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Abstract: Our research aim was to apply UV/Vis spectrophotometric techniques for the rapid
monitoring of the quality of water sourced from on-farm root vegetable washing processes. To achieve
this goal, the quality assessment of the washing water and wastewater at different stages of the
technological processes was performed using physicochemical, biological, and UV/Vis absorbance
measurements as well as statistical methods, such as principal component analysis (PCA) and
partial least squares (PLS) regression. Limit values of UV/Vis absorbance at specific wavelengths
were predicted in order to adapt them for routine testing and water quality monitoring at the
farm packhouses. Results of the lab analyses showed, that the main problems of the water quality
were caused by suspended solids (470–3400 mg L−1), organic substances (BOD5 215–2718 mg L−1;
COD 540–3229 mg L−1), nitrogen (3–52 mg L−1), phosphorus (1–6 mg L−1), and pathogenic
microorganisms (TVC > 300 cfu mL−1, E. coli 5.5 × 103–1.0 × 104 cfu mL−1, intestinal enterococci
2.8 × 102–1.5 × 104 cfu mL−1, coliform bacteria 1.6 × 103–2.0 × 104 cfu mL−1). Suspended solids
exceeded the limit values by 10–50 times, organic matter by 10–25 times, dissolved organic
carbon by 3–5 times, nitrogen by 3–7 times, total phosphorus by 3–12 times, and microorganisms
by 3–10 times. UV/Vis limit values calculated were as follows: A210 nm—3.997–4.009 cm−1,
A240 nm—5.193–5.235 cm−1, A254 nm—4.042–4.047 cm−1, A320 nm—7.387–7.406 cm−1,
and A660 nm—3.937–3.946 cm−1. UV/Vis measurements at A320 nm are proposed for the routine
water quality monitoring.

Keywords: on-farm packhouses; spectrophotometry; principal component analysis (PCA);
partial least squares regression (PLS)

1. Introduction

Washing water and wastewater quality control in on-farm packhouses is of great importance
for the quality of agricultural production as well as the environment. Producers require rapid
and efficient methods for water quality monitoring. Conventional standard analytical methods are
expensive, time-consuming and require special laboratory conditions and equipment. Therefore they
are inconvenient and impossible to use for the water quality monitoring at the on-farm packhouses.
Ultraviolet/visual spectrometry (UV/Vis) can have significant advantages over other in situ methods
for this application due to its wide availability and low application costs. Previously, various UV/Vis
methods were used, for example, to determine the particle size of polystyrene in solution, the size
distribution of quantum particles of a ZnO semiconductor, the size of gold-coated palladium clusters
in solution, and to study the aggregation of b-carotene particles [1]. UV/Vis technology is rapid and
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can be used for the monitoring of the most important water quality parameters: total suspended
solids, dissolved organic carbon, the chemical oxygen demand, the biochemical oxygen demand,
and measure of detergents and nitrates, since these materials absorb electromagnetic radiation at
different wavelengths (λ).

Consequently, spectrophotometry has been already proposed for the industrial wastewater quality
monitoring, characterization of the organic and inorganic compounds, nitrates, detergents, dyes, as well
as elements (Fe, Mn, Cr) as a fast, simple, non-destructive and inexpensive analytical
method [2–6]. Moreover, using indirect methods of calculations can be useful in the research
of wastewater microbiological activity, biomass structure, growth and biochemical processes of
dissolved organic matter (DOM) reduction [7]. Recently there has been an emergence of commercially
available UV/Vis spectrophotometers for the continuous optical measurements on-line and in-situ.
However, the lack of selectivity and reliability of the methods remains the general restriction of
these instruments for wider application [8–10]. UV/Vis spectrophotometry is based on Beer–Lambert
law [11]:

Log Io/I = α·c·l; (1)

where I is the intensity of light at specific wavelength λ passing through a sample of length l, Io is the
light intensity incident on the sample, c is the concentration, and α is the absorptivity of the sample at
the specific wavelength.

Between spectral and chemical data, the most common are linear and quadratic models of
interactions. A linear model is as follows:

Y = ε1c1l + ε2c2l + · · · + εpcpl + E, (2)

where Y is the response of a particular sample at wavelength λ, εp is the molar extinction coefficient
for the p sample, cp is the corresponding concentration and E is the spectral error. If ε is measured at
several wavelengths, then the equation obtained is:

Y j(λi) =

p∑
k=1

ekckjl + Ey, (3)

where j is the index for samples, i is the index for wavelengths, p is the number of components to be
determined and Ey is spectral errors. In matrix notation, Equation (3) can be written as follows:

Y = C·K + EY; (4)

where Y is the j·i matrix of calibration spectra, C is the j·l matrix of component concentration, K is the l·i
matrix of absorptivity-path length products, and EY is the j·i matrix of spectral errors.

The limitation of this model is that it can only be applied to up to three variables.
Multivariate calibration methods enable analyzing those analytes that interact with each other
and predict their concentration from spectral data [12–14]. Chemometrics enables exploring,
analyzing, and modeling relationships among different water quality parameters by various statistical
methods [13–19]. Generally, direct chemometrics models can only be used if all constituents’ spectra are
known and Beer–Lambert law is valid. However, wastewaters are complex mixtures of various
soluble and insoluble organic and inorganic compounds interacting and transforming in time.
Therefore, hidden isosbestic points and simple regression models can not completely describe the
situation, especially if monitored substances chemically interfere with each other influencing the final
spectra [19]. Moreover, specimens from ‘real-life’ sources may contain substances other than those
of interest, contributing to the absorbance. Therefore, the use of direct chemometrics methods for
wastewater characterization is limited [5,20].
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Indirect chemometrics techniques, such as principal component analysis (PCA), multiple and
multivariate regression, partial least square regression (PLS), and others, are based on estimating
parameters from sample mixtures. Their are not dependent on the validity of Beer–Lambert law and
systems of the even highly correlated spectra can be used for multi-component calibration [14,18,21,22].
Applying these techniques, it is possible to determine the UV/Vis absorption limits for wastewater
quality according to the limit values of chemical analytes.

Therefore, in our study, chemometric techniques such as principal component analysis (pca)
and partial least squares regression and projection to latent structures (PLS) were applied to analyze
relationships between water quality chemical parameters (suspended solids (SS), electric conductivity
(EC), dissolved organic carbon (DOC), chemical oxygen demand CODCr, biochemical oxygen demand
(BOD5)), and UV/Vis absorbance data. The aim was to establish a simple and reliable method for
monitoring water quality which, sourced from the root vegetables washing and wastewater treatment
processes within the on-farm packhouses.

Statistical models can increase the importance and scope of the obtained spectral data [23].
Partial least squares regression (PLS) is a multidimensional statistical method used to predict standard
values of aggregated water quality parameters such as total organic carbon (TOC), chemical oxygen
demand (COD) and total suspended solids (TSS) [24,25]. The use of regression algorithms must
comply with certain assumptions, i.e., the data should be independent and have a normal distribution.
Predictive abilities of PLS calibration models were evaluated in relation to the determination factor
(R2) [26].

Different statistics were used to assess the PLS model and performance indicators were proposed
to classify the developed models. It is essential to consider whether UV/Vis spectra can develop
robust TSS and COD estimators, with statistical regression carried out on the off-line spectra in the
collected samples. This affects the reliability of the in situ TSS and COD forecast provided by UV/Vis
spectrophotometer. Therefore, it is important to test several statistical parameters to evaluate the PLS
model [26].

2. Materials and Methods

2.1. Description of the Root-Vegetables Washing and Wastewater Treatment Systems

Four typical farms were chosen that represent different root vegetables, such as carrots and
beetroots, and use different washing and wastewater treatment systems. All farms transferee the
washing water used to the settling ponds (A–C) or settling tank (D). Settled water continuously is used
for the first wash. Groundwater from a well (depth 80–150 m) is used for the final wash of vegetables
(Figures 1–3). As a certain amount of excess water consistently generates, it is stored in the ponds.
Excess water and sediments are spread out on the fields periodically according to legislation.
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Figure 1. Flowchart of root vegetable washing systems: A—beetroots, B—carrots and view of
settling pond.
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Parameters of the water flow:
A washing system (Figure 1)—beetroots (5 t h−1): 1st wash—recirculating water from settling

pond (22 m3 t−1); 2nd wash—groundwater from well (4 m3 t−1). Wastewater—96–120 m3 day−1.
B washing system (Figure 1)—carrots (3 t h−1): 1st wash—recirculating water from settling pond

(10 m3 t−1); polishing and 2nd wash—groundwater from well (2 m3 t−1). Wastewater—56 m3 day−1.
C washing system (Figure 2)—carrots (3 t h−1): 1st wash—recirculating water from settling pond

(10 m3 t−1); polishing and 2nd wash—groundwater from well (2 m3 t−1). Wastewater—56 m3 day−1.
D washing system (Figure 3)—carrots (10 t h−1): 1st wash—recirculating water from settling pond

(70 m3 t−1); polishing and 2nd wash—groundwater from well (7 m3 t−1); excess flow from settling tank
is transferred to the constructed system of three biological ponds. Firstly, excess water is discharged
to the biological pond. Then it is supplied to surface flow wetland/macrophytes wetland. After that
water is discharged into the 3d pond and, finally, to the river basin (Figure 3).

Quality of the washing water and wastewater were monitored monthly over a 12-month period at
the marked points (Figures 1–3). Results of the parameters monitored are presented in the same order
as samples taken from marked points.

2.2. Sampling and Laboratory Analyses

The results of parameters monitored are presented in the same order as samples taken from marked
sampling points (Figures 1–3). Temperature (T, ◦C) was monitored in-situ. In all cases, water samples
were collected by the grab method and kept for one day at 4 ◦C prior to laboratory analyses.
The collected samples were analyzed for the water quality parameters, such as color, suspended
solids (SS), total dissolved solids (TDS), pH, electrical conductivity (EC), biological oxygen demand
in 5 days (BOD5), chemical oxygen demand (CODCr and CODMn), dissolved organic carbon (DOC),



Appl. Sci. 2020, 10, 9072 5 of 16

Kjeldahl nitrogen (NKj), total phosphorus Ptot, and inorganic nitrogen N(NH4-N + NO2-N + NO3-N).
Deionized water samples were analyzed as standards.

All analytical methods are in accordance with standard methods [27] of the water and wastewater
analysis, such as ISO 11923:1997, ASTM D5907—13, ISO 10523:2008, ISO 7888:1985, ISO 5815-1:2003,
ISO 5814:2012, ISO 6060:2003, EN 1484:1997; ISO 8245:2000; EN 12260:2003, BS 6068-2.83:2003;
ASTM D7573—09, ISO 7887:2011; ISO 6878:2004; ISO 7150-1:1984; ISO 6777:1984; ISO 7890-3:1988 [27].
For the estimation of the uncertainties in the lab analysis, a triplicate analysis was performed, and the
mean results, as well as standard deviation, were calculated. Measurements of the UV/Vis absorbance
were performed with UV/Vis spectrophotometer Helios γ (Thermo Scientific, USA) in the range of 210
to 660 nm in a quartz cell of 10 mm path length after appropriate dilution with deionised water in
order to overcome signal saturation in the UV region (absorbance values above 1 a.u.). In addition,
blank samples of deionized water were measured to adjust the 100% transmittance signal. The data set
was composed of 672 spectra of washing water and wastewater samples collected over a period of
12 months and of deionized water (control) at specific wavelengths of the UV/Vis spectra. Absorbance at
A210 nm is used for roughly evaluation of nitrates, A225 nm—detergents, A240 nm—organic matter
OM + suspended solids SS, A254 nm—dissolved organic carbon DOC, A320 nm—suspended solids
SS, A390 nm—color, A660 nm—turbidity [2,6,28]. The dissolved organic carbon (DOC) quality was
evaluated by specific ultraviolet absorbance (SUVA). SUVA254, which indicates the proportion of
aromatic compounds in the DOC, was calculated according to equation [29]:

SUVA254 (L/mg·M) = A254 (cm−1)/DOC (mg/L)·100 cm/M (5)

Normally SUVA index of surface waters ranges from 1 to 6. As SUVA index increases, a larger
concentration of aromatic compounds are in the solution when SUVA < 3, mainly hydrophilic low
molecular weight compounds, are present. When SUVA > 4, organic matter is hydrophobic and high
in aromatic compounds. Also, the bigger SUVA index can be resulted by iron, colloidal, or other
impurities [7,30,31].

In order to use A254 nm as alternative parameters to estimate BOD5 and COD, suspended solids
have to be removed by filtering with a 0.45 µm pore size membrane filter. However, it is inconvenient,
time-consuming and expensive. Chevakidagarn [2] studies of wastewater UV/Vis measurements
showed a strong linear correlation between absorbance at A550 and the difference of filtered and
non-filtered UV absorbance at A260 nm. Some filtered and unfiltered samples were measured at
A240 nm, A320 nm, A254 nm and A660 nm and strong linear relationships were obtained (R2 0.7–0.9).
Therefore, measurements of unfiltered samples were made without the interference of suspended
solids using the equation:

A254filtrated = A254nonfiltrated − A660nonfiltrated (6)

Each sample’s UV/Vis spectra were composed of three recorded spectra that were averaged after
manual removal of erroneous spectra. Initial data were processed and the data arrangement of the
data set was performed using the software Excel 2016 (Microsoft, Redmond, WA, USA).

2.3. Chemometrics Methods

The experimental data set was properly arranged in data matrices and auto-scaled
(column mean-centered and scaled) to eliminate offsets and changes in measurement scales.
Exploratory analysis of the autoscaled data set was conducted by principal component analysis
PCA [22,32–37]. The main objectives of the principal component analysis (PCA) are the transformation
of the original data’s coordinate system into a more relevant one and reduction of the original system
dimension using a limited number of the principal components (PC’s) which reflect the inherent
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structure of the data [38]. A principal component model approximates a given data matrix as
follows [28]:

X (n × p) = T (n × d)·LT (d × p) + E (n × p) (7)

where n represents the number of objects (samples), p—the number of variables (wavelengths),
and d—the number of principal components (PC’s), T—the scores matrix, L—the loadings matrix,
LT—the transposed loadings matrix, and E—the residuals matrix.

The number of PC’s was determined by the eigenvalue-one criterion analysis of the covariance
matrix, according to which only the PC’s with eigenvalues greater than one are considered relevant.
The rotation of the components extracted was converted into six iterations by Varimax method with
Kaiser normalization in order to extract optimal amount of PC’s. Tests of PC’s derived were performed
by correlation and regression means. Two types of plots were obtained from the application of PCA.
Loadings plots which describe and map the relationships between water quality parameters and the
extracted principal components, and scores plots, which describe and map the mean samples UV/Vis
spectra in the new axes defined by the principal components. One-vector scores plot to interpret the
spectral PCA results was performed [28].

Multivariate calibration was performed using principal component regression analysis (PCR).
The multiple linear regression (MLR) models assume that in addition to the p independent x-variables,
a response variable y is measured, which can be explained as a linear combination of the x-variables.
The prediction of the factor of interest yj can be described as [14]:

yj= b0 +
k∑

i=1

bixi+ei,j (8)

where bi is the computed coefficient, xi represents the absorbance at each wavelength and ei,j, is the error.
One drawback of PCA technique is that it captures only the characteristics of the X-vector or

predictive variables. No importance is given of each predictive variable relation to the dependent
or the target variable. Therefore, it is an unsupervised dimension reduction technique. Partial least
square (PLS) allows achieving this balance and providing an alternative approach to PCA technique.
Therefore, advanced modeling was performed by partial least square regression (PLS) statistical
techniques [13,16,22,32,34,37,39,40]. PLS takes the X-Block (physico-chemical properties) and correlates
them with Y-Block (spectral data) information to calculate latent variables (LV) for PLS calibration
and prediction models. The calibration model is built by means of PLS, outlier tests and validation
procedures to reach both high correlation quality and robustness. The result of the calibration procedure
is a recovery function. The recovery function is obtained by plotting the reference measurements
(actual targets) vs. the predicted values (estimated targets).

Chemometric models are used to correlate the concentrations of required determinants to spectra.
Direct chemometric models are not used in wastewater. This is due to the lack of linear absorbance
dependence of a single determinant required by Lambert-Beer law and is related to the parameters
used for wastewater analysis. Replacement parameters are commonly used (e.g., COD and TSS),
and from the specific properties of wastewater—a strong correlation between different parameters
(e.g., COD is strongly correlated with filtered COD and TSS). Therefore, there is a need for intermediate
chemometric models. They are based on estimating the calibration parameters from the calibration
mixtures. They were using intermediate chemometric models. The validity of the Lambert-Beer law is
no longer a prerequisite. Background modeling in the main component becomes feasible. Even systems
with highly correlated spectra can also be used for multi-component calibrations [41].

The PLS model used takes into account in particular concentration-spectral dependencies and
results in the most robust calibrations today. In the case of multifactorial calibration, the entire spectrum
assessment is used. The calibration model is built using PLS, various validation procedures and
outlier tests. The aim is to achieve high-quality correlations and quality of the analysis. The spectra
and reference measurements must be standardized to perform PLS [41]. The procedure includes
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multi-factor calibration with PLS, multiple cross-validation and detection and elimination of outliers.
The whole procedure is repeated until a good calibration result is obtained. The result of the calibration
procedure is a recovery function. The recovery function is obtained by plotting actual cells using
reference measurements against detailed cells by predicted values [21,42].

The wide range of wavelengths available allows great flexibility in selecting the best correlating
wavelengths for the calibration function. This avoids cross-sensitivity. This is an advantage compared
to systems that provide absorption measurements of only one or two wavelengths. The UV/Vis
spectrometer provides global calibration for given parameters, but recalibration with local reference
samples will improve performance and precision for quantitative measurements. For most cases,
the reference data is a critical part of the whole calibration procedure. Therefore, to get good calibration
results, it is necessary to guarantee the reference measurements’ quality. They should relate to the
reference analysis method, sample identity, sampling randomization, measuring range and sampling
errors [42].

Quality assessment of the obtained results was performed by comparison of predicted values
versus measured values, both for calibration and validation data sets. Model validation, cross-validation
procedures, outlier tests and prediction errors RMSEC and RMSEP were performed to reach both high
correlation quality and robustness [13,19,21,32].

Statistical analysis was processed with the software IBM SPSS Statistics 23 and Unscrambler
v.9.7 [35,43,44].

3. Results and Discussion

3.1. Data of the Water Quality Monitoring

Descriptive statistics of the physicochemical parameters of the washing water quality are
summarized in Table 1. Determination of the dissolved organic carbon (DOC) with TOC analyzer is
the modern and rapid method. However, limit values of DOC are still under consideration by some
researchers [2,5,7,10,30,45]. DOC can also be described by means of COD or BOD5. Results of this
research showed the average fit of the linear regression models (Figure 4).

Appl. Sci. 2020, 10, 9072 7 of 15 

reference data is a critical part of the whole calibration procedure. Therefore, to get good calibration 

results, it is necessary to guarantee the reference measurements’ quality. They should relate to the 

reference analysis method, sample identity, sampling randomization, measuring range and sampling 

errors [42]. 

Quality assessment of the obtained results was performed by comparison of predicted values 

versus measured values, both for calibration and validation data sets. Model validation, cross-

validation procedures, outlier tests and prediction errors RMSEC and RMSEP were performed to 

reach both high correlation quality and robustness [13,19,21,32].  

Statistical analysis was processed with the software IBM SPSS Statistics 23 and Unscrambler 

v.9.7 [35,43,44]. 

3. Results and Discussion 

3.1. Data of the Water Quality Monitoring 

Descriptive statistics of the physicochemical parameters of the washing water quality are 

summarized in Table 1. Determination of the dissolved organic carbon (DOC) with TOC analyzer is 

the modern and rapid method. However, limit values of DOC are still under consideration by some 

researchers [2,5,7,10,30,45]. DOC can also be described by means of COD or BOD5. Results of this 

research showed the average fit of the linear regression models (Figure 4). − 

 

Figure 4. Linear regression models of the BOD and COD to DOC. 

It can be seen from the model, that the DOC limit values of the root vegetable washing water are 

in the range between 100 to 122 mg L−1. 

Contamination of municipal wastewater depends of its origin and load, particle sizes, rainfalls, 

storm events, and other conditions [2,3,5,9]. According to the literature suspended solids (SS) of the 

root vegetables washing water vary within the range 85–930 mg L−1; total dissolved solids (TDS)—

425–4650 mg L−1, pH—6.80–11.1, chemical oxygen demand COD mg L−1—160–800 mg L−1, soluble 

COD—140–350 mg L−1, biological oxygen demand BOD5—73–1700 mg L−1, SUVA index—1–6, 

Kjeldahl nitrogen NKj—11.4–165 mg L−1, inorganic nitrogen N—2.81–75.5 mg L−1, ammonia NH3-N—

3.8–75 mg L−1,nitrites NO2-N—<0.005–0.195 mg L−1, nitratesNO3-N < 0.005–3.17 mg L−1; total 

phosphorus Ptot—3.0-320 mg L−1 [7,30,31,45,46,47]. Average SS value (2335) in the water samples 

monitored exceeded common values, COD (440), NKj [47], Ptot (9.8), pH (6.78), TDS (946) and SUVA 

(3.18) values were in the range of the typical wastewater contamination, while Nmin (2.5) was slightly 

lower.  

  

y = 0.2244x + 95.466

R² = 0.53

y = 0.1192x + 97.727

R² = 0.64

0

100

200

300

400

0 500 1000 1500 2000 2500

DOC
, mg L−1

BOD COD mg L−1

Figure 4. Linear regression models of the BOD and COD to DOC.



Appl. Sci. 2020, 10, 9072 8 of 16

Table 1. Descriptive statistics of the washing water physicochemical parameters in the sites monitored and their legislative limits.

Parameter/
Sampling Point

SS TDS pH EC BOD5 CODCr CODMn NKj Nmin Ptot DOC Colour
Dilution

SUVA254mg L−1 mg L−1 µS cm−1 mgO2 L−1 mgO2 L−1 mgO2 L−1 mg L−1 mg L−1 mg L−1 mg L−1

A A1 mean 219 1052 7.11 998 221 369 64 22 2.6 3.6 185 7 1.76
N96 A2 mean 987 1419 7.34 969 277 503 178 52 2.5 4.7 217 8 1.84

Mean 603 1226 7.2 983 261 436 121 23 2.5 4.2 201 8 1.93
SD 686 748 0.31 171 66 291 81 16 0.1 4 61 4 -
CV, % 114 61 4 17 24 51 67 70 4 96 27 45 -
Min 88 371 6.9 805 215 178 64 7 2.4 1 149 3 1.43
Max 1965 2467 7.6 1214 352 739 178 57 2.7 11 284 12 3.11

B B1 mean 203 814 6.7 1187 372 403 107 7 nd 1.5 167 6 -
N144 B2 mean 919 1529 7 1027 933 2125 775 17 nd 3.3 332 8 -

B3 mean 476 800 6.87 1178 445 553 130 7 nd 1.8 153 4 -

Mean 573 1048 6.9 1127 633 1027 447 12 nd 2 217 6 -
SD 334 364 2.03 77 306 841 391 9 nd 0.8 83 2 -
CV, % 58 35 2 7 48 82 87 80 nd 52 38 32 -
Min 196 786 6.68 1167 297 393 95 2 nd 1 153 4 -
Max 1089 1715 7.12 1189 119 2125 890 25 nd 4.5 345 8 -

C C1 mean 470 - 4.6 1146 2718 3229 896 42 nd 13 1125 - 2.52
N192 C2 mean 306 - 4.6 979 2050 2531 568 32 nd 9 764 - 2.34

C3 mean 9559 - 4.4 - 10,758 20,902 - 357 nd 55 - - 1.2
C4 mean 1541 - 4.5 1132 3458 4626 792 53 nd 16 1053 - 2.18

Mean 5793 - 4.5 1086 7322 13,428 752 222 nd 37 981 - 2.35
SD 10,304 - 0.15 92 6332 14,911 168 242 nd 30 191 - -
CV,% 178 - 3 9 86 111 22 109 nd 81 19 - -
Min 274 - 4.2 905 1985 2026 541 27 nd 7 705 - 1.17
Max 28,490 - 4.65 1165 17,940 41,891 928 580 nd 72 1215 - 2.96

D D1 mean 3419 884 7.8 726 275 788 - 5 nd 2 279 5 1.95
N240 D2 mean 4834 1200 7.65 720 439 1628 - 15 nd 5 251 6 2.73

Mean 4362 989 7.7 722 371 1348 - 12 nd 4 260 6 2.79
SD 2885 184 0.1 22 85 557 - 8 nd 2 25 2 -
CV,% 66 19 2 3 23 41 - 70 nd 47 9 37 -
Min 2067 867 7.51 698 254 768 - 4 nd 1 233 4 1.44
Max 7600 1248 7.83 1214 470 1905 - 21 nd 6 279 8 2.73

D3 mean 931 683 7.01 715 305 360 - 4 nd 0.4 80 5 2.98
D4 mean 430 595 7.55 683 156 192 - 3 nd 0.2 82 4 4.57
D5 mean 4.1 325 8.26 376 7.4 41 - 1.2 nd 0.1 36 1 9.59
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Table 1. Cont.

Parameter/
Sampling Point

SS TDS pH EC BOD5 CODCr CODMn NKj Nmin Ptot DOC Colour
Dilution

SUVA254mg L−1 mg L−1 µS cm−1 mgO2 L−1 mgO2 L−1 mgO2 L−1 mg L−1 mg L−1 mg L−1 mg L−1

Mean 345 519 7.6 604 57 197 - 3 nd 0.2 68 3 5.66
SD 486 215 0.56 162 86 132 - 1 nd 0.1 34 2 -
CV, % 141 42 7.4 27 151 67 - 51 nd 66 49 50 -
Min 2.4 176 6.98 261 4.5 21.6 - 0.1 nd 0 32 1 2.2
Max 1543 768 8.46 726 504 375 - 4 nd 0.4 120 7 10.83

Average 2335 946 6.78 904 1729 3287 440 54 2.5 9.8 345 6 3.18

Limits Canada ** 25–40 - - - 20–35 - - 2–8 1–3 0.5–1.0 - -

LT *** - 2000 6.5–8.5 2500 46(29) * 125 - 30 28.5 4 (*)
100–122 3 -

EU ***** 35–60 - - - 25 125 - 10–15 - 1–2 - - -

HN 24:2003 - - 6.5–9.5 - - - 5 - 51 - - - -

nd—not detected/bellow limit of detection, - no data. * 46—discharge limit per day, 25—disposable discharge limit. ** F-5-1 Determination Of Treatment Requirements For Municipal And
Private Sewage Treatment Works; *** Ministry of Environment of the Republic of Lithuania concerning wastewater treatment. https://www.e-tar.lt/portal/lt/legalAct/TAR.4D0DFCDD673A.
(*) Calculated from data (Figure 4). ***** Directive 91/271/EEC. Council Directive 91/271/EEC concerning urban wastewater treatment https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
celex%3A31991L0271 HN 24:2003. Drinking water requirements. https://www.e-tar.lt/portal/lt/legalAct/TAR.2099D15473C7.

https://www.e-tar.lt/portal/lt/legalAct/TAR.4D0DFCDD673A
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31991L0271
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31991L0271
https://www.e-tar.lt/portal/lt/legalAct/TAR.2099D15473C7
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It can be seen from the model, that the DOC limit values of the root vegetable washing water are
in the range between 100 to 122 mg L−1.

Contamination of municipal wastewater depends of its origin and load, particle sizes, rainfalls,
storm events, and other conditions [2,3,5,9]. According to the literature suspended solids (SS) of
the root vegetables washing water vary within the range 85–930 mg L−1; total dissolved solids
(TDS)—425–4650 mg L−1, pH—6.80–11.1, chemical oxygen demand COD mg L−1—160–800 mg L−1,
soluble COD—140–350 mg L−1, biological oxygen demand BOD5—73–1700 mg L−1, SUVA index—1–6,
Kjeldahl nitrogen NKj—11.4–165 mg L−1, inorganic nitrogen N—2.81–75.5 mg L−1, ammonia
NH3-N—3.8–75 mg L−1,nitrites NO2-N—<0.005–0.195 mg L−1, nitratesNO3-N < 0.005–3.17 mg
L−1; total phosphorus Ptot—3.0–320 mg L−1 [7,30,31,45–47]. Average SS value (2335) in the water
samples monitored exceeded common values, COD (440), NKj [47], Ptot (9.8), pH (6.78), TDS (946) and
SUVA (3.18) values were in the range of the typical wastewater contamination, while Nmin (2.5) was
slightly lower.

Microbiological contamination (consisted of pathogenic microorganisms Total viable count (TVC)
> 300 cfu mL−1), E. coli (5.5 × 103–1.0 × 104 cfu mL−1), intestinal enterococci (2.8 × 102–1.5 × 104 cfu
mL−1), and coliform bacteria (1.6 × 103–2.0 × 104 cfu mL−1). Their overall (2 logs/mL) concentration
is typical for standing wastewaters [48,49]. As this topic isn’t the focus of this paper, it will not be
described further.

Limits of wastewater discharge are based on a condition that no discharge should compromise
the current state of a receiving water body [50]. They vary between countries. As shown in Table 1,
the average SS concentration exceeded limit values for up to 40–90 times, BOD5—38–86 times,
CODCr—26 times, CODMn—88 times, NKj—1.8, Ptot—2.5–19.6 and color—2 times.

The main reasons for the root vegetables washing water contamination and its’ restriction of
possible reuse in the packhouses are suspended solids (SS), biochemical oxygen demand (BOD5),
chemical oxygen demand (COD), Kjeldahl nitrogen NKjt and total phosphorus Ptot. Washing water
of the carrots is more contaminated than that of beetroots, especially after polishing and processing.
These findings show that the root vegetables’ washing water is greatly contaminated and must be
treated before discharge or further usage.

SUVA index was in the range of wastewater and natural waters. The third pond of the wastewater
treatment system D increased sharply as DOC content was reduced greatly due to sedimentation and
microbial decomposition. It is dominated by high molecular weight humic substances as it is typical
for natural standing waters [7,30,31,51].

UV/Vis spectra were in accordance with typical absorbance spectra of wastewaters [2,6,28].
Two peaks at A240 and A320 indicate increased amounts of organic compounds and suspended solids.
In addition, the effect of wastewater treatment of the pond in system D are obvious. It is obvious that
absorbance decreases and the spectra of the water in the sampling spot 5 at the D site are close to the
spectra of the deionized water (Figure 5).

3.2. PCA and PCR Results of the Data Set

In order to prove the hypothesis, factor analysis was performed using the PCA method.
Kaiser-Meyer-Olkin measure of sampling adequacy criterion (KMO) was 0.649, a significance level
of Bartlett’s test of sphericity Sig. < 0.0001. All measures of sampling adequacy (MSA) were >0.520.
Extraction communalities were high and varied from 0.415 to 0.957. This indicates that the extracted
components are a good representation of the variables (four extracted PCs explained 80.2% of the total
data variance [52]). Principal component PC1 (39.5%) named as “Spectral data” was explained by
UV/VIS spectral data excluding absorbance at the wavelength A 210 nm. Principal component PC2
(22.3%) named as “Dissolved solids” is explained by the NKj, Ptot, TDS, and color. Principal component
PC3 (11.0%) named as “Organic substances” is explained by CODCr, BOD5, and DOC. PC4 (7.5%),
named as “Electrochemical properties” is explained by the pH, EC, and A210 nm, which is the measure
of nitrates and is related to the electrochemical properties.
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Scores plot of the principal component analysis (PCA) for principal component PC1 that describe
and map the UV/Vis absorbance data in the new axes defined by the principal components, and loadings
plot PC1vs PC2 that describe and map the relationships between water quality parameters and the
principal components extracted are shown in Figure 6.
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UV/Vis scores plot of spectral data revealed the highest correlation at 270–320 nm showing the
highest DOC and SS contribution to PC1 while the lowest correlation was at 240 nm and decreased
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evenly from 320 nm to 660 nm. These findings confirm some speculations that DOC correlates better
with UV/Vis spectra in comparison to organic matter (OM) while SS interferes with them due to
scattering [5,21,30]. The right-side variables in Figure 6b are positively correlated one with another
and with chemical analytes of the wastewater. Two clusters of the chemical properties and spectral
data were established, while pH seems to be an outlier. Significant Pearson correlations (p < 0.05)
were observed between PC1 (spectral data), PC3 (organic matter) (r = 0.86) and PC4 (electrochemical
properties) (r = −0.79) while the correlation of PC2 (dissolved solids) was wake and statistically
insignificant. The Chi-Square test (Asymp. Sig. 0.102 > 0.05) confirmed that our model consisting of
four PCs represents a sufficient description of the chemical data. One-Sample Kolmogorov-Smirnov
Test (Asymp. Sig < 0.05) confirmed the hypothesis about compatibility between normal empirical
and theoretical distributions of PCs. Monte Carlo significance p > 0.05 let to reject H0 hypothesis and
conclude that the PCs’ distributions are compatible with normal distribution. Data of the Cook’s test < 4
showed that there are not outliers in the model. Mahalanobis test identified outlier sample only of
deionized water, which was used as background for spectral analysis.

Results of the principal components regression (PCR) analysis were unreliable likely due to
correlation between dependent variables, so called multi-collinearity (VIF < 2) [38]. The correlation
coefficient (R 0.477) and coefficient of determination (R2 0.200) indicate sufficient strength of the linear
trend between the variables in the linear regression model according to the equation:

PC UV/Vis = β0 + β1 PC Electrochemical + β2PC Organic matter + β3PC Dissolved solids + ε (9)

However, significance levels of the ANOVA (0.273) and coefficients β (0.093; 0.773; 0.229; 0.143)
were statistically insignificant (p > 0.05) and model of PCR was unreliable probably because of
correlations of many predictors [17,21,43,44]. Therefore, further statistical analysis was performed by
partial least square (PLS) model [10,14,34,37,44].

3.3. PLS Regression and Prediction Results of the Data Set

Partial least square regression model (PLS2) of the mean-centered spectral data with three
latent variables (LV) explained 85% of the total variance while LV1 explained 32% after calibration,
cross-validation, and outliers’ removal. The best fitting to the model showed data at absorbance of
A320 (Figure 7).

PLS2 regression model confirmed PCA findings of two uncorrelated clusters (Figure 5b) and
showed the great influence of suspended solids (SS), dissolved solids (TDS and EC), and organic matter
(BOD5, CODCr, and DOC) while the influence of pH, NKj, Ptot and color was negligible. In Table 2,
the limit values of the contamination of the root vegetables washing water and wastewater and
absorbance spectra of the UV/Vis predicted by PLS regression model are presented.

As A320 data have the greatest impact on the model (Figure 5a), it was proposed to use this
parameter to monitor water quality in the plants for washing the root vegetables.
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Table 2. Limit values of the root vegetables washing water and wastewater chemical contamination
(Table 1) and UV/Vis spectra.

Min Max Mean SD

SS, mg L−1 25.0 60.0 42.5 24.7
TDS, mg L−1 2000 2000 2000 0.00

pH 6.50 9.50 8.00 2.10
EC, µS cm−1 2500 2500 2500 0.00

BOD5, mg L−1 20.0 46.0 33.0 18.4
COD, mg L−1 125 125 125 0.00
DOC, mg L−1 105.0 115.0 110.0 7.10
NKj, mg L−1 2.0 30.0 16.0 19.8
Ptot, mg L−1 0.50 4.00 2.25 2.50

Color, dilution times 3 3 3 0
A210, cm−1 3.997 4.009 4.003 0.008
A225, cm−1 3.886 3.902 3.894 0.011
A240, cm−1 5.193 5.235 5.214 0.030
A254, cm−1 4.042 4.047 4.045 0.004
A320, cm−1 7.387 7.406 7.397 0.013
A660, cm−1 3.946 3.937 3.942 0.006
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4. Conclusions

Chemical analysis of the investigated water samples showed that washing water of root vegetables
exceeded the limit values by 10–50 times for suspended solids, 10–25 times for organic matter, 3–5 times
for dissolved organic carbon, 3–7 times for total nitrogen, 3–12 times for total phosphorus, and by
3–10 times for microorganisms. Therefore, washing water quality monitoring and proper wastewater
treatment is of great importance.

UV/Vis absorbance spectra indicated increased amounts of organic compounds and suspended
solids and effects of the water treatment in the ponds system.

PCA and PLS regression methods have been applied to analyze relationships between chemical
properties and UV/Vis spectral data. The PCA and PLS modeling results showed that UV/Vis at 320 nm
could be a sufficient measure for the water pollution with suspended, dissolved solids and organic
matter monitoring. According to these materials’ chemical limit values, limit value of the absorption at
A320 nm is 7.39–7.41 cm−1. This limit value will be validated at the feature research.
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