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Abstract: One challenging aspect of therapy optimization and application of control algorithms in
the field of tumor growth modeling is the limited number of measurable physiological signals—state
variables—and the knowledge of model parameters. A possible solution to provide such information
is the application of observer or state estimator. One of the most widely applied estimators for
nonlinear problems is the extended Kalman filter (EKF). In this study, a moving horizon estimation
(MHE)-based observer is developed and compared to an optimized EKF. The observers utilize a
third-order tumor growth model. The performance of the observers is tested on measurements
gathered from a laboratory mice trial using chemotherapeutic drug. The proposed MHE is designed
to be suitable for closed-loop applications and yields simultaneous state and parameter estimation.

Keywords: moving horizon estimation; Kalman filter; parameter estimation; tumor
growth estimation

1. Introduction

Cancer treatment and its related fields are intensively studied subjects, since cancer is a major
cause of death globally. It is estimated that there will be 21.4 million cases annually by 2030 [1,2].
The application of modern control algorithms for cancer treatment has much potential—especially in
the adjustment of the dosages—however, there are difficulties as well [3]. The article investigates a facet
of a larger project. The larger project aims to minimize the amount of administered chemotherapeutic
drug—while retaining its effect—by applying personalized treatments. Lower amount of doses
expected to reduce side effects and potentially postpone the emergence of tumor resistance.
One approach is the utilization of feedback control, where the controller (which decides about the drug
administration scheme) adapts to the patient. Based on mathematical models accurately describing
the underlying physiological processes the professionals have the possibility to define appropriate
therapies. System engineers thrive to provide a proper description of the tumor growth, however,
the inter- and intrapatient variability and the effects of different drugs are cumbersome to model.
Several models were introduced over the years [4–9]. In particular, we are concerned with the use of a
third-order model. The model describes the dynamics of the living and dead tumor cells, as well as
drug concentration [7]. The output of the system is the total tumor volume (sum of the living and the
dead tumor volumes).

In tumor growth modeling there are variables that cannot be measured, or are not feasible to
measure in practice on a day-to-day basis. Such variables in this particular case are the individual
volume of the living and dead tumor cells and drug concentration or the model parameters
characterizing the patient variability. A mathematical model gives the general behavior of the system.
The general structure can be tailored to each individual by the model parameters. For instance, there is
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a parameter that corresponds to the clearence of the drug, which can vary from patient to patient.
Although they cannot be measured, they play an important role in describing the dynamics of the
system and are often required for specific therapy optimization or closed-loop algorithms. In order
to extract those unmeasurable variables, usually, an observer is applied. The goal of an observer is
to provide information about the inner state variables or parameters based on the measurements.
The most common algorithm is the Kalman filter (KF) [10], however, other approaches like sliding
mode observer, particle filter [11], linear observer [12] or moving horizon estimation (MHE) [13] are
also employed. The latter one is an optimization-based approach, where the name suggests that
the optimization is performed on a moving window. The window makes it possible to take into
account a series of measurements, and the optimization makes it possible to define application-specific
constraints and penalizations. In this paper, an MHE is developed and its performance is compared to
an optimized extended Kalman filter (EKF). Often, the drawback of the studies, e.g., [10–13] is that
they are performed on simulated data which is favorable from several aspects. In contrast, this study is
evaluated on laboratory measurements, where noise, irregular sampling times and most importantly,
structural mismatch are present.

The paper is structured as follows. Section 2.2 describes the utilized third-order tumor
growth model and previously identified parameter sets. In Sections 2.3 and 2.4 first theoretical,
general description for the EKF and MHE based observers are given. Thereafter the observers are
applied to the specific tumor growth model. Measurement noise is characterized in Section 2.3.1.
Sections describing the observers end with the tuning methods. In Section 3 the results are summarized.
The observers are evaluated based on their capabilities following the trends of the measurements.
During the assessment, the fluctuations of the parameters are taken into account too. Furthermore,
different window lengths of the MHE are investigated as well. Finally, in Sections 4 and 5 the paper
is concluded.

2. Materials and Methods

2.1. Experimental Data

The experiments were conducted by the Membrane Protein Research Group of the Research Centre
for Natural Sciences published in [14]. The mice are identified with the “PLD” acronym, indicating that
the injected chemotherapeutic drug was the pegylated liposomal doxorubicin (PLD) during the
experiments. In this trial tumor pieces from a Brca1-/-;p53-/- mouse tumor were transplanted
orthotopically to syngenic FVB mice to reduce the time of tumor formation. The tumor volume was
measured by calipers every 1–5 days. The treatment protocol was a dynamic reactive approach which
was defined as follows. The mice were treated based on the decision of the professionals. The injection
could be granted if the tumor volume reached 200 [mm3] and at least 10 days past since the last
treatment. The injected drug was the maximum tolerable dose 8 [mg/kg] every time. The experiment
focused on the elimination of the primary tumor. The experiment was stopped when the tumor volume
grew above the 2000 [mm3] threshold.

In Figure 1, an example is given of the trial. The raw caliper measurements are represented with
black circles, the treatment threshold is plotted with a dashed grey line and the solid green line is a
linear interpolation between the measurements. It can be seen that the particular mouse responded
well to the treatment, since the volume decreased after the injections. However, some mice develop
resistance and the drug stops taking effect (meaning continuously growing volume regardless of the
presence of the drug). Those who developed resistance are not taken into account in this study as
the applied model does not consider resistance. As a result, data from mice PLD1, PLD2 and PLD8
from [14] are not used in this study.



Appl. Sci. 2020, 10, 9046 3 of 17

0 50 100 150

0

200

400

600

800

Figure 1. Scheme of the experiment from [14].

2.2. The Applied Tumor Growth Model

The investigated tumor growth model is a third-order nonlinear ordinary differential equation.
The model differentiates between living and dead tumor cell volumes by introducing separate state
variables: x1 [mm3] and x2 [mm3], respectively. The third variable x3 [mg/kg] describes the drug
concentration in the host. The dynamics is described by the equations given in [6,7] at time t as

ẋ1(t) = (a− n)x1(t)− b
x1(t)x3(t)

ED50 + x3(t)
, (1)

ẋ2(t) = nx1(t) + b
x1(t)x3(t)

ED50 + x3(t)
− wx2(t), (2)

ẋ3(t) = −c
x3(t)

KB + x3(t)
− bk

x1(t)x3(t)
ED50 + x3(t)

+ u(t), (3)

where a describes the proliferation rate of the living tumor cells, n is the tumor cell necrosis rate, w is
the dead tumor cell washout rate, c is the drug depletion rate. The pharmacodynamics is affected by
the b and ED50 (median effective dose) parameters. The effect of the drug and the depletion of the
drug is characeterized by equations following the dynamics of Michaelis–Menten kinetics, thus ED50

and KB are Michelis–Menten parameters. Resistance is not modeled explicitly, but the ineffectiveness
of the drug appears as a specific combination of the parameters. When the difference a− b− n > 0,
the drug is not able to shrink the volume, it only decreases the growth rate. Qualitative analysis of the
model has been previously done in [15]. The values of the parameters for the mice identified based on
a mixed-effect model [7] are given in Table 1.

Table 1. The identified parameters of the mice from experiment specified in [14] using a mixed-effect
model [7], along with the mean values and standart deiations for each parameter.

Parameter PLD1 PLD2 PLD3 PLD4 PLD5 PLD6 PLD8 PLD9 Nominal SD

a [1/day] 0.333 0.307 0.307 0.310 0.289 0.299 0.308 0.311 0.306 0.0186
b [1/day] 0.116 0.169 0.198 0.180 0.163 0.184 0.174 0.167 0.166 0.0302
c [1/day] 0.235 0.297 0.304 0.272 0.312 0.365 0.187 0.161 0.257 0.0820
n [1/day] 0.115 0.148 0.153 0.173 0.134 0.161 0.133 0.145 0.144 0.0235

bk

[
10−7mg

kg·day·mm3

]
6.15 6.05 6.02 6.10 6.19 6.16 6.17 6.11 6.12 0.404

KB [mg/kg] 0.367 0.361 0.342 0.230 0.362 0.374 0.515 0.400 0.36 0.1242
ED50 [10−5mg/kg] 8.89 9.03 10.4 13.3 8.64 7.91 7.79 8.94 9.71 1.48

w [1/day] 0.346 0.344 0.331 0.341 0.341 0.339 0.336 0.342 0.34 0.0253
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2.3. Extended Kalman Filter

For nonlinear systems one of the most widely applied observer is the EKF. First, assume a general
system given in the form of:

ẋ(t) = f (x(t), u(t)) + w(t), (4)

y(t) = h(x(t), u(t)) + v(t), (5)

where f describes the nonlinear system dynamics, h is the output equation, w is the additive process
noise or disturbance and v is the measurement noise. Equation (4) is generalized further with the
augmentation of system parameters x := [xs xp]ᵀ s.t. ẋp = 0, where xs is the original state vector and
xp is the parameter vector.

Since the measurements are done only at discrete times, continuous-discrete EKF has been applied.
In the prediction step the model and covariances are propagated using the forward Euler method with
shorter sampling times. The equations of the prediction step in time instant t are defined as

ẋ(t) = f (x(t), u(t)), (6)

y(t) = h(x(t), u(t)), (7)

Ṗ(t) = F(t)P(t) + P(t)Fᵀ(t) + Q, (8)

F(t) =
∂ f
∂x

∣∣∣
x(t),u(t)

(9)

where P is the error covariance matrix, F is the Jacobian matrix of the system and Q is the process
noise covariance matrix. The update step in the k-th discrete step is defined by

K[k] = P[k′]Hᵀ[k]
(
H[k]P[k′]Hᵀ[k] + R

)−1, (10)

x[k] = x[k′] + K[k]
(
z[k]− h(x[k′])

)
, (11)

P[k] =
(
I−K[k]H[k]

)
P[k′], (12)

H[k] =
∂h
∂x

∣∣∣
x[k′ ]

(13)

where K is the Kalman gain, H is the Jacobian of the h output equation, z is the measurement, R is the
measurement noise covariance matrix and the aposthrope k′ indicates the a priori values of the update
step. The transition from the continuous time domain to the discrete is given by: x[k′] = x(tk).

The EKF structure has been implemented using the model (1)–(3), extended with parameter
estimation. The estimated parameters were selected in accordance with a previous sensitivity and
identifiability analysis [16]. The results of the analysis indicate that the most sensitive parameters are a,
b, n andw, thus xp := [a, b, n, w]ᵀ. The identifiability analysis with the subset of parameters resulted in
a structurally locally identifiable [17] system. This indicates that there is a finite number of parameter
sets producing the same trajectories. For the developments of the observers the following assumption
is used: w = [ws wp]ᵀ s.t. ws = 0. Practically speaking, it is assumed that the mismatch between the
measurements and the model rises only from measurement noise and parameter uncertainty. With the
augmented state vector the Jacobians are given as:
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F =



x4 − x5 − x6x3
ED50+x3

0 −x6
x1ED50

(ED50+x3)2 x1 −x1 − x1x3
ED50+x3

0

x5 +
x6x3

ED50+x3
x7 x6

x1ED50
(ED50+x3)2 0 x1

x1x3
ED50+x3

−x2

−bk
x3

ED50+x3
0 −c KB

(KB+x3)2 − bkx1ED50
(ED50+x3)2 0 0 0 0

0 · · · 0
...

. . .
...

0 · · · 0


, (14)

H =
[
1 1 0 0 0 0 0

]
. (15)

2.3.1. Measurement Noise Characteristics

The noise characteristics of the measurements are quantified by calculating the standard deviation
of the difference between the raw and filtered measurements. The filtered values are calculated by
applying a second-order low-pass Butterworth filter in zero-phase setting. The resulting standard
deviation σ = 31.39 is used for the R = σ2 measurement variance. In Figure 2 the measured and
filtered pairs are shown on a logarithmic scale to better visualize the deviations at small volumes.
Zero measured values are shifted to 0.1 [mm3], which was chosen arbitrarily for visualizing reasons.

The tumor volumes are measured using calipers and the actual volumes are approximated.
This method is less accurate and reliable when smaller volumes are being measured. Data of
measurements under 50 [mm3] are rather scarce too, usually from a measured zero volume at the next
sampling, the volume jumps instantly to the proximity of 50 [mm3].
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Figure 2. Difference between the raw and filtered measurements.

2.3.2. Kalman Filter Tuning

One critical aspect of comparing the performance of different observers is the tuning. In order
to extract the most performance, the elements of the Q and P[0] covariance matrix were determined
during an optimization. The goal of the optimization was to minimize the root-mean-square error
(RMSE) between the measured trajectories and the predicted ones:

min
Q,P[0]

N

∑
i=1

RMSE(z(i) − y(i)), (16)
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where N is the number of treated mice, z is the vector of measured values of the i-th mouse and y
is the output of the system. The optimized parameters were in the main diagonal corresponding to
the estimated parameters and the first element of the P[0] matrix to guarantee quicker convergence.
The optimization is done by the f mincon function of the MATLAB environment from 100 initial points
generated by the Latin Hypercube Sampling [18]. The optimized matrices are given as:

Q =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 2.976× 10−6 0 0 0
0 0 0 0 4.022× 10−5 0 0
0 0 0 0 0 1.103× 10−9 0
0 0 0 0 0 0 1.437× 10−3


(17)

P[0] =



2.125 · 103 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 4.946× 10−8 0 0 0
0 0 0 0 1.502× 10−5 0 0
0 0 0 0 0 8.990× 10−4 0
0 0 0 0 0 0 2.755× 10−3


(18)

2.4. Moving Horizon Estimation

The MHE is an optimization-based method, where the minimization of a developed cost function
is done on a moving window. A moving window of one step can coincide with the widely applied
EKF. However, using a longer window and introducing some application-specific terms or constraints
can be beneficial in several cases. Taking into account more measurements can result in an estimator
more robust to external disturbances or delays.

The cost function can be formulated in several ways, depending on the application. General
arguments and terms are summarized in Table 2, where the notations are given according to (4) and (5).
The Wi matrices provide weighting between the terms of the cost function, their subscripts indicates
the analogy between the EKF and MHE. The weighting matrices are analogous to the inverses of the
covariance matrices (8), (10). The xol vector function is the open-loop trajectory from the initial state
of the current window, the arrival cost is calculated in the k−M-th step, where M is the length of the
horizon. The difference between the current parameters and the previous window is denoted by ∆p.
Following the assumption that the mismatch between the model and measurements are caused by
parameter uncertainty, intrapatient variability and measurement noise, the parameters p = [a, b, n, w]

are optimized, similarly to the EKF design. Given the arguments, the MHE problem can be generarly
formulated as follows:

min
x[k−m],p

||x̂[k−m]− x[k−m]||2WP
+

k

∑
i=k−M

||z− h(x(p))||2WR
+ ||∆p||2WQ

. (19)

Table 2. Moving horizon estimation (MHE) cost function formulations.

Penalization Arguments
State Disturbance Parameter

Measurement difference ||z− h(x)||2WR
||z− h(x(w))||2WR

||z− h(x(p))||2WR

Modification ||x− xol ||2WQ
||w||2WQ

||∆p||2WQ

Arrival cost ||x̂− x||2WP
||x̂− x||2WP

||x̂− x||2WP
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Compared to the general formulation, three modifications are implemented. First, as a worst
case scenario the initial state of the horizon is set to the last estimated state. Secondly, the differences
are normalized in order to make the weighting between the measurements and modifications easier,
scaling the errors to the same order of magnitude. Division with zero is avoided: when the tumor
volumes could not be exactly measured due to their small volumes, 1 [mm3] is assigned to their
measured value. Unit volume ensures numerical stability and is physiologically more relevant as the
tumors are not completely eliminated. The charactheristics of the model is in agreement with this,
as in ideal condition the volume converges to zero, but it is bound to be positive. Thirdly, a rational
function (23) was introduced, which penalizes the difference less, when the measured tumor volumes
are small. Justification for the second and third point is more detialed in Section 2.3.1. Considering these
modifications the cost function in the k-th step is defined as

min
p

J[k] =
k

∑
i=k−M

∣∣∣∣∣∣ z[i]−y[i]
z[i]

∣∣∣∣∣∣2
WR [i]

+
∣∣∣∣∣∣ ∆p

p[k−1]

∣∣∣∣∣∣2
WQ [k]

, (20)

subject to WR[i] =
1
M

ω(i), (21)

WQ[k] =
1

3Ts[k]
diag(0, 1, 1, 1), (22)

ω(i) =
( z[i]

50 + z[i]

)2
, (23)

p ∈ [lb, ub], (24)

where Ts is the sampling time of the measurements which is irregular; it varies between 1 and 5 days.
This means that the sliding window shall also be irregular, so that when the new measurement is made,
the window is adjusted to the time interval which is the closest to the predefined window length.
Since the parameters are only modified when new measurements are made, the penalization of the
change in parameter values can be different from time to time. In order to counteract this phenomenon,
the parameter change penalization is normalized with the last sampling time. The upper and lower
bounds for the parameters are defined as lb := [0.01, 0.2, 0.1, 0.1] and ub := [2, 1, 1, 1]. The bounds
were introduced to be large to avoid saturation of variables during the simulation. According to our
previous investigations, all four parameters remain in these regions during the model fitting regardless
the measured volumes.

For the minimization of the cost function, the inbuilt f mincon function of the MATLAB software
was applied. In each step, the initial values for the optimization were the estimates of the previous
step which is often called hot start. In the first step, the initial values of the parameters are set to
the nominal identified values from Table 1. Furthermore, the implementation of the cost function is
extended with stopping criteria, rendering the optimization quicker or feasible at all. The intrinsic
property of the model is that the tumor can grow even in cases when it is under treatment. It can
occur that the optimizer selects parameter combinations which results in unrealistically large tumor
volumes, thus making the solution of the differential equations unstable. To avoid such situations the
propagation of such trajectories are stopped and penalized. The stopping threshold is based on clinical
protocol, since the experiment has to be stopped, when the tumor volume grows larger 2000 [mm3].
The cost is defined to be dependent on the volume, since otherwise assigning a constant value or
infinity can make the optimizer stuck due to constant gradients of the object function. The change of
parameter a is not penalized as it can be seen in (22). The reason behind this is that the tumor growth
is dependent on the ax1(t) term. In the case of small tumor volumes, the model could not describe
quickly varying tumor growth, unless more sudden changes are allowed for the a parameter. In the
case of non-estimated parameters the nominal values were assigned from Table 1.
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3. Results

The observers were evaluated on the data described in Section 2.1. As mentioned each mouse
is labeled with PLD followed by an ID number. Estimation horizons of the MHE were tested in the
7–35 days range, however for better visibility only the 14 day version is shown beside the EKF.

Table 3 compares the RMSE of the measured and estimated volumes between the EKF and the
investigated MHEs, given for each investigated mouse. When comparing the results two points must
be emphasized. First, the assumptions made during the design of the observers. Secondly, the worst
case scenario is investigated, in the sense that the EKF was tuned based on an optimization, where all
the mice were taken into account. On the other hand, the weights of the MHE was not optimized
only a penalizing function was introduced and applied instead of other tuning process. The RMSE
indicates that for horizons shorter than 20 days the MHE can achieve better approximations on average.
At horizon length of 28 days the results are varying from patient to patient. Only at 35 days the EKF
has a clear edge over the MHE. Increasing the horizon of the MHE deteriorated the approximations as
the actual parameter set had to describe longer sections, where structural mismatch and/or parameter
variation occurs due to the change in the physiology of the tumor. At this point, it has to be emphasized
again that while the MHE takes into account a series of measurements, the EKF works from sample to
sample, thus various horizon lengths cannot be adapted.

Table 3. RMSE between the measured and estimated volumes.

EKF MHE 7 Days MHE 14 Days MHE 21 Days MHE 28 Days MHE 35 Days

PLD3 121.6 114.6 115.5 121.5 121.4 169.5
PLD4 72.12 32.82 48.96 59.33 60.33 103.9
PLD5 74.53 28.68 40.48 52.16 61.89 88.76
PLD6 97.93 43.46 50.15 65.97 88.49 146.1
PLD9 59.55 49.05 55.67 61.77 72.52 86.39

MEAN 85.14 53.73 62.16 72.16 80.94 118.9

Figure 3 depicts the comparison of the time horizons using different measures. Three measures,
namely mean absolute error (MAE), “noise” and standard deviation (SD) of each estimated parameter
were selected in order to assess the performance of the observers and horizons. The MAE describes
the general accuracy with respect to the measurements, the “noise” term quantifies the smoothness
of the estimation by calculating the number of direction changes along the trajectory. The SD of each
estimated parameter gives information about the range in which the parameter had to vary in order to
provide an optimized fit. One can inspect that the MAE increases in a quasi-linear way with respect
to the horizon. The smoothest trajectory is achieved by using 14-day-long horizon and the SD of
parameter a is the lowest around 21 days. Concerning the penalized parameters b, w, n the lowest SD
is achieved by using the 7-day-long horizon. The main difference between the EKF and MHE is that
the optimization of the EKF resulted in very small gains for parameters a and n. This is anticipated as
those parameters directly affect the tumor growth, with larger gains it may be possible to achieve better
approximation for one patient, but it could lead to bigger divergence for a population. The divergence
is avoided by the MHE as the optimization is constrained, parameter sets producing trajectories that
reach 2000 [mm3] are neglected.
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Figure 3. Comparison of the investigated observers.

In Figure 4, an example (PLD ID:5) is given about the effect of the rational penalizing function.
The function was introduced in (21). The two estimated trajectories, denoted by with ω(·) and
without ω(·) are the output of the MHE with 14 days of horizon length. For visualization only the
14 day scenario is given, however, the effect is similar in the other cases, and the delay is more
pronounced towards the longer horizons. It can be seen that without this weighting in the case of
small volumes there is a significant delay in the response of the observer. The dashed purple lines
show the value of the function with respect to time (ω(t), left subfigure) and the measured volume
(ω(x), right subfigure).
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Figure 4. Effect of the rational penalizing function.

In the following explanatory examples we address the problem of intrapatient variability, and how
the observers were able to overcome it. Figures 5–14. showcase the state and parameter estimations
separately. The black circles denote the measurements, however, it is important to note that only the
total tumor volume is measured, i.e., y = x1 + x2. The dashed magenta lines are the results from a
Stochastic Approximation of Expectation-Maximization identification of the same model [6,7]. In the
case of the x3, the three curves overlap, because parameters corresponding to (3) are not modified,
hence nominal values were used. Those parameters are neglected in accordance with the previous
sensitivity analysis [16]. Compared to the fixed identified parameter set by varying key parameters
of the system, the observers are able to catch additional dynamics and track the measurements more
accurately. This is particularly the case where the first administration of the chemotherapeutic drug
made the tumor to shrink its volume close to zero. In fact, zero volumes were measured–namely,
zero volumes are represented in the data–due to such small volumes cannot be measured accurately
using calipers, albeit after a certain period of time, the tumor began to grow again. This phenomenon
is observed in Figures 5 and 7, where the identified sets could not model the first growth period.
In Figure 9 the first growth occurs, but the discrepancy between the measurements and the model is
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still large. The even-numbered Figures 6–10. show how the observers tackled the problem of tracking
the first growth. It is particularly noticable in the case of the MHE, which started from a high growth
rate (parameter a) and reduced it gradually to be able to maintain the tumor volume close to zero.
Furthermore, it can be seen that the parameter a remains close to the identified value. However,
at distinct time instances, greater divergence can be experienced. These divergences usually occur
when the tumor exhibits a large growth rate. It can be observed that the identified models have a
better fit when the tumor didn’t shrink to zero volumes after initial growth. This phenomena can be
observed in Figures 11 and 13.
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Figure 5. Estimated states of PLD5 mouse.

0

0.5

1

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0 50 100 150 200

0.16

0.18

0.2

Figure 6. Estimated parameters of PLD5 mouse.



Appl. Sci. 2020, 10, 9046 11 of 17

0 50 100 150

0

200

400

600

0 50 100 150

0

100

200

300

400

0 50 100 150

0

100

200

300

400

0 50 100 150

0

5

10

15

Figure 7. Estimated states of PLD9 mouse.

0

1

2

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120 140 160

0.13

0.14

0.15

Figure 8. Estimated parameters of PLD9 mouse.



Appl. Sci. 2020, 10, 9046 12 of 17

0 50 100 150

0

200

400

600

800

0 50 100 150

0

100

200

300

400

500

0 50 100 150

0

100

200

300

400

0 50 100 150

0

5

10

15

Figure 9. Estimated states of PLD6 mouse.

0

1

2

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120 140 160 180

0.12

0.14

0.16

Figure 10. Estimated parameters of PLD6 mouse.



Appl. Sci. 2020, 10, 9046 13 of 17

0 20 40 60

0

200

400

600

800

1000

0 20 40 60

0

200

400

600

800

0 20 40 60

0

100

200

300

0 20 40 60

0

5

10

15

Figure 11. Estimated states of PLD3 mouse.

0

1

2

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0 10 20 30 40 50 60 70
0.12

0.13

0.14

0.15

Figure 12. Estimated parameters of PLD3 mouse.



Appl. Sci. 2020, 10, 9046 14 of 17

0 50 100 150

0

200

400

600

800

1000

0 50 100 150

0

200

400

600

0 50 100 150

0

100

200

300

400

0 50 100 150

0

5

10

15

Figure 13. Estimated states of PLD4 mouse.

0

0.5

1

1.5

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0 20 40 60 80 100 120 140 160
0.14

0.16

0.18

Figure 14. Estimated parameters of PLD4 mouse.



Appl. Sci. 2020, 10, 9046 15 of 17

4. Discussion

The goal was to evaluate the state and parameter estimation capabilities of an MHE and an EKF
which has been applied as a benchmark. In general, state and parameter estimation in the case of
physiological processes have major difficulties which are presented in this study related to tumor
growth estimation as well. Furthermore, the problem formulation makes it even more difficult. In the
model, only the sum of the living and dead tumor volumes can be measured, often inaccurately.
This limited amount of data can easily lead to observability issues mostly coming from the fact that
several state and parameter combinations may result in the same output. In order to limit these issues,
we applied two key components: penalizing the velocity of changing of state variables and estimated
parameters, moreover, we have selected a branch of key parameters to be estimated based on sensitivity
analysis. Namely, the cost function of the MHE made it possible to use additional constraints and
penalize the change of parameters. The penalization was designed to be close to the physiological
rate of changes to be as as realisic as possible. According to the results, we have successfully limited
the set of possible state and parameter sets leading to the same output without a downturn in the
estimation accuracy.

The scenario for the comparison was designed to be biased arbitrary. The results show that
even with optimizing the tuning of the EKF, and not taking into account the initial state of the MHE
as an additional free variable, a moving horizon estimation based observer can still outperform the
former EKF. The MHE-based observers achieved lower RMSE until the horizon length was shorter
than 30 days. Using horizons around 20 days, there can be cases, where the EKF outperforms the
MHE, e.g., the estimation of PLD9. At 7 days the difference in RMSE is around 30 [mm3], and the
MHE has lower RMSE for each mouse. The inferior performance of the EKF can rise from the low
gains for parameters a and n. Since the system is most sensitive to those parameters, having larger
gains could result in divergence in the case of certain patients due to the high interpatient variability.
The estimation accuracy of the MHE deteriorated in a quasilinear manner with respect to the window
length. The increased window lengths resulted in an increased RMSE of the tumor volumes because
the effects of the structural mismatch became dominant. In general, a longer window would mean
that the given parameter set is valid for more data. However, the predictive capabilities are crucial
in therapy optimization, thus the determination of the optimal choice for closed-loop applications is
future work. The runtime of the observers are greatly different. The EKF averages 2.6 ms, while the
MHE ranges from 300 ms to 413 ms depending on the horizon length. However, runtime is not a
cornerstone as the injections and measurements are done once a day at a maximum rate. An important
aspect of the study is that the observers are evaluated on real laboratory data, where two major
difficulties are present: structural mismatch and intrapatient variability.

The results indicate the great importance of applying observers for therapy optimization
algorithms. Without constant feedback about the behavior of the patient the model using only
a single parameter set can introduce large discrepancies. As the tumor shifts phases, and as the
heterogenity of the tumor changes its behavior changes as well. These shifts in physiology can be
tracked with the observers–particularly well with the MHE–. These changes can be interpreted as
trends in the parameters. Additionally, despite the optimized tuning of the EKF the MHE shows
a smoother estimation of the parameters and a more accurate approximation of the measurements.
These attributes facilitate the application of the MHE in closed-loop algorithms.

5. Conclusions

In this paper, an MHE-based observer and an EKF was designed and compared for therapy
optimization and state-feedback kind of control applications. When using time horizons less than
28 days, the MHE based observer had superior performance—compared to the EKF—in tracking the
measurements. Increased horizon length deteriorated the approximations as the actual parameter
set had to describe longer sections, where structural mismatch and/or parameter variation occurs
due to the change in the physiology of the tumor. To evaluate the performance more thoroughly
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advanced measurement technology is needed to distinguish live and dead tumor cells and even drug
concentration. Further improvements can be done on the fine-tuning of the parameters in the cost
function. Future work includes the integration of the MHE into closed-loop systems.
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