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Simple Summary: Development of an end-effector able to reduce the momentum transfer from the
robot to the object during impacts.

Abstract: In robotic teleoperation, hard impacts between a tool and the manipulated object may
impair the success of a task. In order to develop a robotic system that is able to minimize the final
velocity of an object after impact, a comprehensive approach is adopted in this work, and the effect
on the impact of the parameters of the tool and of the robot is studied. Mass, contact stiffness and
damping, robot compliance and control and tool compliance are taken into account. A mathematical
model including the tool and the robot moving along the approach direction shows that, in most
conditions, robot compliance is not enough to mitigate the impact. A mechanical decoupling between
the inertia of the tool and the inertia of the robot is needed. An elastic system based on a bi-stable
mechanism is developed and its validity is shown by means of numerical simulations.

Keywords: robotics; teleoperation; end-effector; mechanical vibrations; dynamic modeling

1. Introduction

Since its introduction, teleoperation has been extensively studied by control theoreticians with
the aim of achieving the goals of stability and telepresence [1,2].

Stability is the ability of a system to remain stable independently of an operator and
environment behavior.

Telepresence, also called transparency, is the ability of a system to accurately render the
environment to the operator, which means that the position and the force of the slave closely follow
the position and the force of the master.

Unfortunately, a delay in the communication channel affects both these goals, and several solutions
have been proposed in the past decades to mitigate this problem. As can be inferred from the
literature, most of the proposed solutions have focused on the improvement of the control system
(wave variables [3], adaptive [4] and model predictive algorithms [5]).

In contrast, in this paper, a completely mechanical approach is adopted. Specifically, the research
is focused on improving the use of teleoperation with industrial robots. The aim is to control industrial
robots in order to achieve planar movements, such as those needed for smoothing out piles or
handling objects.

In this context, the teleoperation is improved by means of an innovative tool design. This tool is
able to reduce the transferred momentum to the object during impacts, obtaining a sort of absorption
of the impact itself. Consequently, not only are the delay effects reduced, but also the approach velocity
can be incremented, allowing faster movements and minimizing task duration. Therefore, the overall
quality of the teleoperation can be improved.
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It is worth noting that the method used in this paper can be applied to all kinds of system in
which a delayed/absorbed impact is targeted. For example, the designed tool can be applied in tasks
in which the environment is unknown, and a vision system, which has been extensively used in this
context [6], cannot be used or is difficult to implement. In this case, the robot can move blindly in a
certain direction, and when an impact occurs, the robot can feel this via sensors on the tool or via the
torque sensor of the robot (if present). Thanks to the design of the tool, the robot has enough time to
elaborate the signals from the sensors and respond to the impact, without the risk of shooting away
the objects.

It is important to underline that the tool requires very small modifications when dealing with
objects of different sizes and masses. Accordingly, this study can be considered to correspond to the
field of flexible and adaptive tools [6–9].

In this paper, the planar movement of a tool mounted on a typical six-degree of freedom
(DOF) industrial robot with a spherical wrist is considered. A mono-dimensional model of the
collision is implemented, which is enough to characterize the movement of the end-effector along
the approach direction. Consequently, the six-DOF robot model has been reduced to a a one-DOF
mass–spring–damper system, and the effects of the compliance and the inertia of the robot in the
impact are taken into account. The properties of the tool are investigated and optimized in order to
reduce the momentum transferred during impacts. Finally, a non-linear system is developed, obtaining
a tool that, in simulations, is able to delay the moment in which it actively pushes the objects, giving
time to the robot and the operator to detect and respond to the impact.

2. Impact between the Tool and the Object

In teleoperation, hard impacts between the tool and the object that has to be manipulated often
occur. The impact can be mitigated with a proper design of the tool and by acting on the control
system of the robot. Many different situations require the mitigation and control of impact. First,
a hard impact may lead to a large final velocity of the object that may separate it from the tool.
Eventually, this condition leads to many tool–object impacts that impair teleoperation tasks. The impact
force is important, because it may damage the object and the robot. Moreover, the robot control system
is usually designed to decelerate a robot when a contact is detected, and the measurement of the
impact force is one of the best ways to detect the contact. The duration of the impact is very important
as well. If the impact is short in comparison with the typical response time of the robot, the robot has a
very short time to decelerate after impact detection. Conversely, if the impact is rather long, the robot
has enough time to decelerate and mitigate the impact.

2.1. Instantaneous Impact

If the duration of the impact is very short and the impact force is so large that other forces can be
neglected, the impact between the tool of the moving robot and the object can be studied according to
the classical impact theory [10]. Two limit cases are represented in Figure 1.

Figure 1. Instantaneous impacts. (a) A tool rigidly fixed to the robot; (b) a tool decoupled from
the robot.
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In the first limit case, the tool, which has a plane face, is rigidly connected to the robot, and
the object is a spherical point mass. Since the mass of the robot with the tool is much larger than the
mass of the object, its velocity change is negligible. In other words, the velocity of the tool after the
impact (Vt) is equal to the velocity before the impact (vt) and is imposed by the control system of
the robot. The final velocity of the object can be calculated using the restitution coefficient (e), which
is the ratio of the relative velocity of the two masses after the impact to that before; e = 1 means
that the contact is elastic (no kinetic energy is lost), and e = 0 means that the contact is completely
inelastic.The following equation holds:

Vp = Vt + e(vt − vp) (1)

in which vp and Vp are the initial and final velocities of the object, respectively. It is worth noting that
the mass of the object has no effect on its final velocity. If the tool is moving with velocity vt = 1 m/s
and the object is initially stationary, the final velocity of the object is Vp = 2 m/s with e = 1 (pure elastic
impact) and Vp = 1 m/s with e = 0 (completely inelastic impact).

In the second limit case, the tool is completely decoupled from the robot and is represented by a
simple point mass mt with plane faces. The initial velocity vt of the tool is imposed by the motion of
the robot, but it can change after the impact and the tool can move backwards. The conservation of
momentum of the mechanical system depicted in Figure 1b leads to the following:

mtvt + mpvp = mtVt + mpVp (2)

The final velocities of the two masses can be found by coupling Equation (2) with Equation (1):

Vt = vt +
mp

mt + mp
(1 + e)(vp − vt) (3)

Vp = vp −
mt

mt + mp
(1 + e)(vp − vt) (4)

Figure 2 shows the effect of e on the final velocities. A tool with mt = 0.125 kg and vt = 1 m/s and
an object with mp = 0.25 kg and vp = 0 m/s are considered. The increase in the restitution coefficient
leads to increases in the final velocity of the object and in the velocity variation of the tool.

The effect of tool mass is depicted in Figure 3. A decrease in the mass of the tool causes a decrease
in the final velocity of the object for every value of the restitution coefficient.
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Figure 2. Influence of e on the end velocities of the tool and of the object.
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Figure 3. Influence of moving mass on end velocities.

The comparison between the final velocities of the object calculated in the two limit cases shows
that the variation in the velocity of the tool leads to a large reduction in the final velocity of the
object. In fact, the tool is neither rigidly fixed to a massive and stiff robot nor completely free to
move. Nevertheless, this simple analysis shows that the decrease in the restitution coefficient and the
mechanical decoupling between the tool and the robot are needed to minimize the object’s final velocity.

2.2. Non-Instantaneous Impact

The theoretical analysis presented in the previous sub-section in many practical cases gives a good
prediction of final velocities, but it does not give information about the contact force and duration,
which are very important for robot control.

In recent years, many contact force models have been presented [11]. The impact between the two
bodies can be schematized as in Figure 4, in which there an elastic element and a damping element
in parallel are present.

Figure 4. Non-instantaneous impacts. (a) A tool rigidly fixed to the robot; (b) a tool decoupled from
the robot.

The elastic element can be linear or non-linear; the damping element is usually non-linear and
the damping force depends both on the deformation velocity δ̇ and on deformation δ. Most of the
proposed contact models [11–13] can be formulated according to this equation:

F = kcδm + χδn δ̇ (5)

in which kc is stiffness, χ is a constant and m and n are two exponents.
In the present case, F is the force that a tool exerts on the object, and δ = xt − xp, with xt − xp > 0

to guarantee the contact.
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The motion of the two masses after the impact can be calculated by solving the two
differential equations:

mt ẍt = −F

mp ẍp = F
(6)

If the tool is rigidly connected to the robot, only the second equation has to be solved, because xt

is assigned. Since in general F is non-linear, a numerical integration was carried out by means
of Simulink.

It is worth noting that Equation (5) with m = 1 and n = 0 represents a simple linear spring–damper
contact model. The simple linear contact model makes it possible to predict the contact forces and
impact duration and leads to a simple relationship between the damping ratio of the relative motion
and the coefficient of restitution [10], but it has some drawbacks. The coefficient of restitution does
not depend on the relative velocity before the impact (as experimentally assessed [12]). The viscous
component of the contact force is discontinuous, since it suddenly increases at the beginning of the
contact, is not zero at the end of the contact and is opposed to the separation between the object and
the tool. This behavior is not consistent with physical intuition, since at the beginning and at the end
of the contact there is no penetration and the force should be zero [12].

A non-linear contact model overcomes most of the above-mentioned limits. In the framework of
this research, a contact model with m = 3

2 and n = 3
2 was considered. Since the tool and the object

can be schematized as a plane surface and a sphere, respectively [14], the exponent of the elastic force
comes from the well-known Hertz contact law [12]. The calculation of the energy lost in the hysteresis
loop of the damping force shows that exponent n has to be set equal to m [12]. The damping constant
χ is related to the contact stiffness and to the restitution coefficient by this equation, as derived in [15]:

χ =
3
2
(1− e)

e
kc

1
δ̇in

(7)

in which δ̇in is the initial relative velocity. It is worth noting that Equation (7) comes from an
improvement of the impact model presented in [12], which extends the validity of the model in
the range of small restitution coefficients.

Figure 5 shows the total contact force and its elastic and damping components calculated for the
two limit cases of Figure 4. In the simulations, the following parameters were adopted: mt = 0.125 kg,
mp = 0.25 kg, kc = 105 N

m1.5 , e = 0.5, vt = 1 m/s and vp = 0 m/s. The non-linear model leads to a
realistic shape of the damping force (without discontinuities) and of the contact force. If the tool is
rigidly connected to the robot, the contact force peak is almost twice that of the peak that occurs when
the tool is decoupled. The duration of the contact decreases if the tool is decoupled from the robot.

Referring to Figure 5a, it is worth noting that the damping component of the contact force becomes
negative for t > 0.321 s. This result does not mean the presence of a force that is opposed to the
detachment of the two bodies; in fact, even if in Figure 4 the spring and the damper are depicted as two
separate lumped elements, they are associated to the deformation of the same body, and a negative
damper force only means that damping decreases the contact force with respect to the theoretical value
corresponding to a purely elastic contact.

The effects of the contact stiffness kc and of the restitution coefficient e on the contact force and
impact duration were analyzed by carrying out series of numerical simulations with mt = 0.125 kg and
mp = 0.25 kg. The initial velocities were set to vt = 1 m/s and vp = 0 m/s. The simulations considered
both cases, as shown in Figure 4.
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(a) (b)

Figure 5. Temporal evolution of contact force for the non-linear model. (a) Limit case of Figure 4a;
(b) limit case of Figure 4b.

Figure 6 shows that, when e is assigned, an increase in contact stiffness kc leads to an increase in
contact force. This behavior is consistent with physical intuition. When kc increases, the deformation
decreases, but the elastic energy transferred from the tool to the object has to remain constant, since
e is fixed. Thus, the reduction in deformation is compensated by the increase in contact force. If the
contact stiffness kc remains constant, the global contact force increases as the restitution coefficient e
decreases, owing to the increasing contribution of the damper force.

Figure 7 shows that an increase in contact stiffness kc leads to a decrease in the impact duration.
This effect takes place because deformation decreases when kc increases. The increase in the impact
duration with the decrease in restitution coefficient e is related to the fact that if e tends to zero
(inelastic impact), the two masses move together after the impact.
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Figure 6. Influence of kc and e on contact force. (a) Limit case of Figure 4a; (b) limit case of Figure 4b.
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Figure 7. Influence of kc and e on contact duration. (a) Limit case of Figure 4a; (b) limit case of Figure 4b.

3. Effects of Robot Compliance

In the analysis of the interaction between the tool of the robot and an object, it is important to
consider three essential aspects of robot dynamics. Firstly, as the mass of colliding objects dramatically
influences the momentum transfer (see Figure 3), it is important to quantify the robot mass involved
in the collision. Secondly, since industrial robots are characterized by an intrinsic compliance [16],
this feature could be exploited to mitigate the impacts. Finally, the combination of joint elasticity and
link inertia induces vibrations in the robot that affect the motion of the tool and the impact velocity.
Thus, this section aims to develop a one-DOF robot model that is useful to evaluate the contribution of
the inertia and elasticity of a robot along the approach direction during the collision.

3.1. Model of Robot Compliance

The mathematical model of Figure 8 was developed. The slider moves along the approach
direction with the motion law imposed by the robot control system (coordinate xr). It is connected
to the motors of the robot by means of ideal transmissions without compliances and clearances.
The spring with a stiffness of kr and the damper with a constant of cr represent the compliance and the
damping of the robot in the approach direction. A share (mr) of the mass of the robot is added to the
tool. The friction force between the object and the plane of motion is not taken into account, but it may
cause small (and beneficial) reductions in the final velocity of the object.

Figure 8. Scheme of the impact between the compliant robot and an object.

During the collision, the system is described by the following equations of motion:

(mr + mt)ẍt = cr(ẋr − ẋt) + kr(xr − xt)− kcδm − χδn δ̇ (8)

mp ẍp = kcδm + χδn δ̇ (9)

Equations (8) and (9) hold if δ > 0.
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The main issue is the identification of the robot’s parameters, which appear in this model
(kr, cr, mr). In this research an Omron Adept Viper s650 is considered. The robot is represented
in Figure 9.

Figure 9. Robot: Adept Viper s650.

It is assumed that robot compliance is due to the compliance of the joints around their rotation
axes, while the links and bearings are considered perfectly rigid. With these hypotheses, if the i-th
actuator imposes a rotation qi(t) on the i-th joint, the actual rotation ϑi(t) of the joint does not coincide
with qi(t). In order to consider this behavior, each joint was schematized by means of a spring–damper
model, so that the torque produced by the actuator was transmitted to the joint by means of these
elements. The motion of a serial six-DOF robot with compliant joints is represented by a system of six
second order differential equations:

Mq(q)ϑ̈ + C(q, q̇) + Dq(ϑ̇ − q̇) + Kq(ϑ − q) + G(q) = 0 (10)

where

q is the vector which contains the joint variables imposed by actuators;
ϑ is the vector containing actual joint variables;
Mq(q) is the robot mass matrix in the joint space;
C(q, q̇) is the term related to centrifugal and Coriolis forces;
Dq is the robot viscous damping matrix in the joint space;
Kq is the robot stiffness matrix in the joint space; and
G(q) is the term related to gravity forces.

It is possible to neglect centrifugal and Coriolis forces and the effect of gravity when dealing
with small oscillations [17]. Therefore, the equations of motion of the robot in the joint space can be
simplified as follows:

Mq(q)ϑ̈ + Dq(ϑ̇ − q̇) + Kq(ϑ − q) = 0 (11)

The mass matrix Mq(q) can be estimated using the data provided by the computer-aided design
(CAD) model of the robot, retrieved from the website of the manufacturer. The matrices Dq and Kq

are diagonal and independent of the robot configuration q. In particular, the terms of these matrices
represent the viscous damping coefficient and the stiffness of each joint around its rotation axis,
and they can be identified by means of an impulsive modal analysis of the robot [17,18]. The movement
of the tool and its collision with an object in the plane of motion are described in the operational space,
so it is necessary to transfer the description of robot dynamics from the joint space to the cartesian space.
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Thus, the mass, stiffness and viscous damping matrices in the cartesian space (MX , DX , KX ) have to
be calculated. The relationships which correlate the matrices in the two spaces [19] are the following:

MX(q) = J(q)−T Mq(q) J(q)−1 (12)

DX(q) = J(q)−T Dq J(q)−1 (13)

KX(q) = J(q)−T Kq J(q)−1 (14)

where J(q) represents the robot’s Jacobian matrix. It is worth noting that both stiffness and viscous
damping matrices (KX , DX ) are dependent on the robot configuration q. Consequently, it is possible to
write the equations of motion in the cartesian space:

MX(Xr)Ẍt + DX(Xr)(Ẋt − Ẋr) + KX(Xr)(Xt − Xr) = 0 (15)

In Equation (15), Xr is the vector containing the coordinates of the imposed position of the tool in
the cartesian space, whereas Xt is the vector containing the coordinates related to the actual position
of the tool. The robot configuration q is a function of the imposed position Xr , obtained through the
equations of the inverse kinematics of the robot. Thus, the mass, stiffness and damping matrices can
be expressed as functions of Xr as in Equation (15).

Equation (15) makes it possible to describe the dynamics of the robot along the imposed tool
trajectory. However, it is assumed that the robot control system is able to exactly generate the desired
trajectory. In fact, this is not possible in real applications, due to a series of small-entity causes,
such as structural imperfections and external disturbances, which introduce small position errors.
As already stated, the aim of this model is to estimate the influence of joint compliances and robot
inertia properties during a collision, so the hypothesis of perfect control is reasonable.

In the one-DOF model, only the cartesian coordinate that describes the motion of the tool in the
direction of approach (x) is considered. Therefore, the equations of motion of the robot are reduced to
a single second-order differential equation:

MX,11(xr)ẍt + DX,11(xr)(ẋt − ẋr) + KX,11(xr)(xt − xr) = 0 (16)

where xr is the x-coordinate imposed by the robot control system, xt is the actual x-coordinate of
the tool, and MX,11, DX,11 and KX,11 are the elements (1,1) of mass, viscous damping and stiffness
matrices, respectively.

The mass, damping and stiffness terms of this equation physically represent the lumped element
components (mr, cr, kr respectively), which are added to the impact model represented in Figure 8.
Mass MX,11 = mr simply adds to the tool mass.

The terms in Equation (16) depend on the robot configuration. For this reason, a MATLAB script
was developed to calculate the robot configuration from the current position in the cartesian space and
to determine the parameters of the one-DOF model. The script follows the steps reported in the flow
chart presented in Figure 10.
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Figure 10. Flow chart of the steps taken to evaluate the terms MX,11, DX,11 and KX,11 along the
trajectory of the tool. DOF: degree of freedom.

3.2. Numerical Results

In the simulations, the tool approached an object along a linear trajectory. Moreover, it was
assumed that the tool moved between the starting and final point following a trapezoidal velocity
profile, and a collision occurred when the robot moved at a constant velocity. The position and velocity
are referred to the fixed reference frame of the first joint of the robot (see Figure 9). Figure 11 represents
the imposed position (xr) and the imposed velocity (vr = ẋr) of the robot flange before the collision.
In order to evaluate the behavior of the robot during the interaction with an object, the robot was
assumed to be equipped with a control system that was capable of detecting the contact force and
ordering the robot to start braking. The force detection threshold was set to 1 N. The reaction to the
impact was not instantaneous, but it was assumed that the robot began to perform braking after 16 ms
in order to take into account the delay in processing the external input signal [20]. The circular marker
(Figure 11) indicates when the impact happens.
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Figure 11. Position and velocity profiles imposed on the tool by the robot control system. The circular
dot indicates the impact time.
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The trends of the lumped element parameters of the robot mr, cr, kr as functions of the imposed
position xr are depicted in Figure 12. The circular marker highlights the values of these parameters
when the impact occurs.
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Figure 12. Lumped components mr, cr and kr as a function of the imposed position xr. The circular dot
indicates the impact time.

Several scenarios were simulated, with the aim of evaluating the effects of robot properties during
the collision. The simulation results depicted in Figure 13a,b represent the velocities of the tool and of
the object when the robot had rigid and compliant joints, respectively. A perfectly elastic collision was
considered (e = 1) with kc = 105 N

m1.5 ; the masses of the tool and of the object were mt = 0.125 kg and
mp = 0.25 kg, respectively.

In Figure 13a, the object velocity is exactly twice the approach velocity of the robot and the collision
is so short that the robot actuators start braking after the impact. In this condition, as the impact
occurred in a period of time in which the mass (mr + mt) maintained the same velocity, the robot
with rigid joints was equivalent to a slider moving at constant velocity. The final velocity of the object
confirmed this assumption (see Section 2.1).

(a) (b)

Figure 13. Time history of tool and object velocity. (a) Robot with rigid joints; (b) robot with
compliant joints.

In the case of compliant joints (Figure 13b), the impact velocity is about 0.98 m/s due to the
vibrations of the tool (the impact takes place when there is a local minimum of robot velocity), and the
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velocity of the object is about 1.94 m/s, which is almost twice the approach velocity of the robot.
Although the total colliding mass of the robot (mr + mt) is not rigidly coupled with the imposed
motion, due to the compliances represented by the elements kr and cr of the model in Figure 8,
the actual behavior is nearly the same as the robot with rigid joints. Two factors explain these results:
firstly, the colliding masses are very different, since the term (mr + mt) is equal to 5.35 kg just before
the impact, and Equation (4) shows that object velocity increases asymptotically towards the limit case,
when the tool mass becomes large; secondly, since the contact force is small, joint compliances have a
small influence.

In Figure 14a, a heavy object with a mass of 2.5 kg is considered. This mass roughly corresponds
to the rated payload of the robot and is about 48% of the term (mr + mt), which is equal to 5.35 kg just
before the impact. The contact stiffness is set to kc = 105 N

m1.5 . In Figure 14b the impact against a heavy
object (mp = 2.5 kg) is still simulated, but the contact stiffness is set to kc = 106 N

m1.5 . The collision is
perfectly elastic (e = 1) in both cases.

(a) (b)

Figure 14. Time history of tool and object velocity. (a) kc = 105 N
m1.5 ; (b) kc = 106 N

m1.5 .

With kc = 105 N
m1.5 , the final velocity of the object is about 1.88 m/s; this value is very close to that

in Figure 13b, despite the difference in the masses of the objects. The impact velocity is about 0.95 m/s,
due to a small deformation of the robot and to the vibration of the tool. Although the momentum
transferred to the robot is not negligible, the contact force is not able to significantly deflect the robot
arm; therefore, the robot is perceived by the tool as a slider moving with constant velocity.

The effect of the robot compliance is more relevant when the object is heavy and the contact
stiffness is large (kc = 106 N

m1.5 ), which is the case depicted in Figure 14b. These conditions lead
to a larger contact force that is able to deflect the joints of the robot. The comparison between
Figure 14a,b shows that in the second scenario, the tool is subjected to a significant deceleration during
the impact, which means that the robot has been deformed. The deformation implies that a portion of
the mechanical energy involved in the collision is stored as elastic energy inside the joints, and this
phenomenon generates an increment in the amplitude of vibrations of the tool, whereas the velocity
of the object decreases with respect to the previous cases. However, the elastic response is so quick,
due to the high stiffness, that the restitution of part of the stored elastic energy occurs during the
collision and the object is pushed away.

These results highlight that in most cases, the robot is perceived by the object as a slider moving
with an imposed motion. In conclusion, joint compliances cannot significantly reduce the velocity of
the object.

4. Effects of Tool Compliance

Section 3 shows that the inherent elastic and inertial properties of the robot have a small effect
on the momentum transfer between the tool and the object. Therefore, in order to compensate for the
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small compliance of the robot, it is necessary to decouple the tool from the robot. The decoupling
system and its effect on the final velocity of the object are discussed in this section.

4.1. Model of Tool Compliance

If robot compliance is negligible, the model that describes the collision comprises the rigid robot,
the decoupling elements and the tool (see Figure 15).

Figure 15. Model of the collision between a tool with decoupling elements and an object.

The corresponding equations of motion during the collision are as follows:

mt ẍt = ct(ẋc − ẋt) + kt(xc − xt)− kcδm − χδn δ̇ (17)

mp ẍp = kcδm + χδn δ̇ (18)

The rigid body moving with imposed motion is the robot flange. The parameters kt and ct

represent the stiffness and damping characteristics of the system that decouple the tool from the robot.
The set of the decoupling system and the tool represents the end-effector. It is worth noting that the
mass–spring–damper system that represents the end-effector is excited by the imposed motion xc,
which represents the x-coordinate of the robot flange.

If the two equations are summed, the impact force disappears:

mt ẍt + mp ẍp = ct(ẋc − ẋt) + kt(xc − xt) (19)

If Equation (19) is integrated between the instant (t1), in which the contact between the tool and
the object begins, and the instant (t2), in which the contact ends, the following result is obtained:

mtVt + mpVp = mtvt + mpvp + ct

∫ t2

t1

(ẋc − ẋt)dt + kt

∫ t2

t1

(xc − xt)dt (20)

Equation (20) shows that the linear momentum of the system is no longer conserved owing to the
effect of the impulses of the damping and elastic forces. It is worth noting that the elastic and damping
forces increase the final momentum as long as the terms in the integrals are positive. The total impulse
generated by the decoupling elements is

I = ct

∫ t2

t1

(ẋc − ẋt)dt + kt

∫ t2

t1

(xc − xt)dt (21)

Introducing Equations (1) and (21) into Equation (20) leads to the following equation:

Vp = vp −
mt

mt + mp
(1 + e)(vp − vt) +

I
mt + mp

(22)

Equation (22) highlights that the total impulse generated by the decoupling system increases the
final velocity of the object.
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4.2. Simulated Results

The effects of the stiffness and damping of the decoupling system on impact mechanics were
analyzed by carrying out parametric simulations with mt = 0.125 kg, mp = 0.25 kg, vt = 1 m/s and
vp = 0 m/s. The robot was assumed to start braking after the collision.

The damping coefficient was defined by means of the viscous damping ratio [21] ζ = ct
2
√

ktmt
.

Figure 16 represents the final velocity of the object for different values of contact stiffness kc, as a
function of the stiffness kt and considering a constant damping ratio, which is equal to the critical
value ζ = 1. A perfect elastic impact (e = 1) is assumed.
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Figure 16. Effects of the stiffness and of the damping of the decoupling system on the final velocity of
the object with e = 1.

The comparison between Figures 13a and 16, shows that the decoupling system leads to a
significant reduction in the velocity of the object after the collision. The increase in stiffness kt and
in damping ct of the decoupling system increases the final velocity of the object, in agreement with
Equations (20) and (22). Moreover, Figure 16 shows that an increase in kc leads to a decrease in the
final velocity of the object. This phenomenon is related to the fact that an increase in kc produces an
increase in the contact force which, in turn, generates a large compression of the decoupling system,
which moves backwards. Since e = 1, the relative velocity Vrel before and after the impact are equal and,
when there is a backwards motion of the tool, the absolute final velocity of the object Vp = Vt + Vrel
is reduced.

When kt is about 90 N
m , the curve corresponding to the largest contact stiffness suddenly changes

its slope. After the collision, the elastic energy stored inside the spring of the decoupling system is
released and the tool is subjected to a rebound. If the impact duration is short, the restitution of the
elastic energy starts very quickly. In this condition, multiple impacts can occur. Therefore, the sudden
increment in slope highlights the presence of multiple collisions, which leads to an increment in the
final velocity.

Figure 17a,b represents the robot, tool and object velocities with kt = 150 N
m , ζ = 1, e = 1.

In Figure 17a, the contact stiffness is set to kc = 105 N
m1.5 , whereas in Figure 17b, the contact stiffness is

set to kc = 104 N
m1.5 . The contact force applied to the object and the force generated by the decoupling

system on the tool are depicted in Figure 17c,d, respectively.
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(a) (b)

(c) (d)

Figure 17. Velocity comparison: (a) kc = 105 N
m1.5 ; (b) kc = 104 N

m1.5 . The contact force and total force
generated by the decoupling elements are as follows: (c) kc = 105 N

m1.5 ; (d) kc = 104 N
m1.5 . e = 1.

The end-effector is compressed by the inertia force during the acceleration of the robot.
Therefore, the velocity of the tool is slightly higher than the robot velocity when the latter moves
at a constant velocity due to the restitution of the elastic energy absorbed during the acceleration.
The increase in contact stiffness increases the deceleration of the tool. Figure 17c highlights two clear
peaks in the contact force profile and confirms the presence of multiple impacts.

When inelastic impacts are considered, the results show that the final velocity of the object
decreases (see Figure 2). Furthermore, the decrease in contact stiffness kc leads to a reduction in the
final velocity of the object; this behavior is opposite to that found with e = 1. Parametric simulations
were carried out to analyze this aspect considering mt = 0.125 kg, mp = 0.25 kg, vt = 1 m/s and vp = 0
m/s. The robot was assumed to start braking after the collision.

Figure 18 represents the final velocity of the object for different values of contact stiffness kc as a
function of the stiffness kt considering a constant damping ratio equal to the critical value (ζ = 1).
A nearly completely inelastic impact (e = 0.1) was simulated.

The comparison between Figures 16 and 18 highlights that the reduction in the coefficient of
restitution inverts the effect of the contact stiffness. A coefficient of restitution near to zero means that
the tool and the object move almost synchronously after the collision, because the final relative velocity
is only a small fraction of the initial relative velocity. There are two contributions to the final velocity
of the object: the momentum transferred during the collision and the momentum transferred during
the transient after the impact, when the robot brakes.
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Figure 18. Effects of the impulses of the damping and elastic forces on the final velocity of the object
with e = 0.1.

Figure 19a,b represent the velocities of the robot, tool and object. Figure 19c,d shows the contact
force and the total force generated on the tool by the decoupling elements. All simulations were carried
out with kt = 150 N

m , ζ = 1, e = 0.1. The contact stiffness was set to kc = 105 N
m1.5 in Figure 19a,c and to

kc = 103 N
m1.5 in Figure 19b,d, respectively.

(a) (b)

(c) (d)

Figure 19. Velocity comparison: (a) kc = 105 N
m1.5 ; (b) kc = 103 N

m1.5 . Contact force and total force
generated by the decoupling elements: (c) kc = 105 N

m1.5 ; (d) kc = 103 N
m1.5 . e = 0.1.

Furthermore, in this case, the increase in contact stiffness increases the deceleration of the
tool. When the contact stiffness is low (Figure 19b), even if the deceleration of the tool is reduced,
the duration of the total momentum transfer is made longer, and the robot is therefore able to markedly
reduce its velocity during the contact between the tool and the object. An inelastic impact makes
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the dynamics of the object strictly dependent on the robot control system. Thus, the robot control
system can be exploited to reduce the final velocity of the object. Figure 19c,d shows that the total force
applied on the tool by the decoupling elements is positive during the contact with the object, since the
decoupling system is compressed and the velocity of the tool is lower than the robot velocity. Figure 20
compares the total impulse generated by the decoupling system during the contact in the two cases
analyzed in Figure 19.

It is worth noting that the larger impulse corresponds to a larger final velocity of the object,
in agreement with Equation (22).

Since the impulse generated is equal to the integral of the force applied during the contact time
between the tool and the object, the force profile generated by the end-effector during the contact
represents a key factor in the optimization of the decoupling system.
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Figure 20. Impulse generated by the decoupling system.

5. End-Effector Design

In order to optimize the the force profile generated by the decoupling system, non-linear solutions
were analyzed to meet the following requirements:

1. The system has to be able to exert a minimum force on the tool to keep it in the desired position
during the acceleration of the robot;

2. The system has to prevent rebounds of the tool in order to avoid multiple collisions and the
restitution of the energy absorbed in the impact;

3. The impulse transmitted to the object should be as small as possible, according to Equation (22).

The bi-stable mechanism shown in Figure 21 is considered.

Figure 21. Schematic representation of a bi-stable mechanism with a single spring.

This system is characterized by two stable equilibrium positions and, in general, consists of a
spring connected to a sliding element, which is constrained to move along the x-axis. The spring
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generates an elastic force on the sliding element which has two components: the first is parallel to the
x-axis (FT) and influences the dynamics of the slider; the second is orthogonal to the sliding path and
does not have important effects on the movement of the slider. The component FT generated by the
spring is given by the following equations:

FT = k(L0 − L)
x
L

(23)

L =
√

H2 + x2 (24)

where k is the stiffness of the spring, L is its actual length, L0 is the spring free length, x is the position
of the slider relative to the vertical alignment position of the spring and H is the distance between the
upper revolute joint of the spring and the sliding direction. In real applications, the slider could be
constrained to move between two mechanical constraints that introduce a limit to its movement [22,23].
The trends of the elastic force FT as a function of the distance from the vertical alignment position are
reported in Figure 22a in the case with L0 = 0.07 m and k = 50 N

m . In the same figure, the effect on
the force profiles of two mechanical constraints are schematized through the two orange areas, which
identify the off-limit zones. The scheme depicted in Figure 22b shows a physical representation of the
mechanical constraints.

(a)

(b)
Figure 22. (a) Tangential force profiles for different values of the parameter H; (b) physical
representation of mechanical constraints.

Figure 22a shows for x > 0 that the force is positive, whereas for x < 0, the force is negative.
The limitation of the movement of the slider between the two mechanical constraints leads to a system
that is characterized by a specific portion of the force profile. If the tool is leaning against the constraint
placed on the right of the x = 0 position and an external force pushes it back towards the negative
direction of the x-axis, the system reacts with a positive elastic force that tends to counterbalance the
external force. However, when the vertical alignment position of the spring is crossed, the tool is
pulled back against the left constraint and is kept there by the elastic force. The figure shows that it
is possible to adjust the maximum positive and negative values of the force profiles modifying the
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geometrical parameter H, but also to vary the vertical alignment position of the spring in relation to
the mechanical constraints. The maximum positive value of the elastic force should be large enough to
keep the tool in position against the right constraint before the impact, in order to avoid oscillations,
but, at the same time, it should be as small as possible to minimize the impulse transmitted to the
object. The maximum negative value of the elastic force should be large enough to pull the tool back
and keep it against the robot flange (left constraint).

This bi-stable mechanism was integrated in the numerical model of the end-effector, and a force
profile corresponding to H = 0.028 m was implemented. In order to simulate the contact between
the slider of the tool and the mechanical constraints of the bi-stable mechanism (see Figure 22b),
each constraint was modeled by means of a linear contact model based on a spring–damper system.
A completely inelastic impact of the slider against the constraints was assumed.

Figure 23a shows the effect of the bi-stable mechanism on the velocities of the tool and of the object,
and this is compared with the end-effector comprising a linear spring–damper system (Figure 23b).
Figure 23c,d shows the contact force and the total force generated on the tool by the end-effector.
The parameters of the simulation were as follows: e = 0.1, kc = 103 N

m1.5 , L0 = 0.07 m, k = 50 N
m ,

kt = 50 N
m , ζ = 1, mt = 0.125 kg and mp = 0.25 kg.

(a) (b)

(c) (d)

Figure 23. Velocity comparison: (a) end-effector with bi-stable mechanism; (b) end-effector with a
linear spring–damper system. Contact force and total force generated by the end-effector: (c) bi-stable
mechanism; (d) linear spring–damper. (e = 0.1).

Figure 23a shows that the tool follows the movement of the robot during the acceleration phase,
without oscillating, owing to the positive elastic force applied by the spring on the tool (see Figure 23c).
The tool is subjected to a hard deceleration during the collision, since its velocity changes nearly
instantaneously from 1.0 m/s to 0.4 m/s. When the tool reaches 0.4 m/s, the effect of the collision is
complete, but, when the velocity seems to stabilize, the tool crosses the vertical alignment position of
the spring and is pulled back towards the robot flange. The velocity of the tool is subjected to a second
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rapid change. Then, the tool velocity suddenly adapts to the robot velocity when the tool hits the
robot flange. Figure 23c shows that the force applied on the tool by the bi-stable mechanism is lower
than the total force generated by the the spring and the damper in the end-effector with the linear
behavior (Figure 23d): the force generated in the bi-stable mechanism decreases when the end-effector
is compressed. Moreover, the tool is separated from the object after the collision, and this feature leads
to the interruption of the momentum transfer. The comparison between the impulses generated by the
bi-stable mechanism and by the linear spring–damper system is represented in Figure 24, which clearly
shows that the bi-stable mechanism leads to a reduction in the impulse transmitted to the object.

In order to show the effect of the bi-stable mechanism on the velocities of the tool and of the
object, Figure 23a is compared with the case in which the tool is rigidly connected to the rigid robot,
which is depicted in Figure 25. This comparison shows that the bi-stable mechanism leads to a 51%
reduction in the final velocity of the object.
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Figure 24. Impulse generated by the decoupling system.

Figure 25. Tool rigidly connected to the rigid robot with e = 0.1, kc = 103 N
m1.5 , mt = 0.125 kg and

mp = 0.25 kg.

6. Conclusions

The basic analysis carried out with the classical impact theory highlights that reductions in the
mass of the tool and in the restitution coefficient result in large decreases in the final velocity of the
object. A more detailed model of contact mechanics, taking into account contact stiffness and damping,
confirms the previous results. Moreover, the model highlights that a decrease in contact stiffness leads
to an increase in contact duration, which can be exploited by the robot control system, which can start
braking during the contact with a reduction in the momentum transferred to the object. Reductions in
the restitution coefficient and in contact stiffness can be achieved by means of the proper selection of
the material of the surface of the tool that impacts the object.
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The reduction in the mass of the tool is a more complex problem. In fact, numerical simulations
have shown that a relevant share of the mass of the robot moves together with the tool in the approach
direction and that the intrinsic compliance of robot joints has a small effect on impact dynamics.
Therefore, a proper elastic system that is able to decouple the tool from the robot is needed to minimize
the impacting mass. The stiffness of the elastic system has to be sufficient to keep the tool in the desired
position when the robot accelerates towards the object. Rebounds of the tool, which give back energy
to the object and cause multiple collisions, have to be avoided. These requirements are met by the
proposed bi-stable mechanism, that guarantees a reduction in the final velocity of the object of about
50% with respect to the case of a rigid connection between the robot and the tool. The calculated results
refer to a tool moving at a velocity of 1 m/s and impacting a stationary object. The extension of the
results to different velocities is difficult due to the non-linearities of the system. Some simulations
showed that a decrease in the impact velocity may prevent the bi-stable mechanism from reaching the
second stable configuration. Conversely, a small increase in the impact velocity does not greatly change
the behavior of the system. In fact, the bi-stable mechanism has to be tuned to the impact velocity.

The results obtained in the framework of this research are the starting points for the design of a
prototype of an end-effector with a bi-stable mechanism. This prototype is now under construction,
and the experimental tests are planned for the spring following the publication of this work.
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