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Abstract: Autonomous vehicles (AV) increasingly allow drivers to engage in secondary tasks
such as eating or working on a laptop and thus require easy and reliable interaction inputs to
facilitate communication between the driver and the vehicle. However, drivers report feeling less
in control when driving is no longer the primary task, which suggests that novel approaches for
assessing satisfaction regarding AV decision-making are needed. Therefore, we propose an immediate
experience sampling method (IESM) that learns driver preferences for AV actions. We also suggest
gaze-head input (G-HI) as a novel input in an AV. G-HI provides a hands-free, remote, and intuitive
input modality that allows drivers to interact with the AV while continuing to engage in non-driving
related tasks. We compare G-HI with voice and touch inputs via IESM for two simulated driving
scenarios. Our results report the differences among the three inputs in terms of system usability,
reaction time, and perceived workload. It also reveals that G-HI is a promising candidate for AV
input interaction, which could replace voice or touch inputs where those inputs could not be utilized.
Variation in driver satisfaction and expectations for AV actions confirms the effectiveness of using
IESM to increase drivers’ sense of control.

Keywords: gaze-head input interaction; experience sampling method; automated driving;
non-driving related task

1. Introduction

As automated driving technology develops, as defined by the Society of Automotive Engineers
(SAE level 3 and above [1]), drivers will increasingly relinquish the primary driving-related task to
the autonomous vehicle (AV) [2,3]. This paradigm shift will allow drivers to engage more freely
in non-driving related tasks (NDRTs) such as working on a laptop, eating/drinking, chatting on
a smartphone, social networking, playing games, tending to a child, relaxing, or sleeping [2,4–8].
These NDRTs may be accompanied by a change in position inside the vehicle, for example, reclining
the seat to use a laptop would position the driver farther from the dashboard than during normal
driving [9] which may influence the driver’s user experience (UX). Of course, convenient and supportive
vehicle operation during NDRTs requires that the driver and AV be able to communicate effectively.
Driver–vehicle interaction can be initiated by either the driver or vehicle: drivers may need to control
the vehicle’s settings (e.g., turn down the radio) or assume control (e.g., change lanes or stop) [10–12],
whereas the AV may need to ask the driver to make a decision (e.g., about an upcoming road hazard)
instead of asking the driver to assume manual control [13,14].

Typically, drivers interact with AVs via voice input (VI) or a touch panel, standard input interactions
in today’s vehicles [15]. However, when drivers are engaged in NDRTs, usually one or both hands
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may be occupied [3] or they may have reclined the seat to have more space [9], which could impede
interactions, particularly via the touch panel interface. Considering what drivers need to comfortably
perform NDRTs requires exploring a variety of different input interactions as a critical element in
AV design [10,12,16]. Consequently, even though drivers are familiar with touch and voice controls
in today’s vehicles, driver–vehicle interactions will become increasingly complex as AV capabilities
mature. This suggests that a variety of input interactions are needed to identify the input interaction
that best supports NDRTs in AVs.

Previous studies have shown that drivers often feel out of control and have low acceptance of
this during automated driving [17,18]. For example, AVs that do not support both single-lane and
multiple-lane crossovers may not be accepted by drivers who want to cross multiple lanes of traffic at
once. Consequently, a user-centered orientation and an understanding of the factors that influence a
driver’s satisfaction and expectation about AV actions in many scenarios will increase driver acceptance
for AV performance.

One way to understand driver satisfaction about vehicle actions is the experience sampling method
(ESM), a reliable measure of subjective experience, where feedback on vehicle actions is collected
during or after the trip [19]. However, implementing ESM in non AVs requires special precautions
regarding safety, and data should be collected only when the vehicle is stopped [20]. This lag time
between the vehicle’s action and the driver’s evaluation can diminish data quality when more than one
action needs to be evaluated [21]. However, AV drivers could respond to ESM questions immediately
following the vehicle’s action of interest, without risks to safety. Therefore, we propose an immediate
experience sampling method (IESM) to collect drivers’ satisfaction and expectations about AV actions
in two simulated driving scenarios. In addition to more precise data collection, IESM could lead to a
quicker and automated learning cycle for the AV to understand the driver’s preferences. Implementing
IESM in a novel context requires intuitive interaction channels to help drivers convey their answers
smoothly, even while engaged in NDRTs.

In this study, we employ the IESM via an in situ survey, which allows drivers to report more
accurate UX close to ground truth in two simulated driving scenarios. We suggest gaze-head input
interaction (G-HI) in AVs as a remote, hands-free, and intuitive input interaction and compare
its performance with touch and voice input interactions. These three input interactions could be
used by drivers while performing an NDRT, as IESM compels participants to interact with the AV,
thus evaluating vehicle actions using one input interaction at a time. Therefore, we tested the
performance of three input interactions while collecting UX using IESM. Our findings will contribute
to the interaction design of future AVs to better support NDRTs. Also, implementing IESM, as a novel
context in AVs, may present a crowdsourcing for collecting UX that can contribute to the AV’s motion
planning and decision-making.

The goal of this study is to compare gaze-head input interaction as a novel remote input in AVs
with voice and touch input (TI) to assess its viability. Touch input was selected as a baseline of all
interactions because it has been the most common input channel in cars for decades [15], whereas
voice input is the fastest growing remote interaction modality in AV studies [12,14]. This comparison
considers the participants performing an NRDT (using a smartphone to read news article) and then
asks them to evaluate the vehicle’s actions in two different scenarios via IESM. Drivers’ perceived
workload, system usability, and reaction time are measured to assess the performance of using the three
input interactions. Moreover, IESM is qualitatively evaluated by collecting participants’ satisfaction
and expectation levels for the AV actions in the two simulated driving scenarios.

This study has been designed to answer the following research questions:

• How does performance of G-HI compare to touch and voice input while drivers engage in an
NDRT in AV?

• How does IESM enhance the driver’s perception of the AV’s general performance, enhance the
accuracy of the collected data, automate data collection, and accelerate the AV learning cycle?
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2. Related Works

2.1. Input Interactions

Previous AV studies have investigated the use of touch panels for drivers to select a suggested
proposition (e.g., pass the car ahead or hand over driving control) when the automated system has
reached its limit [14,22], or to select AV maneuvers (e.g., change lanes) via touch input implemented
on the steering wheel [23]. However, these approaches require the driver’s hands to be free to interact
with the AV—a less-than-ideal condition when drivers engage in NDRTs—and close enough to the
steering wheel to reach the touch panel. Some participants also disliked interacting via touch input
which required they divert their gaze from the road to the touch interface while interacting [14].

In addition to touch interaction, hand gesture has been applied for maneuver-based
intervention [12] and to control in-car lateral and longitudinal AV motions [24]. While hand-gesture
has shown good usability as a remote input interaction, problems with overlapping commands, rates of
misrecognition, and arm fatigue diminish its usefulness, and drivers struggle to remember each
gesture [12,24]. Furthermore, hand gesture input may require the driver to stop performing an NDRT
to interact with the AV.

Voice and gaze inputs can supplement the drawbacks of touch or hand gesture inputs by
supporting remote and hands-free input interactions. Voice input control, one of the most common
input interactions in AVs, has been implemented to support driver–vehicle cooperation and to select
vehicle maneuvers [12,14]. In previous studies, drivers preferred voice over touch input and hand
gestures, as voice commands do not require physical movement and allows them to keep their eyes
on the road during hands-free interaction. However, voice input may not work well in a noisy
environment (e.g., a conversation with other people in the vehicle), and drivers do not completely
trust speech recognition or may be confused about the appropriate command to initiate a desired
action [12,14].

Gaze input interaction has been shown to be faster and more precise than hand gestures [25],
and tracking eye movement has been shown to accurately indicate user attention [26,27]. However,
to confirm or complete a selection via gaze, users must dwell for a few seconds on an object [28,29].
This increases cognitive load and causes eye fatigue [30], obvious problems during driving and
limitations for gaze input as a single modality.

To eliminate the drawbacks of using gaze input as a single input modality, a gaze combined
multimodal interaction has been suggested [26], with gaze determining the object and the combined
modality to trigger the selection. This study [15], showed that gaze-touch and gaze-gesture [31] inputs
can be used to select objects on a head-up display (HUD) while interacting with in-vehicle infotainment
systems. Similarly, researchers in [32] presented a gaze-voice input, where gaze was used to activate
the voice input. However, these combined inputs still suffer from the limitations of the voice, touch
and gesture single modality inputs mentioned above.

Combining gaze with head movement may address most of the aforementioned limitations of a
single modality [28,33,34]. In gaze-head input interaction, gaze is used to select an object and a head nod
is used to trigger the selection [28,35], where head movement can be defined by orientation angles of the
head (roll, pitch, and yaw) [36]. G-HI is natural and intuitive, as it reflects human-to-human interaction
and is viable using state-of-the-art eye trackers [25]. In previous studies in augmented reality [37],
virtual reality [25,38], or even collaborative gaming [39], G-HI has achieved good usability and high
accuracy, as it supports hands-free input and does not require users to reposition themselves with high
accuracy [40]. It has also been shown to be a fast, natural, convenient and accurate way to interact with
mobile screens and desktop computing [35,41]. Based on these findings, we believe that using this
interaction modality combination with AVs via the HUD might show good performance. Unfortunately,
due to safety issues and limited demand, G-HI has not been discussed in automotive vehicle research
to date. However, it could be considered as an input interaction for the AV interactive environment.
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2.2. User Experience Data

ESM has been used in some non-autonomous vehicle studies to collect UX data after the trip [20]
and emotional levels during traffic congestion [42]. These studies have relied on paper post-hoc
questionnaires or smartphones, which requires participants to stop the vehicle and thus interrupt or
otherwise distract them from the primary task; either option could pose safety risks [19,20]. While
in AV, researchers collected UX data about AV actions in many scenarios via post-hoc surveys [43].
However, to best learn about drivers’ acceptance of AV actions, we employ IESM via an in situ survey
immediately following the AV action. IESM in AV allows researchers to query drivers at any moment
during the driving scenario without compromising safety to identify their experiences, i.e., preferences
or needs. Therefore, our IESM survey was triggered by a real-time questionnaire to reduce biases and
reliance on participants’ ability to recall earlier experiences accurately [44].

3. Experiment Design

3.1. Procedure

We evaluated three input interactions in four sessions (two scenarios with two AV actions)
and one NDRT for (N = 32) participants within-subject in a driving simulator. Our goal was to
evaluate the use of gaze-head input compared to two input interactions (touch and voice inputs)
while drivers perform an NDRT in the simulated AV as shown in Figure 1a. Participants range
in age from 26–35 years (Age: M = 29.1; SD = 3.96; Gender: Male = 19, Female = 13) and all had a
driver’s license, which guaranteed that they were aware of our tested driving scenarios. Participants
were recruited from our university and have a similar education level. They were recruited with a
counterbalancing design (3 × 4) between the three input interactions and the four automated driving
actions considering the learning effects. They were informed about the experiment, completed a consent
form, then answered preliminary questions regarding personal information, including to self-report
mobility problems related to the experiment design; no participants reported problems in moving
their eyes, nodding head, talking, or touching. Calibration for eye-tracking was performed prior to a
practice session to familiarize them with all three input interactions. After that, the main experiment
was conducted and interim-questionnaires were completed after each session. After completing the
final interim-questionnaire of the last session, a post-questionnaire was provided to collect participant’s
preferences of input interactions and how their preferences effected by the engagement of the NDRT
combined with open-ended opinions. Participants were compensated with approximately $10 after
completing the entire experiment.
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Figure 1. Experiment setup (a) Simulation environment (motion platform, full windshield head-up
display (HUD); gaze-head input interaction (eye-tracker); touch input interaction (touch panel);
voice input interaction (microphone); participant reading from a smartphone (non-driving related task)
while sitting in the autonomous vehicle (AV) simulator motion platform); (b) destination and 2D user
interface map implemented in Unity that shows two driving scenarios and four AV actions (two actions
for each scenario).
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3.2. Driving Scenarios

The AV first drove on an urban road at 30 km/h for approximately 1 min, as shown in Figure 2a,
while participants were instructed to read a CNN news article of their choice with their own smartphones
to moderately engage their attention in an NDRT [45] as illustrated in Figure 1a. Task design was
based on a previous study that identified the most desired activities in an AV is using a personal digital
assistant [2,7]. We allowed participants to choose their own news article to read, as we assumed they
would choose the article they found most interesting and thus engaging. Our experiment scenarios
were designed following previous studies that focused on scenarios where drivers assist the AV in
decision-making [13,14]. Participants were asked to rate their preferences about each AV actions
in two scenarios, Slower car ahead and Accident ahead, via IESM displayed on the HUD where it
was introduced as the most preferred display in AVs and provides a higher situation awareness [46],
Figure 2d. In the Slower car ahead scenario, the AV would either (a) slow down or (b) overtake the car
ahead. In the Accident ahead scenario, the AV would either (a) change lanes or (b) change the route,
as shown in Figure 1b. In each scenario, the AV notified drivers about which action it was performing
and why as shown in Figure 2b,c.
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Figure 2. Illustration of our experiment scenarios sequence. (a) The main road view where the AV starts
moving; (b) scenario alert (notification message shown on HUD to explain the current scenario to the
participant before it starts performing the action); (c) AV scenario action (a notification message shown
on HUD while the action occurs); (d) two immediate experience sampling questions were shown on
HUD immediately after the completion of each action.

To transfer the driver’s attention away from a smartphone and toward the studied scenario,
a notification sound was generated, followed by the appearance of a HUD message to illustrate
information about the current scenario and the AV’s actions, as in Figure 2b,c, and then the IESM
questionnaire was conducted after the AV completed the action as in Figure 2d. For example, after
the notification, the AV would first display the message “A slower car ahead” to explain the driving
situation, followed by the message “Overtake the car ahead” to notify drivers about its action. After
the messages were displayed, the IESM questionnaire was shown. Subjects were required to respond
to the IESM after each AV action using the randomly assigned input interaction considering the
counterbalancing. The detailed experiment flow is illustrated in Figure 3.
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3.3. Apparatus

3.3.1. Touch Input (TI)

We developed our own TI interface with a 5-strips capacity touch panel placed on the steering
wheel following the implementation in [15,47]. TI was implemented using Arduino Uno serial
communication connected to a host PC; the IESM interface was implemented on the Unity platform.
To promote friendly and intuitive interaction between the driver and the IESM, the TI interface
implemented a 5-point Likert scale that uses face emoticons that correspond to statements describing
positive and negative situations (1 = very sad face, comparable to “Strongly Disagree”; 5 = very happy
face, comparable to “Strongly Agree”), which were explained to participants before the experiment,
as shown in Figure 4a.
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Figure 4. (a) Touch input interaction implemented on the steering wheel with 5-Likert scale presents
using five emoticon faces that describing positive and negative situations; (b) A Wizard of Oz (WoZ)
voice input was presented using microphone attached on the simulation platform to mimic the standard
voice input for the participants; (c) a Tobii 4C eye tracker was implemented on the center monitor
for gaze-head input interaction, drivers gaze at an icon of interest, then nodding by (16◦) to confirm
the selection.

3.3.2. Voice Input (VI)

As current voice input technology is under development due to unfavourable recognition
rates compared to other input interactions [48], a Wizard of Oz (WoZ) approach is applied to fully
support perfect recognition in parallel to this study [48]. To best perform the role of WoZ with no
mistakes, a microphone was implemented on the right side to simulate the voice input and all choices
were interconnected with keyboard shortcuts and the participant’s selection was performed by the
experimenter immediately after the participant uttered a choice, as illustrated in Figure 4b.

3.3.3. Gaze-Head Input (G-HI)

G-HI was implemented with Tobii Eye Tracker 4C using Software Development Kit (SDK) to
detect the driver’s gaze movement and head position. G-HI is defined as using eye gaze as a cursor to
select an object of interest then nodding the head forward approximately less than 16 degrees which
requires a small movement to confirm the selection, following this study [36]. By tracking the head
position, the degree of nodding can be calculated and thus used to select the answer, as shown in
Figure 4c.
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3.3.4. Driving Simulation

Our experiment was conducted in an indoor driving simulator setup (Atomic A3 motion platform,
Logitech G920 steering wheel and pedal), a high-fidelity driving simulator that transfers the motion
force of the virtual vehicle to the driver’s seat. The simulation was created with Unity, and the
interface was connected with the driving simulation after we implemented the input device for each
input interaction. The driving scene was displayed on three side-by-side 32” monitors (5760 × 1080).
Three input interaction devices were attached to our test bed to collect IESM data and test our input
interactions: an eye-tracker attached to the bottom of the center monitor for G-HI, touch panels on the
steering wheel for TI, and a microphone on the right side of the driver’s seat for VI, Figure 1a.

3.3.5. Immediate Experience Sampling Method (IESM)

In our study we used an IESM questionnaire which appeared on the HUD immediately upon
completion of each AV action. The questionnaire asked about the subject’s expectations about the
vehicle’s action (IESM1) (e.g., “How much did you expect the car to slow down?”) and subject’s
Satisfaction about the vehicle’s action (IESM2) (e.g., “How satisfied are you with the vehicle’s decision
to change the route?”). Expectations followed from how subjects typically perform this action in the
same scenario in their manual driving, where satisfaction reflected a subject’s satisfaction level about
the AV’s action in each scenario. These two questions told us whether driver satisfaction about AV
actions was affected by daily driving experience. Also, the benefit of using a HUD is that the drivers’
eyes will be on the windshield and ready to interact and report their experiences about the AV’s actions
immediately after the vehicle provides the notification sound. Subjects responded to IESM questions
as shown in Figure 2d using three different input interactions (G-HI, TI, and VI), one input interaction
at a time, while engaged in an NDRT.

4. Results

For each session, we collected recorded video and interview responses and analyzed data on
workload, subjective preference, task performance. All results were subjected to paired sample
t-test and one-way repeated measures analysis of variance (ANOVA) tests for post-hoc tests at a 5%
confidence level. Equivalence tests were performed to analyze pairwise comparisons (Bonferroni
corrected or Games–Howell corrected as post-hoc tests after checking the homogeneity of variances).

4.1. Input Interactions

4.1.1. Reaction Time

Participants’ reaction time (the interval between the appearance of the IESM questions to
participants’ selection) was calculated using the stored live video to better understand the performance
of each input interaction, as faster input helps to keep the driver involved in NDRT.

We measured the average reaction time for each input across all scenarios and two IESM.
The one-way repeated measure ANOVA test showed a statistical significance, F (2, 62) = 3.81, p < 0.027.
As Figure 5 shows, G-HI had the fastest reaction time (M = 3.76, SD = 1.10), followed by TI (M = 4.14,
SD = 1.23) and VI (M = 4.60, SD = 1.54). Reaction time for VI was about 1 s greater than the G-HI
p < 0.029.



Appl. Sci. 2020, 10, 9011 8 of 17
Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17 

 

Figure 5. Average of reaction time for each input interaction (gaze-head input, touch input, voice input). 

To understand which scenario most influenced reaction time, we analysed the reaction time in 

each scenario for each input. The ANOVA test shows a significant difference in the changing lanes 

action F (2, 62) = 7.39, p < 0.001 but no significant differences in the other actions as shown in Figure 

6. When changing lanes, reaction time using VI (M = 4.54, SD = 1.47) was about 1.4 s greater than 

G-HI (M = 3.19, SD = 1.43, p < 0.002), where reaction time in G-HI was 1.16 s faster than TI (M = 4.35, 

SD = 1.64, p < 0.01). 

 

Figure 6. Reaction times for three input interactions considering each AV action in two driving scenarios. 

4.1.2. System Usability 

We identified and compared participants’ subjective usability, on how easily and efficiently 

they used each input interaction through the system usability scale (SUS), evaluated on a scale of 0 to 

100 in increments of 10. SUS scores of more than 71 points indicate that the system is acceptable with 

five steps anchored with “Strongly Disagree” and “Strongly Agree” [49]. 

The one-way repeated measures ANOVA tests shows significant differences F (2, 62) = 5.69, p < 

0.005 in SUS. TI scored highest (M = 75.31, SD = 16.97), followed by VI (M = 71.87, SD = 15.83) and 

G-HI (M = 63.35, SD = 22.12), as shown in Figure 7. The SUS score of TI was significantly higher than 

in G-HI. 
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To understand which scenario most influenced reaction time, we analysed the reaction time in
each scenario for each input. The ANOVA test shows a significant difference in the changing lanes
action F (2, 62) = 7.39, p < 0.001 but no significant differences in the other actions as shown in Figure 6.
When changing lanes, reaction time using VI (M = 4.54, SD = 1.47) was about 1.4 s greater than G-HI
(M = 3.19, SD = 1.43, p < 0.002), where reaction time in G-HI was 1.16 s faster than TI (M = 4.35,
SD = 1.64, p < 0.01).
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Figure 6. Reaction times for three input interactions considering each AV action in two driving scenarios.

4.1.2. System Usability

We identified and compared participants’ subjective usability, on how easily and efficiently they
used each input interaction through the system usability scale (SUS), evaluated on a scale of 0 to 100 in
increments of 10. SUS scores of more than 71 points indicate that the system is acceptable with five
steps anchored with “Strongly Disagree” and “Strongly Agree” [49].

The one-way repeated measures ANOVA tests shows significant differences F (2, 62) = 5.69,
p < 0.005 in SUS. TI scored highest (M = 75.31, SD = 16.97), followed by VI (M = 71.87, SD = 15.83) and
G-HI (M = 63.35, SD = 22.12), as shown in Figure 7. The SUS score of TI was significantly higher than
in G-HI.
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To determine the most influential item in the SUS result, we analysed the 10 increment items of
SUS for each input (Q1. I would like to use this system frequently, Q2. This system unnecessarily
complex, Q3. This system was easy to use, Q4. I would need the support of a technical person to be
able to use this system, Q5. The various functions in this system were well integrated, Q6. There was
too much inconsistency in this system, Q7. Most people would learn to use this system very quickly,
Q8. This system was very cumbersome to use, Q9. I was very confident using the system, Q10. I needed
to learn a lot of things before I could get going with this system.), as shown in Figure 8. The ANOVA
test found a significant difference in the SUS item Q4 (“I think that I would need the support of a
technical person to be able to use this system”), F (1.62, 50.34) = 6.32, p < 0.006, where TI (M = 80.46,
SD = 26.74) scored significantly higher than G-HI (M = 65.6, SD = 29.61, p < 0.004) and VI (M = 72.65,
SD = 27.20, p < 0.04). Also, SUS item Q6 (“I thought there was too much inconsistency in this system”)
showed a significant difference, where F (2, 62) = 9.07, p < 0.000, where G-HI (M = 51.56, SD = 31.7)
scored significantly lower than TI (M = 75.0, SD = 21.99, p < 0.001) and VI (M = 69.53, SD = 25.97,
p < 0.013). The least influential item in SUS is item Q9 (“I felt very confident using the system”),
F (1.89, 58.7) = 6.39, p < 0.004, where TI (M = 78.1, SD = 23.54) was highly confident compared to G-HI
(M = 57.03, SD = 33.1, p < 0.010), as shown in Table 1.
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Table 1. The mean (M) and standard deviation (SD) values for the ten increment items of system
usability scale scores for the three input interactions.

Input
Interaction Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Gaze-Head
Mean 60 59 68 66 68 52 70 65 57 70

SD (31.7) (30.8) (31.3) (29.6) (23.1) (31.7) (28) (30.4) (33.1) (27.5)

Touch
Mean 72 70 79 80 73 75 82 73 78 71

SD (22.7) (30.9) (23.8) (26.7) (20.4) (22) (19.3) (26.9) (23.5) (33.7)

Voice
Mean 70 64 73 73 71 70 82 75 67 73

SD (28) (29.1) (24.5) (27.2) (21.2) (26) (20.3) (22) (28.7) (28.3)

4.1.3. Perceived Workload

Subjective perceived workload was measured by the National Aeronautics and Space
Administration Task Load Index (NASA-TLX), which measures the level of six dimensions (mental
demand, physical demand, temporal demand, effort, performance, and frustration) to determine an
overall workload rating. Each dimension is evaluated on a scale of 0 to 100 [50].

The ANOVA test shows no significant differences in overall workload rating in the NASA-TLX,
F (2, 62) = 1.17, p < 0.315 between the three input interactions, G-HI (M = 49.77, SD = 17.83),
TI (M = 46.64, SD = 16.47), and VI (M = 44.06, SD = 13.71), as shown in Figure 9.
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We also analysed the six dimensions of the NASA-TLX to determine the most influenced
NASA-TLX factor of workload rating for each input. As shown in Figure 10, The ANOVA test shows a
significant difference in mental demand F (1.57, 48.96) = 5.48, p < 0.012, with significant differences
shown between G-HI (M = 10.68, SD = 7.83) and TI (M = 6.47, SD = 6.16, p < 0.02), and no significant
differences between VI (M = 7.43, SD = 5.91) and TI or G-HI. Also our results show a significant
difference in frustration, F (2, 62) = 4.29, p < 0.018. VI (M = 5.89, SD = 8.23) shows higher frustration
than TI (M = 2.95, SD = 4.88, p < 0.03) and also G-HI (M = 7.89, SD = 10.51, p < 0.05) shows higher
frustration than TI. On the other hand, the ANOVA test also showed statistical significance in physical
demand F (1.89, 58.74) = 3.98, p < 0.02. where G-HI (M = 5.208, SD = 5.97) causes a lower physical load
than TI (M = 9.10, SD = 8.47, p < 0.03) and VI (M = 5.207, SD = 5.94, p < 0.028) shows a lower workload
than TI, as illustrated in Table 2.
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Table 2. The mean (M) and standard deviation (SD) values for the six dimensions of NASA-TLX for
the three input interactions.

Input
Interaction

Mental
Demand

Physical
Demand

Temporal
Demand Performance Effort Frustration

Gaze-Head
Mean 10.68 5.2 7.83 10.2 7.93 7.89

SD (7.83) (5.98) (6.46) (9.85) (6.59) (10.51)

Touch
Mean 6.47 9.1 8.97 12.22 6.89 2.95

SD (6.16) (8.47) (7.5) (12.37) (6.58) (4.89)

Voice
Mean 7.43 5.2 7.7 11.43 6.37 5.89

SD (5.91) (5.95) (5.77) (10.69) (4.59) (8.23)

4.2. IESM Responses

We designed an immediate questionnaire based on the IESM to rate participants’ satisfaction and
expectations about the AV’s actions in two common scenarios: (i) slower car ahead, and (ii) accident
ahead. Via two questions for each scenario, a participant’s satisfaction and expectation were collected
through 5-point Likert scale (1 = “Strongly Disagree” to 5 = “Strongly Agree”) in sequence, as shown
in Figure 2d.

In response to the two IESM questions for each scenario, a paired sample t-test shows a significant
difference in (IESM2) “Satisfied” in all AV actions with an average (M = 3.47, SD = 0.60), t (31) = −2.41,
p < 0.02, than in (IESM1) “Expected” the AV actions with an average (M = 3.31, SD = 0.52). This implies
that drivers’ satisfaction about AV action is not influenced by their expectations based on their own
manual driving.

4.2.1. Scenario 1

The collected data were statistically analysed by two scenarios with a paired sample t-test. In the
Slower car ahead scenario there were no significant differences between the actions overtaking the
car ahead (M = 3.66, SD = 1.43) and slowing down to follow the car ahead (M = 3.11, SD = 1.41),
t (31) = 1.17, p < 0.25, even though overtaking the car ahead scored higher than slowing down.
However, driver satisfaction (IESM2) (M = 3.48, SD = 0.61), t (31) = −2.49, p < 0.018 was significantly
higher than driver expectation (IESM1) (M = 3.30, SD = 0.51) using a paired sample t-test, which
means that satisfaction about AV action is not influenced by drivers’ expectations in a Slower car ahead
scenario. They prefer the AV to overtake the slower car ahead even if they do not usually perform that
action in their own driving.



Appl. Sci. 2020, 10, 9011 12 of 17

4.2.2. Scenario 2

In the accident ahead scenario even changing the route scored higher than changing lanes, though
there was no significant difference between changing lanes (M = 3.24, SD = 1.49) and changing the
route (M = 3.53, SD = 1.34), t (31) = −0.650, p < 0.52 using a paired sample t-test. However, a paired
sample t-test showed that there were no significant differences between driver expectation (IESM1)
(M = 3.32, SD = 0.66), t (31) = −1.54, p < 0.113 and driver satisfaction (IESM2) (M = 3.45, SD = 0.69) in
the accident ahead scenario. This implies that drivers’ satisfaction about AV action is influenced by
their expectations in an accident ahead scenario.

5. Discussion

In this study, we proposed gaze-head input as a hands-free, remote, intuitive input interaction
to be implemented in autonomous vehicles. We tested reaction time, workload, system usability,
and subjective preference of our proposed gaze-head input interaction against voice and touch input.
An immediate experience sampling method was also used as a platform to assess each interaction and
to enhance driver’s perception of AV performance.

5.1. Reaction Time

Even though TI and VI are commonly used in our daily life, G-HI was the fastest input interaction
and significantly faster than VI, as shown in Figure 5. To use G-HI, drivers stare at the windshield and
use a quick eye movement for selection and a head nod to trigger the selection. On the other hand,
when using TI, drivers must divert their eyes from the windshield to a touch panel and stretch or adjust
their body posture to reach the panel; that physical effort takes time. When using VI, participants
used sentences of varying length to trigger their selection: some said “the first one” or “select the
first object”. The time the user takes to decide which words correctly represent the desired selection
likewise affect total reaction time.

The automated driving platform responded in two ways for each of our two scenarios, as shown
in Figure 1b. In the slow car ahead scenario, the vehicle overtakes the slow car or slows down behind
it. In the accident ahead scenario, the vehicle changes lanes to pass the accident on the right side or
changes the trip route to avoid passing near the accident. We found that using G-HI enables faster
reaction time for the three-input interactions in all vehicle actions (overtaking, slowing down, changing
lanes, and changing route). However, for lane changes, reaction time using G-HI is significantly faster
than using TI or VI, as shown in Figure 6. When changing lanes, the driver will pass the accident
in the nearest lane, mimicking human nature where drivers often continue to look at an accident.
Therefore, using VI and TI are not optimal input interactions in such cases, as both input interactions
create high cognitive and physical loads, as shown in Figure 6. Moreover, the usage of G-HI shows a
consistency even during the motion of the driving platform, users were able to reach and trigger their
selection comfortably.

5.2. System Usability

G-HI scores the lowest for system usability, as shown in Figure 7, while TI scores significantly
higher. There is no significant difference in usability between G-HI and VI. However, VI is familiar
to most participants because of technologies like Google Assistant and Siri. The SUS assesses each
input’s usability subjectively. Most participants have no experience using G-HI, unlike voice and touch
inputs, which we believe contributed to its preference and usability rating; as drivers become more
accustomed to it, we expect G-HI preference and usability ratings to improve. Moreover, participants
noted the advantage of G-HI in open-ended questionnaires: “Gaze-head is fast and promising, but it can
be improved (e.g., showing a cursor for eye movement)” Participant 16; “During a call or [when] my hands are
busy, gaze-head will be better” Participant 1; “Gaze-head interaction was easy to use” Participant 11.
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5.3. Perceived Workload Measurement (National Aeronautics and Space Administration Task Load Index,
NASA-TLX)

Workload measurement reflects no significant differences in using the three input interactions,
however using G-HI scores the highest, as shown in Figure 9. Looking closer at the six factors in the
NASA-TLX calculation as shown in Figure 10, G-HI creates a significantly higher cognitive load and
frustration, but its physical load is significantly lower than the other input interactions. For example,
using TI interrupts user engagement in the NDRT “using smart phone” and thus causes an extra physical
burden. This indicates that hands-free input interactions (G-HI and VI) are more effective while engaged
in NDRTs, which confirms findings that drivers are likely to use both hands to engage in NDRTs in AVs [3].
Participant behaviour when performing G-HI shows clear confusion because of the lack of familiarity
compared to VI and TI. When we asked participants to nod to trigger the selection, some participants
rolled their heads instead of pitching them even though we trained them how to perform the action.
This may be due to cultural differences, as in some societies rolling the head rather than nodding is an
expression of assent. Consequently, G-HI needs more time before it can be a universal input interaction.

5.4. Influence of Non-Driving Related Task (NDRT) in Input Interaction

After participants finished the experiment, they reported their overall preference for input
interaction: VI (56.3%), TI (31.3%), and G-HI (12.5%). Then, they reported their overall preference
when engaged in an NDRT: VI (56.3%), TI (6.3%), and G-HI (37.5%). Participants consistently preferred
voice input, whether engaged in an NDRT or not, whereas preference for touch input decreased by
25% if the user was engaged in an NDRT. Conversely, preference for G-HI jumps by a corresponding
percentage when the user is engaged in an NDRT. Therefore, we believe G-HI could assist drivers in
interacting with the vehicle, especially when they are engaged in an NDRT.

5.5. Immediate Experience Sampling Method (IESM) Performance

IESM was used by participants to evaluate each input interaction immediately following the action.
Designing data collection in this way guarantees precise and real-time ground truth. This accurate UX
data could be used to teach the vehicle the driver’s preferred driving pattern and will increase driver
satisfaction. In the first scenario participants preferred to overtake the slow car rather than slowing
behind it. The reasons they gave for this selection included saving time, preference for driving fast,
or they wanted the vehicle to take quicker actions. For the second scenario, most participants preferred
to change the route rather than change lanes to avoid an accident. They said changing the route is safer
and helps to avoid an expected traffic jam. Involving drivers in the loop and asking their opinions
about vehicle action will increase feelings of control, which decreases by default when driving an
AV [17,18]. Responding to a 5-point Likert scale question, participants rated the importance of using
IESM to teach the vehicle their driving preferences at (M = 4.18, SD = 1.16), which is relatively high.

6. Limitations

In the presented work, G-HI and touch input were technically implemented, which can lead
to moderate time delays and errors. Conversely, voice input was implemented with WoZ by the
experimenter, which could guarantee an error rate close to zero and influence positively reaction time
and scores for subjective preferences and lower workload.

This study did not discriminate between participants’ ages nor degree of attention participants
paid to the cellphone. Our results also showed no significant differences in reaction time, SUS and
perceived workload for each input interaction between female and male participants. Testing G-HI,
however, may show varying performance in different age groups, i.e., it may perform better with
younger participants than older participants. Also testing based on attention level may indicate a
higher preference for using G-HI as it is intuitive, fast and requires low physical demand compared to
voice and touch inputs.
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As our study was implemented using a driving simulator, testing the proposed input interactions
in a real AV is necessary to confirm our results. Testing in an on-road AV will provide greater insight
into how input interaction preferences may be affected by different driving environments, possible risk
factors, and a driver’s perception of assessing AV driving actions on a real road. We tested our input
interactions via IESM by rating participant’s UX toward AV driving actions. However, we did not
include other in-vehicle interactions systems, such as the infotainment systems (e.g., music player,
navigation, vehicle setting), which influence where gaze-head may perform better. These interactions
are also important to test with IESM.

7. Conclusions and Future Work

This study proposed and tested gaze-head input (G-HI) in an autonomous vehicle (AV) compared to
the most common input interactions (touch and voice inputs). Reaction time, user’s perceived workload,
system usability, and subjective preferences were the evaluation criteria. G-HI showed faster reaction time
and lower physical load index and appeared as a promising candidate when a driver is engaged in an
NDRT to assist interaction. G-HI created higher workload in general and scored lower in system usability,
however as drivers become more accustomed to it, we expect G-HI workload to decrease and usability
ratings to improve. To assess the performance of the three input interactions, the immediate experience
sampling method (IESM) was proposed where drivers could accurately report their satisfaction and
expectations about vehicle decision making in real-time. IESM was found to be acceptable by participants,
as they believed the system could enhance vehicle performance over time to match their preferences and
increase feelings of control over AV actions. Generally, we believe G-HI can be a promising candidate to
be used in AVs, and IESM is essential to enhance drivers’ experience for the same vehicle category.

We examined drivers’ UX on AV actions through two simulated scenarios. Real-world driving
scenarios are more varied and more complicated, however, and many are unknown. Therefore, future
studies should include more scenarios, focusing on various NDRTs as well as automated driving
scenarios. Similarly, we could seek to understand the most appropriate input interactions according
NDRTs. Finally, conducting multiple tests with the same participants across various NDRTs would
increase their experience and familiarity with G-HI and thus affect positively system usability results.
These approaches would help establish human-centered services in future AVs.
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