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Featured Application: The proposed microring geometries are suited to engineer a source of new
frequencies or an integrated quadratic frequency comb source which can be used for several
applications, e.g., metrology, sensing, radio-on-fiber, etc.

Abstract: Microring resonators made of materials with a zinc-blend or diamond lattice allow
exploiting their 4-bar symmetry to achieve quasi-phase matching condition for second-order optical
nonlinearities. However, fabrication tolerances impose severe limits on the quasi-phase matching
condition, which in turn degrades the generation efficiency. Here, we present a method to mitigate
these limitations. As an example, we studied the geometry and the pump wavelength conditions to
induce the second-harmonic generation in silicon-based microrings with a second-order susceptibility
χ
(2)
zxy 6= 0. We found the best compromises between performances and experimental requirements,

and we unveil a strategy to minimize the impacts of fabrication defects. The method can be easily
transferred to other material systems.
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1. Introduction

Ranging from the frequency conversion to photon pair emission, the second-order nonlinear
phenomena are fundamental tools in integrated photonics. The choice of the material to generate this
nonlinear conversion depends on the specific application. An application which is of our interest is the
quadratic comb generation [1].

Optical frequency combs (OFCs) are light sources whose spectra contain thousands of
equally spaced laser lines and have revolutionized precise optical frequency measurements.
The self-referencing allowed by octave spanning OFCs was even awarded with the Nobel Prize
in Physics in 2005. In 2015, optical frequency comb generation has been demonstrated in silicon
microring resonators by using four wave mixing and self-phase modulation [2]. Due to these nonlinear
processes, the frequency comb generation was limited in its frequency span. To extend this span beyond
one octave, the use of both second-order and third-order nonlinearities was shown in MgO:LiNbO3

microcavities [3]. In fact, second-order nonlinearities can directly produce simultaneous octave-distant
OFCs with intracavity phase modulation. Via cascaded second-order processes, they enlarge the
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generated frequency spectrum in these "quadratic comb" sources [4–7]. Critical in this approach is the
use of the second-order nonlinearities. Therefore, to use a material to achieve a quadratic comb source,
it is mandatory that the same material shows second-harmonic generation (SHG), which in turn can
be used as a tool to scout for the best material for quadratic OFCs by measuring the second-order
nonlinear dielectric susceptibility χ(2) of materials.

A large χ(2) does not suffice to make the material suitable for quadratic comb applications in
integrated photonics. For instance, thanks to its ferroelectric properties, lithium niobate can achieve a
high χ(2) but monolithic integration is difficult [8,9]. Efficient SHG was reported in III–V semiconductors,
such as AlN [10] and GaN [11]. Indeed, GaAs, InP, and their alloys have large χ(2) values and can be
integrated in small photonic chips, even though their mass manufacturing is still challenging [12–14].
With respect to integration, silicon or silicon-based materials are the preferred platform [15]. However,
silicon is a centro-symmetric material and does not show any second-order nonlinearity in the dipole
approximation [16]. However, by strain [17,18], by alloying, as in silicon nitride [19], and by applying a
controlled DC electric field [20,21], SHG has been reported. Even though its origin is still debated—a
strain-induced χ(2) [22] or an effective χ(2) caused by a dressed third-order nonlinear dielectric
susceptibility χ(3)[18]—this enables the potential of silicon for quadratic OFCs.

It is therefore the aim of this paper to discuss the design of a microring resonator that shows
SHG for a range of parameter variations which is representative of the typical fabrication tolerance in
integrated photonics. We want to propose a method which yields high generation efficiency despite
the uncontrolled variations in the microring resonator geometry. The SHG in the microring resonator is
allowed by the quasi-phase matching due to the typical 4-bar symmetry in a ring made of a zinc-blend
or a diamond lattice material (details in Appendix B). The use of this symmetry has been already
reported and discussed in many papers, such as [23]. As a model system we used silicon leveraging
the reports on strained silicon or electric-field-induced SHG without entering into the debate on its
origin. We simply assumed that a χ

(2)
zxy element was present in the studied system. We studied various

microresonator geometries, allowing SHG to find the best compromise between performances and
experimental requirements. We optimized the geometries while also taking into account the random
fabrication defects. This paper is organized as follows. First, we present the method and the general
results. Then, through the calculation of the conversion efficiency, we choose the best geometries for
SHG. Finally, the study of the previous results leads to the demonstration of the existence of geometries
which are robust against fabrication imperfections. Despite the results being for a typical silicon
microring resonator, the proposed methodology can be easily extended to other materials.

2. Conditions for SHG

2.1. Method

As a model material, we study SHG in a Si microring (Figure 1). As proposed in [18] and due to
good knowledge of the material parameters, we consider a silicon waveguide with a thin cladding
of Si3N4 of thickness eSiN = 140 nm. The waveguide width in the microring is w, its thickness
is e, and the internal microring radius is Rin. The light propagating in such a microring can be
described by the resonant modes of the electromagnetic field. Each mode is labeled by three numbers:
the planar number, q, giving the number of the electric field extrema along z; the radial number, p,
giving the number of extrema along r; and the azimuthal number, m, corresponding to the number of
wavelengths on one round-trip. These modes exist in two different polarizations: either the electric
field is along z (Ez) and the mode is called TM, or the magnetic field is along z (Hz) and the mode
is called TE [24]. The fundamental field (pump of wavelength λ f ) is coupled to the microring by a
straight bus waveguide which is also used to collect the second harmonic (SH) field (wavelength λSH).
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Figure 1. (a) System and notation used for the SHG study. (b) Cross section of the microring showing
the materials and thicknesses. (c) Mode profiles of a TE mode with radial number p = 1 and TM mode
with radial number p = 3.

The SHG occurs if the energy and the angular momentum are conserved. The first conservation
requirement is straightforward and reads as λ f = 2× λSH. The second one depends on which modes
are coupled through the susceptibility tensor. Without loosing generality and to simplify the discussion,
we assume a homogeneous second-order nonlinear tensor with a single χ

(2)
zxy 6= 0. In practice, this value

of χ(2) can be set either by the proper engineering of the strain [25–27] or by adding properly designed
p–i–n junctions across the waveguide in the ring [20]. With the assumption χ

(2)
zxy 6= 0, a Hz polarized

fundamental mode generates a Ez polarized SH mode. The conservation of the angular momentum reads,
therefore, mSH = 2×m f + 2, where mSH is the SH azimuthal number and m f is the pump azimuthal
number (see Appendix B). This situation is similar to the quasi-phase matching condition which exploits
the 4-bar symmetry [23,28].

We determine the geometries and wavelengths meeting these two requirements by finite element
method simulations using the COMSOL Multiphysics software [29]. In addition, in this work we want
to propose a design that can be realized and tested in our laboratory. Therefore, after a preliminary
computation, we limit the study to the case q f = qSH = 1, p f = 1, and pSH = 3 to keep λ f < 2.6 µm
because of the available laser source in our laboratory. Moreover, the shorter wavelength limit
λ f > 2.2 µm is imposed to avoid two-photon absorption (TPA) in silicon. TPA is a process that
will compete with SHG, affecting in a drastic way the conversion efficiency. For a given thickness,
width, and fundamental azimuthal number, the program performs iterations modifying the microring
radius until the SHG conditions are satisfied. The refractive index dispersions used in the modeling
for the different materials are taken from experimental ellipsometry measurements and are given in
Appendix A.

2.2. Results

Figure 2a shows the fundamental mode wavelengths that satisfy the SHG conservation laws for
a fixed waveguide thickness (e = 280 nm) and different waveguide widths and fundamental mode
azimuthal numbers. It is interesting to note that many geometries are available to generate a SH
using a pump wavelength longer than 2.2 µm, which is the limit to prevent two-photon absorption
(TPA) [30]. Note that we use dashed curves in the figure to underline that the SHG conditions are not
continuous, since the microrings have separate resonances—i.e., the azimuthal number is an integer.
We can see that along one curve, the radius increases with m f , which is consistent with the fact that
more wavelengths have to fit on one round-trip. Moreover, the curves are steeper for small radii and
saturate for large radii. This can be easily understood, since when the radius becomes large, the ring
resembles more a straight waveguide where the angular momentum conservation is replaced by the
linear momentum conservation which does not depend on the radius. Besides, the three curves show
that the fundamental wavelength is longer for a given m f when the width increases. This is consistent
with the fact that when w is larger, the effective index increases and thus the wavelength lengthens to
keep the azimuthal number constant.
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Figure 2. Fundamental wavelengths and geometries fulfilling the requirements for the SHG in a
Si microring cladded by Si3N4 for p f = 1, pSH = 3, a Hz fundamental mode, and a Ez SH mode.
(a) For a fixed thickness e = 280 nm and three different widths w. The points correspond to different
fundamental azimuthal numbers m f . (b) For a fixed width w = 800 nm and different thicknesses
represented by the different colored points. The three curves correspond to different m f values.

Figure 2b is a complement of (a) showing the thickness’s influence. This time the width is fixed to
w = 800 nm and the waveguide thickness is varied. We can observe that the variations of the radius
and of the wavelength are not monotonous with the thickness. For small thicknesses, e < 400 nm,
the thicker the microring, the larger the wavelength. However, for e > 400 nm, the wavelength
decreases with the thickness. This evolution will be thoroughly described and explained in the fourth
section. We can note that, unlike the previous evolution of λ f with Rin at fixed w and e, this time the
evolution shown by the curves is continuous: for any thickness e, at a given w, an internal radius Rin
and a pump wavelength λ f exist that fulfill the SHG condition.

3. Conversion Efficiency

3.1. Method

The conversion efficiency η is defined as the power ratio between the generated SH and the pump,
both estimated inside the bus waveguide:

η =

∣∣∣∣∣ b1,SH

a1, f

∣∣∣∣∣
2

(1)

where b1,SH is the electric field amplitude of the SH mode in the waveguide after the microring
and (since the fundamental mode is Hz instead of Ez) a1, f is the magnetic field amplitude of the
fundamental mode in the waveguide before the microring (Figure 1a). η gives a useful insight into
which geometry should be used for SHG among the numerous possibilities previously determined.

η expression is derived from [23]:

η = 4π2Pin|K|2
α2

SH(1− t2
SH)

1 + α2
SHt2

SH − 2αSHtSH cos(ϕSH)
×
(

α2
f (1− t2

f )

1 + α2
f t2

f − 2α f t f cos(ϕ f )

)2

(2)

where Pin is the pump power inside the bus waveguide; t and α are, respectively, the transmission
coefficient of the coupling for the amplitude and the transmission coefficient after one round-trip
inside the microring. They are computed from the coupling quality factor Qcpl , and the intrinsic one
Qint, by Qi = πm

√
x

1−x where x = α if i = int and x = t if i = cpl [31].
K is the overlap between the fundamental and the SH modes, in the case of a phase mismatch

∆m = m′SH− 2m′f , where m′SH and m′f are pseudo-azimuthal numbers computed by linear interpolation
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corresponding to non-resonant wavelengths. The pseudo-azimuthal numbers also allow to evaluate
the phase: ϕ = −2m′π. According to [23] the overlap reads:

K = K2+ × exp[i(∆m + 2)π]× sinc[(∆m + 2)π] + K2− × exp[i(∆m− 2)π]× sinc[(∆m− 2)π] (3)

where K2± is the field overlap in the case of the phase matching:

K2± =
i

4n2
f

√
2µ0ωSH

mSHNSH

1
m fN f

(−χ
(2)
zxx ± 2iχ(2)

zxy + χ
(2)
zyy)

∫∫
ring

rESH∗
z

m f H f
z

r
± ∂H f

z
∂r

2

drdz (4)

where χ
(2)
zxx = χ

(2)
zyy = 0 and χ

(2)
zxy is factorized out of the integral due to the assumption of a uniform

value. We assume in χ
(2)
zxy = 1 pm/V (which is close to the value given in [18] or in [22]). NSH is a

normalization constant given by:

NSH =
∫∫ |Ez|2

r
dS, (5)

whereas N f is given by Equation (5) where Ez is replaced by Hz.
In the following, we assume a critical coupling condition between the bus-waveguide and the

microring, with the Q-factors equal to 104 and Pin = 1 mW. Simulations were done in the undepleted
pump approximation. The assumption of a constant Q-factor is quite crude. However the main goal
of this paper is to demonstrate the influence on fabrication defects on the SHG in a model system.
More refined modeling for a fabricated microresonator to-be should clearly consider the geometrical
dependence of the Q-factor.

3.2. Discussion

Figure 3a shows that for a fixed thickness e = 280 nm, the smaller the radius, the larger the
conversion efficiency. We can also observe that η increases when the width decreases in the range
800 ≤ w ≤ 1000 nm. The evolution of η with the thickness is shown in Figure 3b where the width is
fixed to w = 800 nm. Even if small radii give better efficiency, we chose to represent here the points of
Figure 2b corresponding to m f = 400 (dashed line), since they are the points that will be discussed in
the next section. For smaller radii, the numerical values would be different, but the shape of the curve
would be similar, which makes the following discussion general. To get rid of the variation of η due to
the variation of the radius, we plotted another set of points where, this time, the radius is kept as close
as possible to Rin = 60 µm while varying e (solid line). Indeed, it is not possible to fix the value of the
radius for given w and e, since it must correspond to an integer for the azimuthal numbers. We observe
that the variation of η with e is not monotonous for these geometries. η is maximum for e = 360 nm.

The SHG simulations allow choosing the optimal geometry by compromising between the
experimental, fabrication, and theoretical requirements. For instance, Figure 3a shows that the best
conversion efficiencies are obtained with small radii, but Figure 2 shows that to avoid the two-photon
absorption of the fundamental mode, it is required either to choose w ≥ 900 nm for e = 280 nm, or a
thick microring if the width is kept equal to 800 nm.
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Figure 3. SHG conversion efficiency in Si microring cladded by Si3N4. The pump power is Pin = 1 mW,

χ
(2)
zxy = 1 pm/V, and the intrinsic and coupling Q-factors are 104. (a) Varying the internal radius Rin,

for a fixed thickness e = 280 nm and different widths w. (b) Varying the thickness e, for a fixed width
w = 800 nm and a fixed internal radius (Rin ≈ 60 µm) or a fixed fundamental azimuthal number
(m f = 400) and different radii.

4. Robust Geometries against Fabrication Errors

4.1. Analysis

The goal of this analysis is to understand the shape of the curves in Figure 2b in order to look
for ranges where small variations in the geometries (which are unavoidable due to the precision of
the fabrication) do not change the results. Thus, the width is fixed to w = 800 nm and the resonant
wavelengths are computed by varying the thickness and the internal radius. Without loosing generality,
we consider the case of m f = 400 since the points are more spaced, making clearer the discussion.

4.2. General Observations

Figure 4 shows the resonant wavelengths for two families of fundamental (solid line) and SH
modes (dashed line). The first one corresponds to m f = 400, Hz polarization, p = 1, and λ f around
2.3 µm. The second one corresponds to a SH mode with m = 802, Ez polarization, p = 3, and λSH
around 1.15 µm. For the sake of simplicity, the first modes are labeled F, as in fundamental, and the
second one is SH, as in second harmonic, but these modes really correspond to fundamental and
SH only when the energy conservation is fulfilled, i.e., only at the crossing points of the curves in
the figure.

Figure 4a shows the resonant wavelengths as a function of the thickness for three different radii.
We can see that when the radius increases, the wavelength increases. This is easy to understand
considering the resonant wavelength expression:

λ =
2πRne f f

m
(6)

where ne f f is the effective index, and R the mean radius of the microring. The effective index does not
change much with the radius, and thus, when the radius is larger, a longer wavelength is needed to
keep the azimuthal number constant. In all cases, we can also observe that the wavelength increases
with the thickness. This evolution is needed to keep the azimuthal number constant, since the effective
index increases with the thickness. Finally, we can see that the slope decreases with the thickness.
This is understandable since, when the thickness is large enough, the mode is well confined, and thus,
the effective index becomes less sensitive to the thickness variation. For the small thicknesses, the SH
slope is larger than the fundamental one, while it is smaller at large thicknesses.
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Figure 4. Resonant wavelengths for modes (m = 400, Hz polarization, p = 1) around 2.3 µm (labeled
as F) and (m = 802, Ez polarization, p = 3) around 1.15 µm (labeled as SH) in a Si microring of
width w = 800 nm cladded by Si3N4 with respect to (a) the thickness e and (b) the internal radius Rin.
Please note that the notations F and SH are chosen for the sake of simplicity but really correspond to
fundamental and SH only at the crossing points. The colors are the same as in Figure 2b to make the
correspondence easy, and an example of correspondence is given with points A and B.

Figure 4b shows the resonant wavelengths with respect to the radius for three different thicknesses.
We observe the same general evolutions as described before: the wavelength increases with the radius
or the thickness. Nevertheless, this time, the slope for the fundamental mode is always larger than the
one for the SH. Since m f is about half of mSH , it is normal to have a larger slope for the fundamental
according to Equation (6).

The general shapes of the curves in Figure 4 result from the chromatic and modal dispersions.
Hence, the same kind of study performed in another material where χ

(2)
zxy 6= 0 would lead to the same

observations. Only the values for the wavelength range, thickness, and width would change.

4.2.1. For Small Thicknesses, e < 320 nm

To interpret the shape of the curve for m f = 400 on Figure 2b, let us consider the dark blue
curve in Figure 4a, corresponding to Rin = 59.844 µm. A first crossing occurs in A at e = 280 nm
and corresponds to the second blue point on the curve of Figure 2b. From this crossing point, if the
thickness increases, λSH becomes larger than λ f since the slope of the dashed line is larger than the
solid one. To fulfill the energy conservation again, one can take advantage of the faster variation of
λ f with the radius and increase Rin. For instance, a new SHG point is found in B for e = 320 nm
and Rin = 60.727 µm. Since both the thickness and the radius have increased to reach the new SHG
situation, the wavelength is longer than the previous one as found in Figure 2b.

4.2.2. For Thicknesses Larger than 320 nm

Figure 4a shows that when e > 320 nm, the slope for the fundamental mode wavelength is larger.
Thus, if the thickness increases, λSH becomes smaller than λ f , and to fulfill the energy conservation
again, the radius must be decreased. This is what is shown in Figure 2b: after e = 320 nm, Rin becomes
smaller. This time, the increase in the thickness and the decrease in the radius have opposite effects on
the wavelength, which fulfill the SHG conditions. Till e = 390 nm, the increase in the thickness is large
enough to increase the wavelength as well. For a larger thickness, the variation of the wavelength with
the thickness is too small to compensate for the radius decrease, and thus, the wavelength decreases
when e increases.



Appl. Sci. 2020, 10, 9047 8 of 12

4.3. Application

The relationship between the internal radius and the thickness values, which fulfill the SHG
condition, has an interesting consequence. As shown in Figure 5, the function Rin = f (e) has a flat
maximum around e = 330 nm, so the required microring geometry to obtain a SHG at these thicknesses
has a range of radii values instead of a fixed radius value. From a practical point of view, this means
that we can tolerate variations of ±10 nm in the thickness about the selected value of 330 nm or of
the radius about the selected values of 60.755 µm without compromise on the generation efficiency.
Therefore the proposed geometry is robust with respect to fabrication tolerances. Keeping in mind
the general observation made in Section 4.2, the same optimization can be done for other materials.
The choice of the proper geometrical parameters for the resonator and the proper pump and SH
wavelengths determine the same kind of robust geometry as the one here reported.
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Figure 5. Internal radii values that fulfill the criteria of SHG with high efficiency as a function of
the waveguide thickness. We assumed a silicon microring of width w = 800 nm and a fundamental
azimuthal number m f = 400. The colors are the same as Figure 2b to ease the comparison between the
two plots.

In order to illustrate the interest of the robust geometry presented before, we have computed
the conversion efficiency for a silicon microring (m f = 400) for two different internal radii:
(i) Rin = 60.755 µm which corresponds to the robust geometry determined from Figure 5, and (ii)
Rin = 57.208 µm which corresponds to the SHG point for e = 440 nm. To simulate a fabrication error,
the thickness is swept around the nominal value, e = 330 nm in the first case and e = 440 nm in the
second one. For each new thickness, the fundamental wavelength is adjusted around 2.3 µm in order to
keep the pump resonant and the fundamental mode at the azimuthal number m f = 400. On the other
side, the SH is not resonant (except for e = 330 nm or 440 nm); thus, a pseudo-azimuthal number m′SH
is interpolated between the closest resonant wavelengths in order to compute η. The results are shown
in Figure 6a.

In both cases, ηmax ≈ 1.7× 10−4 when the thickness has the optimum value, which yields the
optimum microring radius. For the robust geometry (blue line), the SHG remains efficiently, even when
the thickness differs by 10 nm from the optimum value, whereas for the other geometry (orange line),
η decreases by at least two orders of magnitude when the thickness differs from the optimum value.
In the first case, η is larger than 10−4 on a thickness range spanning more than 15 nm, while the range
is as narrow as 1 nm in the second case. This result confirms what was found in the previous section:
the Rin = f (e) plots allow one to find geometries which can accommodate fabrication errors. Our result
is different from what was observed by [23] for GaAs, since here we used resonant conditions while
neither the fundamental nor the SH modes were resonant in the other article.
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Figure 6. SHG conversion efficiency as functions of thickness e (a) and internal radius Rin (b).
The blue line corresponds to the maximum of Figure 5 where the highest efficiency was obtained
for Rin = 60.755 µm and e = 330 nm. The orange line corresponds to the point Rin = 57.208 µm and
e = 440 nm. The vertical axis is the same in both cases. The waveguide width is w = 800 nm and the
pump power Pin = 1 mW. The black lines indicate the ranges for which η ≥ 10−4. In (a) η ≥ 10−4 in a
range of only 1 nm for the yellow line, and in a range of 16 nm for the blue one, showing a robustness
against fabrication defects of this geometry. In (b) η ≥ 10−4 in a range larger than 40 nm for both the
geometries, showing that the conversion efficiency is not affected in a critical way by variations in the
internal radius of the ring.

Figure 6b shows the same kind of study when the internal radius is swept while the thickness is
fixed to (i) e = 330 nm in the case of the robust geometry and (ii) e = 440 nm in the other case. We can
see that a fabrication deviation of the radius is not as critical as the one for the thickness, since in both
cases at least a 45 nm-deviation on Rin is allowed to keep the conversion efficiency larger than 10−4.

Finally, we performed the same optimization for the most promising geometry for SHG,
i.e., for small radii (Figure 3a), and with m f = 100 to use λ f > 2.2 µm (Figure 2a). The robust
geometry corresponds to e = 320 nm, Rin = 14.275 µm and leads to η ≈ 10−3 for Pin = 1 mW which is
only one order of magnitude smaller than what is theoretically expected in GaAs [23], for instance.

5. Conclusions

In this work, we have theoretically studied Si microrings with an effective second-order
susceptibility. We have determined the geometries and the near-infrared pump wavelengths to
have a large SHG efficiency where a quasi-phase matching condition is assured thanks to the 4-bar
symmetry. In particular, we have concentrated our attention on the effects of uncontrolled fabrication
variations. Our comprehensive study shows that it is possible to find microring geometries where
the SHG efficiency is almost independent of fabrication errors. This allows relaxing the fabrication
tolerances and the use of post-fabrication thermal trimming of the microring resonances. Finally,
since these particular geometries rely on the knowledge of the dependence of the mode confinement
on the specific geometry and not on the material itself, the method can be extended to other material
systems than Si, provided they should show 4-bar symmetry.
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Appendix A. Refractive Indexes

The refractive index dispersions result from a Sellmeier fit of ellipsometry measurements
performed at the Fondazione Bruno Kessler where the microring resonators are fabricated.
The wavelength is expressed in µm.

• for Si
n2 − 1 = 10.651616× λ2/(λ2 − 0.0913386)

• for SiO2

n2 − 1 = 459.19197× λ2/(λ2 − 0.00547762)− 458.11172× λ2/λ2

• for Si3N4

n2 − 1 = 8.8624299× λ2/(λ2 − 0.08495882)− 5.9856771× λ2/λ2

Appendix B. Phase Matching Condition

With the assumption χ
(2)
zxy 6= 0, the SHG arises from the coupling of the x and y-components of

the fundamental mode with the z-component of the SH mode according to:

ESH
z = χ

(2)
zxyE f

x E f
y (A1)

The Cartesian coordinates are not adapted to the cylindrical symmetry of the system; thus, it is
useful to use the circular polarizations instead. A x-linearly polarized photon state can be written as a
linear combination of two circularly polarized photon states: |x〉 = A(|+〉+ |−〉). For a y-polarization:
|y〉 = B(|+〉 − |−〉), where A and B are normalization constants. Hence, the two-photon state |xy〉
used to generate the SH can be rewritten as: |xy〉 = B(|++〉 − | − −〉). This means that the SHG uses
either two photons |+〉 or two photons |−〉. In the following, we study the case where two |+〉 photons
interact. The angular momentum conservation, illustrated in Figure A1, leads to the phase-matching
condition: mSH = 2m f + 2.

Momentum along z

Fundamental SH

orbital

spin 0+2

2 ✕

Figure A1. Illustration of the angular momentum given in h̄. Two fundamental photons (red), circularly
polarized, are converted into one SH photon (green) linearly polarized.
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