville fractional derivative; viscoelasticity; pipe flow; fractional Maxwell
model; fractional Kelvin–Voigt model; fractional Zener model; fractional Poynting–Thomson model;
fractional Burgers model

1. Introduction

The very first consideration of the problem involving fractional differential equation is traced
back to the very end of the seventeenth century. It was Leibniz who introduced the notation dn/dxn

and L’Hospital who asked Leibniz: “What if n be 1/2?”. Leibniz response to this question has laid the
foundations of what is today known as fractional calculus (FC) [1]. Despite these early attempts made
by outstanding minds who were definitely ahead of their time, further development towards practical
applications appeared to be somewhat slow. An interested reader can refer to an excellent review of
Ross for details on early stages of FC development [2].

The fundamentals of FC along with a brief applications overview can be found in classical books
by Miller and Ross [3], Podlubny [4], or more recent one by Mainardi [5]. In the following decades
it became obvious that with the incredible potential of FC to tackle problems in absolutely different
fields, each of them should be addressed separately. By these means the general approaches in solving
fractional differential equations could be tailored to reflect the specifics of a given field, optimize
solution process, and formulate reliable constraints and ranges for, sometimes, purely mathematical
parameters. Along these lines, readers with a background in physics can refer to [6–9], while those
from the engineering field can refer to [10,11].
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The comprehensive overview summarizing state-of-the-art practical applications of FC has been
recently published by The Royal Society Publishing. The sixteen-paper issue entitled “Advanced materials
modeling via fractional calculus: challenges and perspectives” [12–27] covers applications of constant-order
(CO) and variable-order (VO) fractional differential operators to several fundamental phenomena. These
include anomalous diffusion, [13,16] heat conduction [14,27], fractional viscoelasticity of fluids [19],
and materials [12,18,22]. The approach to model viscoelastic properties of materials with VO FC operators
is undoubtedly among the most promising ones, as it allows for the consideration of fractional order
dynamics with respect to time, space, and material variables [22].

Viscoelasticity has been in the scope of researchers’ interest since the nineteenth century and
has gone through gradual development. With mathematical apparatus available at the time, several
mechanical models have been proposed, developed, and generalized to address the problem of
a more accurate description of material properties observed. Those classical models named after
researchers who made a significant contribution to the field include but are not limited to Maxwell,
Kelvin, Voigt, Zener, and Burgers. Based on two principal elements, spring and dashpot, connected
in series and/or in parallel, those models met the needs of adequate material response description
towards stresses and strains applied. However, as it often happened, experimental results started to
accumulate, which illustrated the behaviors beyond the above-mentioned models. This issue was
addressed from scratch, namely via rethinking of a basic element by Scott-Blair in 1947 [28]. He came
up with an idea of considering a single element capable of a simultaneous description of viscous
and elastic properties of the material. This approach capitalized on a notion of fractional derivative
and allowed for the alteration of the balance between viscous and elastic properties without any
additional complexity, but covering a wide range of materials. The systematic study of fractional
calculus applications to viscoelasticity was made by Bagley and Torvik [29], who laid theoretical
foundations of this approach. Since that time the field had emerged, especially when biomedical
applications were outlined. Historically, several approaches were developed to implement balancing
between viscous and elastic properties of materials. Initially, ordinary first-order constitutive equations
were straightforwardly replaced with fractional counterparts [30–34]. An obvious drawback of this
approach was its purely phenomenological character. An alternative approach implied physical
representation of fractional constitutive equations via hierarchical combinations of dashpots and
springs [35–38]. This concept (so-called ladder models) has been successfully implemented in further
studies by Schiessel et al. [39] and Friedrich et al. [40]. The authors have considered generalized
viscoelastic models, replaced them with fractional ones, and obtained their analytical solutions in
terms of relaxation modulus and creep compliance.

Numerous studies have demonstrated the superiority of fractional calculus approach compared
to classical one in predicting viscoelastic properties of materials and flows in various geometries.
Hernandez et al. [41] studied the behavior of relaxation modulus for polymethyl methacrylate (PMMA)
and polytetrafluoroethelene (PTFE) and demonstrated much more accurate fitting of experimental
data using fractional Maxwell model compared to integer-order one. Markis et al. [42] proposed and
experimentally verified the generalized fractional Maxwell model in the design of damper systems for
seismic and vibration isolation. Zhang and coworkers [43] have studied the stress-relaxation behavior
of fabrics coated with PTFE under various temperatures. The authors demonstrated the superiority of
fractional Maxwell model in predicting stress-relaxation behavior. This behavior was experimentally
proven to be nonlinear, while predicted to be linear by the classic Maxwell model. Moreover, compared
to the generalized Maxwell model, the fractional one appeared to be much easier, as it did not require
a large number of structural units to increase accuracy. The similar results for fractional Maxwell and
fractional Zener models were obtained for elastomers (carbon-black filled resins) [44–46], polymers
and rocks [47], and biological materials [48]. Fractional Kelvin–Voigt model was found to be efficient
in predicting viscoelastic behavior of sludge [49].

Fractional calculus approach to viscoelasticity found applications not only for solids, as shown
above, but also for various fluids. A brief historic retrospective reveals that both classic and fractional
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viscoelastic fluid flows in constrained geometries, especially pipes and ducts, turned out to be of
a particular researchers’ interest for about a century. This can be attributed to the fact that such
geometries are widely used for practical applications and also admit relatively easy analytical
solutions. Oscillatory pipe flows were among thoroughly investigated. Its classical consideration was
traced back to 1920–1930s [50,51]. These seminal studies were further extended and generalized by
Wornersley, Uchida, and others [52–55]. Later researchers considered dynamics of oscillatory pipe
flows at various Reynolds numbers [56,57], both experimentally and theoretically, and specifically
investigated transition to turbulence [58,59]. The foundations of fractional derivatives towards fluids
viscoelastic behavior were laid by Bagley and Torvik [29]. Wood [60] studied viscoelastic transient
flows in cylindrical pipes and annulus. Yin et al. [61] provided a theoretical framework for oscillating
viscoelastic pipe flow using fractional Maxwell model. The authors demonstrated a drastic difference
in velocity profile compared to the integer-order Maxwell model. Viscoelastic start-up flow with
the fractional Maxwell model was considered by Yang et al. [62]. A similar problem in the annular
pipe using fractional Burgers model was solved by Shah et al. [63]. An unsteady viscoelastic flow
in a cylinder [64] and rectangular duct [65] (using fractional Maxwell model) were also considered.
The exact solutions of unsteady flow in cylindrical domains with Maxwell fractional model were
derived by Khandelwal and Mathur [66,67]. Maqbool and coworkers [68] considered a flow of
generalized fractional Burgers fluid in inclined tube. Tang et al. [69] studied nonlinear free vibrations
of a pipe conveying fractional viscoelastic fluid. They demonstrated decreasing mode amplitudes
with increasing fractional order. Wang and Chen [70] considered a similar problem for the pipeline
conveying fractional fluid more accurately employing Legendre polynomials. Javadi et al. [71]
investigated the effect of gravity on fractional viscoelastic fluid flow in a pipe and addressed the
problem of stability for it. This selected list of fractional calculus applications is far from complete.
An interested reader can refer to a recent review of Sun et al. [72]. A big picture of various applications
of FC is also given in [17,23].

However, despite abundant theoretical, numerical, and experimental results on fractional
viscoelastic flow in pipes, the general, unifying theoretical approach to tackle flow dynamics is
still missing. To fill in this research gap, this paper provides exact analytical solutions for velocity
profiles and shear stresses. We demonstrate that the same solution form is applicable for different
viscoelastic models including Maxwell, Kelvin–Voigt, Zener, Poynting–Thomson, and Burgers.
Velocity profiles and shear stresses are studied parametrically with respect to fractional order and
elastic properties (Young’s modulus ratio, starting from 3-element model). This paper is organized as
follows. We first provide general problem formulation for fluid flow along with domain definition
(Section 2.1). In Section 2.2 we introduce the notion of the fractional element and its governing
equation. Sections 2.3–2.7 provide constitutive equations for the most common fractional viscoelastic
models. The main results of this study appear in Section 3. In particular, Section 3.1 describes the
general approach of seeking the solution along with brief revisiting of applicable transformations.
Sections 3.2–3.6 present and discuss centerline velocity and shear stress profiles dynamics with varying
fractional order and elastic parameters. Two-, three-, and four-component fractional models are
considered. Finally, the results of this study are summarized in Section 4.

2. Problem Formulation

2.1. Domain Definition

Introduce cylindrical coordinate system (r, θ, z) and consider laminar flow of incompressible
viscoelastic fluid along z axis of infinitely long pipe of radius R with circular cross-section. The domain
of interest is shown in Figure 1. The governing equations are momentum and continuity that read as:

ρ
du
dt

= −∇p + divσ (1)
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divu = 0, (2)

where ρ, u, p, σ are fluid mass density, flow velocity, pressure, and stress, respectively and d
dt stands for

total derivative. Provided u = uz(r, t)ez, where ez is a unit vector in z-direction and all but σrz stress
tensor components are set to 0, the momentum equation reduces to:

ρ
∂uz

∂t
= −∂p

∂z
+

1
r

∂(rσrz)

∂r
, (3)

where uz stands for z-component of flow velocity and all other quantities are defined above. Additionally,
we apply nonslip boundary condition at the wall.

Figure 1. Domain definition for the circular pipe.

2.2. Fractional Element

The idea of introducing basic element accounting for both viscous and elastic properties of the
material belongs to Blair [28]. Here we follow a conventional approach of constructing more complex
mechanical models based on this element. For such an element, the stress-strain relation (constitutive
equation) reads as:

σ(t) = Eτα
aDα

t ε(t), 0 ≤ α ≤ 1, (4)

where σ(t), ε(t), E, τ, α stand for stress, strain, Young’s modulus, relaxation time and fractional order,
respectively. The limiting cases of α = 0 and α = 1 represent spring and dashpot, respectively. The schematic
of the element is given in Figure 2a. Here we use a conventional notation of Riemann–Liouville fractional
derivative of a smooth function, f (t), given by:

aDα
t f (t) =

1
Γ(k− α)

dk

dtk

∫ t

a
(t− t0)

k−α−1 f (t0)dt0, (5)

where k is the integer, α is the fractional order, and Γ(·) stands for Gamma-function defined as:

Γ(x) =
∫ ∞

0
e−t0 tx−1

0 dt0 (6)

In the following subsections we will provide constitutive equations for two-, three-, and four-component
fractional viscoelastic models.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Fractional models: (a) basic element; (b) Maxwell; (c) Kelvin–Voigt; (d) Zener; (e) Poynting–Thomson;
(f) Burgers.

2.3. Fractional Maxwell Model

We start our consideration from the simplest yet commonly used two-component fractional
model with basic elements connected in series (fractional Maxwell model, Figure 2b). The constitutive
equation for this model reads as [39]:

σ(t) + τα−β
aDα−β

t σ(t) = Eτα
aDα

t ε(t), 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, α ≥ β, (7)

where α and β stand for the fractional orders, τ, E are defined as:

τ =
(E1τα

1

E2τ
β
2

) 1
α−β , E = E1

(τ1

τ

)α
, E = E2

(τ2

τ

)β
, (8)

and E1, τ1, E2, τ2 are the Young’s moduli, relaxation times for elements “1” and “2”, respectively.
Constitutive equation of fractional Maxwell model (7) can be reduced to classical one, if α = 1 and
β = 0. Moreover, if we set α = 1 and β = 1, Newtonian fluid can be obtained. The ranges set for
fractional orders α and β have both mathematical and physical meaning. Non-negative values of
fractional orders and their difference reflect the fact that the dynamics of processes considered are
described by fractional derivatives not fractional integrals. The upper limit of fractional orders range
is set to get the corresponding classical viscoelastic model as a limiting case of a fractional one. For τ

as it was defined above, α = β represents a special case. Indeed, it corresponds to relaxation time
blowing up. Physically it means that a fluid becomes a critical gel. This special case is, however,
beyond the scope of the current study. It is worth mentioning that relaxation time blows up only
provided that the base of τ is greater than unity. If, however, that is not the case, i.e., τ base is less than
unity, τ itself remains bound.
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2.4. Fractional Kelvin–Voigt Model

Now let us connect two basic fractional elements in parallel. The dynamics of corresponding
model (Kelvin–Voigt fractional model) are described as follows [39]:

σ(t) = Eτα
aDα

t ε(t) + Eτβ
aDβ

t ε(t), E = E2

(τ2

τ

)β
, (9)

where all the notations are similar to those for fractional Maxwell model. The schematic of the model
is given in Figure 2c. If α = 1 and β = 0, we appear at classical Kelvin–Voigt model.

2.5. Fractional Zener Model

Let us now consider 3-element model referred to as fractional Zener model (Figure 2d). The corresponding
constitutive equation reads as [39]:

σ(t) + τα−β
aDα−β

t σ(t) = Eτα
aDα

t ε(t) + E0τγ
aDγ

t ε(t) + E0τγ+α−β
aDγ+α−β

t ε(t),

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, α− β ≥ 0, γ + α− β ≥ 0, (10)

where γ stands for the fractional order of element “3” and E0 is given by:

E0 = E3

(τ3

τ

)γ
, (11)

with E3, τ3 being Young’s modulus and relaxation time for element “3” and all other notations being
the same as above. Assuming α = 1, β = 0, and γ = 0, classical Zener model can be restored.

2.6. Fractional Poynting–Thomson Model

For fractional Poynting–Thomson model (Figure 2e) the constitutive equation is [39]:

σ(t) +
E
E0

τα−γ
aDα−γ

t σ(t) +
E
E0

τβ−γ
aDβ−γ

t σ(t) = Eτα
aDα

t ε(t) + Eτβ
aDβ

t ε(t),

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, α− γ ≥ 0, β− γ ≥ 0, (12)

with all the notations similar to above, but different limitations applied to fractional orders α, β and γ.
Provided α = 1, β = 0, and γ = 0, we get classical Poynting–Thomson model.

2.7. Fractional Burgers Model

Finally, for the most complex, 4-element model considered in this study (fractional Burgers model,
Figure 2f) the constitutive equation reads as [5]:

σ(t) + E
E0

τ
α−γ
a Dα−γ

t σ(t) + E
E0

τα−δ
aDα−δ

t σ(t) + E
E0

τ
β−γ
a Dβ−γ

t σ(t) + E
E0

τ
β−δ
a Dβ−δ

t σ(t) =

= Eτα
aDα

t ε(t) + Eτ
β
a Dβ

t ε(t),

0 ≤ α ≤ 1, 1 ≤ β ≤ 2, 0 ≤ γ ≤ 1, 0 ≤ δ ≤ 1, α− γ ≥ 0, β− γ ≥ 0, α− δ ≥ 0, β− δ ≥ 0

(13)

where δ stands for the fractional order of element “4”, (11) is still valid and additionally:

E0 = E4

(τ4

τ

)δ
, (14)
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with E4, τ4 being Young’s modulus and relaxation time for element “4” and all other notations being
the same as above. If we set α = 1, β = 2, γ = 0, and δ = 0, classical Burgers model can be restored.
Here β− γ ≥ 0 and β− δ ≥ 0 are satisfied automatically, given the range for β, γ, and δ.

3. Results and Discussion

3.1. General Solution

Here we follow the approach proposed earlier by Yin [61] for Maxwell model and then generalize
it for all other models. Consider a specific type of pressure gradient given as follows:

∂p
∂z

= P0eiωt (15)

Introduce Fourier and inverse Fourier transforms of flow velocity and pressure:

Uz(r, ω) =
∫ +∞

−∞
uz(r, t)e−iωtdt, uz(r, t) =

1
2π

∫ +∞

−∞
Uz(r, ω)eiωtdω (16)

P(r, ω) =
∫ +∞

−∞
p(r, t)e−iωtdt, p(r, t) =

1
2π

∫ +∞

−∞
P(r, ω)eiωtdω (17)

Recall Fourier transform rule for fractional derivative:

F{aDα
t uz} = (iω)αUz(r, ω), F{aDα−β

t
∂p
∂z
} = (iω)α−β ∂P(r, ω)

∂z
, (18)

where appropriate integration limits are implied. In particular, lower terminal value is set to: a = −∞.
Then the general algorithm to find flow velocity is the following: (1) express stress and its derivative
from the constitutive eq-n; (2) plug stress and its derivative in momentum eq-n; (3) eliminate stress and
its derivative and get modified momentum eq-n; (4) perform Fourier transform of modified momentum
eq-n; (5) solve corresponding ODE for Fourier transform of velocity (Uz(r, ω)); (6) change variables
with ξ for simplicity; (7) perform inverse Fourier transform of Uz(r, ω) to get uz(r, t). Regardless of
the model considered, z-component of the velocity reads as:

uz(r, t) =
i

ρω

∂p(z, t)
∂z

[
1− J0(ξr)

J0(ξR)

]
, (19)

where Jn(·) is the Bessel function of the first kind of order n. The only difference that defines behavior
of the system is hidden in ξ. At the same time, the form of the solution reproduces a well-known
classical result (see, for example Reference [73]). Thus it represents a natural extension of integer-order
models using apparatus of FC. As long as velocity profile was defined, we could also get expression
for the stress. The direct integration of (3) accounting for (15) results in:

σrz =
∂p
∂z

J1(ξr)
ξ J0(ξR)

, (20)

where again the individual properties of the model are hidden in parameter ξ. Physical meaning
of ξ is worth consideration. First, of all, [ξ] = [1/m], so that it can be considered as an “effective”
wave number. Moreover, as shown below, ξ is related to complex compliance. Introducing σ0 = ∂p

∂z R,
nondimensional stress σ̃ = σrz/σ0 is given by:

σ̃ =
J1(ξr)

ξRJ0(ξR)
(21)
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For practical purposes and analysis simplification, it is more convenient to introduce the following
nondimensional quantities and relationships:

r̃ =
r√
ντ

, ã =
R√
ντ

, ω̃ = ωτ, φ =
r̃
ã

, u0 =
1

4ρω

∂p
∂z

, r2ξ2 = ω̄r̃2, (22)

where ν is a kinematic viscosity and all other quantities were defined earlier. Then velocity and stress
profiles are given by:

ũ =
∣∣∣uz

u0

∣∣∣ = (1− J0(
√

ω̄ãφ)

J0(
√

ω̄ã)

)
, σ̃ =

∣∣∣σrz

σ0

∣∣∣ = J1(
√

ω̄ãφ)√
ω̄ã J0(

√
ω̄ã)

(23)

As velocity profiles and shear stresses have been defined, we can now proceed with considering
specific fractional viscoelastic models and outlining their specifics. Six parameters will be considered:
fractional order (α, β, γ, δ), nondimensional radius, ã, and elastic ratio, ψ.

3.2. Fractional Maxwell Model

Let us start from the simplest two-parameter fractional Maxwell model. As outlined above,
the key quantity that defines the behavior of a model is ξ. For this model ξ is given by:

ξ2 =
ρω2

E

[ 1
(iωτ)α

+
1

(iωτ)β

]
, (24)

or alternatively in nondimensional form:

ω̄ = ω̃2
[ 1
(iω̃)α

+
1

(iω̃)β

]
(25)

Centerline velocity profiles for fractional Maxwell model are shown in Figure 3. For all the plots
α = 0.5. The value of ã ranges from ã = 0.01 (Figure 3a) to ã = 0.1 (Figure 3c). For this model an
additional condition is imposed: α ≥ β, thus only a half of β range is considered given the value
of α set. As can be seen from this figure, the behavior of centerline velocity changes dramatically
from monotonically increasing to resonant or oscillatory. Centerline velocity profile also changes with
increasing fractional order (β). For lower values of ã, an increase of β results in decreasing of centerline
velocity up to the constant value (as β→ 0.5). For higher values of ã (Figure 3b,c) the system exhibits
aperiodic oscillations at low β and demonstrates a switch from resonant behavior to monotonically
increasing as β increases. It is also worth mentioning that peak values decrease with increasing β.
What is the reason for such a dramatic change of a velocity profile dynamics with varying ã? In fact,
ã2 turns out to be nothing else but a Reynolds number: ã2 = Re, one of the key flow parameters.

(a) (b) (c)

Figure 3. Centerline velocity profile for fractional Maxwell model: (a) ã = 0.01; (b) ã = 0.05; (c) ã = 0.1.
For all plots α = 0.5. Subscript “c” stands for “centerline”.
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Now let us have a look at the shear stress dynamics (at the wall) shown in Figure 4. Here again
we fix α = 0.5 and vary β (α ≥ β). Similar to velocity profile, shear stress increases monotonically with
ω̃ for lower values of ã. The trend, however, changes to almost constant with increasing fractional
order. As ã increases, the system exhibits more complex behaviors. In particular, there are aperiodic
oscillations observed for lower values of fractional order that switch to resonant ones and monotonic
decay as the fractional order starts to increase. Moreover, peak values shift to higher values of ω̃

with increasing fractional order and the peaks themselves become more dispersive. At the same time,
an increase of ã results in resonant peaks becoming sharper and shifting to lower values of ω̃.

(a) (b) (c)

Figure 4. Shear stress profile at the pipe wall for fractional Maxwell model: (a) ã = 0.01; (b) ã = 0.05;
(c) ã = 0.1. For all plots α = 0.5. Subscript “w” stands for “wall”.

Finally, for relatively high values of ω̃ and ã, shear stress plots converge and become nearly
independent from the fractional order β. To better understand physical meaning behind fractional
orders α and β, we have examined its influence on centerline velocity and shear stress dynamics in a
wider range of ω̃ (0 ≤ ω̃ ≤ 1000) with the fixed value of ã (ã = 0.1) as shown in Figure 5. We have
first fixed α = 0.5 and varied β: 0.1 ≤ β ≤ 0.5. For both centerline velocity (Figure 5a) and shear
stress (Figure 5b) low values of β resulted in oscillatory profiles that in turn reflects the fact that the
fractional order β describes elastic properties of the fluid considered. In contrast, if we fix β = 0.5
and vary α: 0.6 ≤ α ≤ 1, the oscillations are damped much quicker for both centerline velocity and
shear stress (Figure 5c,d). Finally, let us set α = 1 and vary β: 0.25 ≤ β ≤ 1. Corresponding plots for
centerline velocity and shear stress are shown in Figure 5e,f, respectively. When α = 1 and β = 1,
Newtonian fluid is obtained with centerline velocity monotonically reaching constant value and shear
stress monotonically decaying.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. Fractional Maxwell model: (a) centerline velocity, α = 0.5; (b) shear stress, α = 0.5; (c) centerline
velocity, β = 0.5; (d) shear stress, β = 0.5; (e) centerline velocity, α = 1; (f) shear stress, α = 1. For all plots
ã = 0.1. Subscripts “c” and “w” stand for “centerline” and “wall”, respectively.

3.3. Fractional Kelvin–Voigt Model

Next, we consider another commonly used two-parameter fractional model referred to as Kelvin–Voigt.
We start from parameter ξ, responsible for system behavior. It reads as:

ξ2 =
ρω2

E

[ 1
(iωτ)α + (iωτ)β

]
, (26)

or alternatively in nondimensional form:

ω̄ =
ω̃2[

(iω̃)α + (iω̃)β
] (27)

In contrast to fractional Maxwell model, no additional relations between α and β are implied here.
Thus, we have more freedom to set the values of these fractional orders within the entire range.

Centerline velocity profiles and shear stresses for fractional Kelvin–Voigt model are given in
Figure 6. Here again we fix α = 0.5 and vary β. Different from fractional Maxwell model, centerline
velocity profiles (Figure 6a,c,e) do not exhibit aperiodic oscillations with varying both fractional order
and ã. Centerline velocity amplitudes increase with increasing ã and decrease with increasing fractional
order β. Shear stresses’ dynamics for the same model are presented in Figure 6b,d,f. Here again all
three types of behavior encountered for fractional Maxwell model are present. More specifically, as ã
increases, shear stresses experience three different types of behavior: from monotonically increasing
through resonant to oscillatory. Relative stress amplitudes decrease with increasing fractional order β.



Appl. Sci. 2020, 10, 9093 11 of 21

(a) (b)

(c) (d)

(e) (f)

Figure 6. Fractional Kelvin–Voigt model: (a) centerline velocity, ã = 0.01; (b) shear stress, ã = 0.01;
(c) centerline velocity, ã = 0.05; (d) shear stress, ã = 0.05; (e) centerline velocity, ã = 0.1; (f) shear stress,
ã = 0.1. For all plots α = 0.5. Subscripts “c” and “w” stand for “centerline” and “wall”, respectively.

3.4. Fractional Zener Model

Now examine the behavior of three-element fractional Zener model. The key model variable, ξ,
in this case becomes:

ξ2 =
ρω2

E

[ 1

(E0/E)(iωτ)γ + (iωτ)α+β

(iωτ)α+(iωτ)β

]
, (28)

or alternatively in nondimensional form:

ω̄ =
ω̃2

ψ(iω̃)γ + (iω̃)α+β

(iω̃)α+(iω̃)β

, (29)

where ψ = E0
E is an elastic parameter. By definition elastic parameter ψ can be rewritten as:

ψ =
E3τ

γ
3

E1τα
1

τγ−α (30)
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For classical Zener model (α = 1, β = 0, and γ = 0), ψ reduces to: ψ = E3/E2, i.e., The ratio of
Young’s moduli, thus justifying the notion introduced above. Similar to fractional Maxwell model,
we impose additional conditions for fractional orders α, β, and γ. From two inequalities: α− β ≥ 0
and γ + α− β ≥ 0, we end up with the first one. The second one is satisfied automatically, provided
the first one is and γ being non-negative.

We first examine the dynamics of centerline velocity. Different from two-element models, where
we considered the influence of three parameters (α, β, and ã) on the system behavior, here we need to
account for five parameters (ã, α, β, γ and ψ). Let us fix α = 0.5 (as previously), γ = 0.5 and ψ = 1.
Since α− β ≥ 0, we only consider 0 ≤ β ≤ 0.5. Corresponding centerline velocity profiles are given
in Figure 7a,d,g. Centerline velocity changes its behavior from monotonically increasing to resonant
with increasing ã. Moreover, relative velocity amplitudes increase with increasing ã. In addition to it,
an interesting phenomenon is observed in Figure 7g. Relative velocity amplitudes tend to decrease
with increasing fractional-order β up to a certain value (ω̃ ∼ 150). At this point, centerline velocities
for all fractional orders become close, and then the trend inverses, namely velocity amplitudes start to
increase with increasing fractional-order β.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Centerline velocity for fractional Zener model: (a) ã = 0.01, α = γ = 0.2, ψ = 1; (b) ã = 0.01,
α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.2, ψ = 1; (e) ã = 0.05,
α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.2, ψ = 1; (h) ã = 0.1,
α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “c” stands for “centerline”.

Next, let us fix α = β = 0.5, ψ = 1 varying γ and ã. The corresponding plots for centerline
velocity are shown in Figure 7b,e,h. Here we can observe switching from monotonically increasing
to resonant behavior of the system with ã increasing and relative velocity amplitude decrease with
increasing fractional order γ. Moreover, for larger values of ã centerline velocity behavior changes
from resonant to almost linearly increasing with increasing fractional order γ.

Finally, we fixed α = β = γ = 0.5 and varied ã and ψ as shown in Figure 7c,f,i. As can be seen,
the system behavior changes from monotonically increasing to resonant with increasing ã. Moreover,
resonant curves become less dispersive, with increasing ã and more dispersive with increasing ψ.
Relative amplitudes of centerline velocity also decrease with increasing ψ.



Appl. Sci. 2020, 10, 9093 13 of 21

The dynamics of shear stresses are given in Figure 8. The first column in Figure 8 (Figure 8a,d,g)
corresponds to α = γ = 0.5, ψ = 1 and varying ã and β. In Figure 8g there exist two values of ω̃ where
shear stresses become very close for different values of fractional order β. Upon reaching the one
corresponding to lower value of ω̃, the trend reverses with relative stress amplitude decreasing for
increasing fractional order, β. For large values of ω̃, shear stress becomes almost independent of the
fractional order, β. For the second column of Figure 8 (Figure 8b,e,h), we set α = β = 0.5, ψ = 1 and
varied ã along with γ. The new phenomenon observed can be seen in Figure 8e,h. That is, the resonant
behavior changes to monotonically increasing and finally to constant with increasing fractional order γ.
The similar trend is observed in case of varying ψ as shown in Figure 8c,f,i (α = β = γ = 0.5).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Shear stress at the pipe wall for fractional Zener model: (a) ã = 0.01, α = γ = 0.2, ψ = 1;
(b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.2, ψ = 1;
(e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.2, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “w” stands for “wall”.

3.5. Fractional Poynting–Thomson Model

The next model to be considered is fractional Poynting–Thomson one. Here ξ reads as:

ξ2 =
ρω2

E

[ 1
(E0/E)(iωτ)γ

+
1(

(iωτ)α + (iωτ)β
) ], (31)

or alternatively in nondimensional form:

ω̄ = ω̃2
( 1

ψ(iω̃)γ
+

1
(iω̃)α + (iω̃)β

)
(32)

Here we impose two additional conditions for fractional orders α, β, and γ: α − γ ≥ 0 and
β− γ ≥ 0. As previously, we first examine the behavior of centerline velocity (Figure 9). Fixing α =

γ = 0.2, ψ = 1, we vary ã and β. The trends are somewhat repeatable compared to fractional
Maxwell model (Figure 3a,d,g) and demonstrate elastic behavior for the entire range of β. Next,
we fixed α = β = 0.2, ψ = 1 and varied ã along with fractional order γ. The corresponding plots
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are presented in Figure 9b,e,h. Here aperiodic oscillations for lower values of fractional order γ,
oscillatory and monotonically increasing velocity profiles with increasing γ are observed. Finally,
we set α = β = γ = 0.5 and varied ã and ψ (Figure 9c,f,i). Here, resonant behavior is observed even
for lower values of ã (Figure 9c). Moreover, for ψ < 1 aperiodic oscillations of velocity are observed
followed by it becoming independent from ω̃. The trend, however, changes to resonant for ψ > 1.
Overall, the velocity oscillations are damped slower with ψ increasing.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Centerline velocity for fractional Poynting-Thomson model: (a) ã = 0.01, α = γ = 0.2, ψ = 1;
(b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.2, ψ = 1;
(e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.2, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “c” stands for “centerline”.

The shear stress dynamics at the wall are shown in Figure 10. As previously, we first fixed
α = γ = 0.2, ψ = 1 and varied ã and β (Figure 10a,d,g). After major peak, shear stress drops
dramatically with oscillations being damped for the entire range of β, except for Figure 10a, where
it increases monotonically. The value of the major peak itself oscillates with increasing β. Next,
as shown in Figure 10b,e,h, system parameters were set at α = β = 0.2, ψ = 1 with varying ã and γ.
Monotonically increasing trend for lower values of ã changes to aperiodic oscillations and resonant for
higher ones. Moreover, the value of the major peak decreases monotonically with increasing fractional
order γ. Finally, we set α = β = γ = 0.5 and varied ã and ψ. The corresponding plots are shown
in Figure 10c,f,i. As can be seen from it, resonant behavior is present for all values of ã. However,
it switches to monotonically increasing with increasing ψ. Moreover, the switch happens at higher
values of ψ as ã increases and is absent for ã = 0.1 (Figure 10i).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Shear stress at the pipe wall for fractional Poynting-Thomson model: (a) ã = 0.01, α = γ =

0.2, ψ = 1; (b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.2,
ψ = 1; (e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.2, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “w” stands for “wall”.

3.6. Fractional Burgers Model

Here we discuss the most complex fractional viscoelastic model, Burgers model. For this model ξ

is given by:

ξ2 =
ρω2

E

[ 1
(E0/E)

(
(iωτ)γ + (iωτ)δ

) + 1(
(iωτ)α + (iωτ)β

) ], (33)

or alternatively in nondimensional form:

ω̄ = ω̃2
( 1

ψ[(iω̃)γ + (iω̃)δ]
+

1
(iω̃)α + (iω̃)β

)
(34)

It is worth noting that for fractional Burgers model the range of fractional orders differs from
all other models considered above. In particular, while the range for orders α, γ, and δ is still from
0 to 1, 1 ≤ β ≤ 2. This change affects the dynamics of the centerline velocity profile dramatically.
Centerline velocity profiles are shown in Figure 11. We first fixed α = γ = δ = 0.5, ψ = 1 and varied ã
and β. The corresponding plots are shown in Figure 11a,d,g. The profile appears to be independent
from the fractional order β. The situation changes when we set β = 1.5 and vary δ (Figure 11b,e,h).
Velocity profile is very sensitive to the changes in fractional order δ when it has relatively low values.
Aperiodic oscillations with reducing peak values for increasing values of δ are observed. For varying ψ

(Figure 11 c,f,i), trends are overall similar to that for the fractional Poynting–Thomson model with the
peaks for the fractional Burgers model being slightly sharper. This similarity can be attributed to the
specific values of the fractional orders α, γ and δ set in Figure 11c,f,i (α = γ = δ = 0.5). This specific
setting has consequences for constitutive equations in both models. That is, the terms containing
fractional derivatives of the orders α− γ and α− δ become of the order zero.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Centerline velocity for fractional Burgers model: (a) ã = 0.01, α = γ = 0.5, ψ = 1;
(b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.5, ψ = 1;
(e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.5, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “c” stands for “centerline”.

Finally, let us have a look at the shear stresses shown in Figure 12. As can be seen from it, shear
stress, too, is independent from the fractional order β (Figure 12a,d,g). Stress dynamics change in
Figure 12b,e,h. Quickly decaying aperiodic oscillations are observed. In particular, major peak values
decrease monotonically with increasing value of fractional order δ. Moreover, these peaks become
sharper and shift to lower values of ω̃ with increasing ã. Next, we fixed α = γ = δ = 0.5 and β = 1.5.
Here we observed resonant behavior for all values of ã and quickly damped oscillations for low values
of ψ (Figure 12c,f,i).

A closer look at expressions for ξ corresponding to different models reveals their similarity.
To illustrate this statement, let us introduce complex compliance, J∗(ω). For all the models considered,
it has the following functional form: [...]/E, where an expression in square brackets is model-specific.
Both ξ and ω̄ can be expressed in terms of complex compliance:

ξ2 = ρω2 J∗(ω), ω̄ = ω̃2EJ∗(ω), (35)

as it was defined in [39]. Thus, generally speaking, ξ is a complex quantity. Moreover, as we got complex
compliance, other physical quantities including creep compliance, complex modulus, and relaxation
modulus can be restored. For instance, J∗(ω) = 1/G∗(ω), where G∗(ω) stands for complex modulus.
Then for fractional Maxwell model the loss modulus, G”(ω) = Im(G∗(ω)), reads as [39]:

G”(ω) = E
(ωτ)α sin(πα/2) + (ωτ)2α−β sin(πβ/2)

1 + (ωτ)2(α−β) + 2(ωτ)α−β cos(π(α− β)/2)
(36)

Another insight can be obtained upon examination of Figure 2b–f and corresponding constitutive
equations. The general observation is that more complex models can be obtained via consecutive
combination of simpler ones with fractional elements. In particular, by adding fractional element to
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fractional Maxwell model in parallel, we arrive at fractional Zener model. Alternatively, starting
from fractional Kelvin–Voigt model and adding fractional element in series, we get fractional
Poynting–Thomson model. Adding one more fractional element in series, we end up with fractional
Burgers model. The same “additive” behavior is observed for complex compliances.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Shear strees at the pipe wall for fractional Burgers model: (a) ã = 0.01, α = γ = 0.5, ψ = 1;
(b) ã = 0.01, α = β = 0.5, ψ = 1; (c) ã = 0.01, α = β = γ = 0.5; (d) ã = 0.05, α = γ = 0.5, ψ = 1;
(e) ã = 0.05, α = β = 0.5, ψ = 1; (f) ã = 0.05, α = β = γ = 0.5; (g) ã = 0.1, α = γ = 0.5, ψ = 1;
(h) ã = 0.1, α = β = 0.5, ψ = 1; (i) ã = 0.1, α = β = γ = 0.5. Subscript “w” stands for “wall”.

It is worth emphasizing the generality of the approach developed. Provided the flow is
axisymmetric, the pipe having a circular cross-section, and no-slip condition at the wall is satisfied,
the solutions derived are suitable for various viscoelastic models commonly used for practical
applications. For the same form of the solution of velocity and stress profiles, the prediction of
flow dynamics for completely different fluids can be obtained via deriving a single model parameter, ξ.
Moreover, the functional form of ξ itself is also identical for all the models considered. What makes a
given model specific is the expression for the complex compliance. This powerful approach simplifies
significantly the implementation of other possible viscoelastic models within a given framework.
The classical viscoelastic and Newtonian fluid models present the limiting cases of the theoretical
approach proposed in this study. Velocity profiles’ dynamics for fractional Maxwell and Newtonian
fluids in a circular pipe are shown in Supplementary Materials 1. These clearly demonstrate the
complexity of behavior for fractional Maxwell model.

4. Conclusions

We have obtained exact analytical solutions for velocity profiles and shear stresses. Fractional Maxwell,
Kelvin-Voigt, Zener, Poynting–Thomson, and Burgers models were considered. We demonstrated that the
same form of the solution is applicable to all the models considered, thus generalizing prior studies.
For both centerline velocity and shear profiles, three types of behavior (monotonically increasing,
resonant, oscillating aperiodic) have been identified. In addition to it, switching between trends of
relative velocity amplitudes have been predicted. Monotonically decreasing trends were found to be
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typical for relatively low values of normalized pipe radius with more complex behaviors taking place
for higher values of the normalized radius. In addition to this, centerline velocity profiles featured
almost constant plateaus. The proposed models cover the widest range of viscoelastic materials both
in terms of the balance between viscous and elastic properties (via fractional-order) and the ratio of
elastic properties for complex materials.

The approach we developed features an advantage that is worth mentioning. It allows the
wide range of fractional viscoelastic models to be represented and solved in the same functional
form. In fact, the entire system behavior can be described by a single function ξ (or ω̄). It, in turn,
is related to a complex compliance with the functional form identical for all five models considered
in this study. Knowing complex compliance, complex and relaxation moduli and creep compliance
are readily obtained. These quantities can be directly measured thus providing immediate practical
applications for materials analysis. However, for some specific fields (e.g., polymers), experimental
creep compliance data for short times has not been well-established so far. This problem was outlined
in recent studies (see, for example, Reference [74]). It definitely deserves attention of the research
community and will hopefully be addressed in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/24/9093/
s1 .
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