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Abstract: Ensemble data assimilation systems generally suffer from underestimated background
error covariance that leads to a filter divergence problem—the analysis diverges from the natural
state by ignoring the observation influence due to the diminished estimation of model uncertainty.
To alleviate this problem, we have developed and implemented the stochastically perturbed hybrid
physical–dynamical tendencies to the local ensemble transform Kalman filter in a global numerical
weather prediction model—the Korean Integrated Model (KIM). This approach accounts for the model
errors associated with computational representations of underlying partial differential equations and
the imperfect physical parameterizations. The new stochastic perturbation hybrid tendencies scheme
generally improved the background error covariances in regions where the ensemble spread was not
sufficiently expressed by the control experiment that used an additive inflation and the relaxation to
prior spread method.

Keywords: model error; ensemble data assimilation; stochastic perturbation; stochastic perturbed
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1. Introduction

Numerical weather prediction (NWP) includes inevitable forecast errors due to uncertainties
in both initial conditions and models. The model error would be observed even though the initial
conditions perfectly describe the true state of atmospheric flows [1]; thus, the differences in tendencies
between the model and the real world always exist. As an alternative to deterministic forecasting,
which has limitations in representing this uncertainty, an ensemble prediction system (EPS) can be
utilized to overcome the limitation [2,3]. In particular, the ensemble data assimilation (EDA) system
is beneficial to represent the initial uncertainties and flow-dependent background error covariance
(BEC), thus improving the assimilation of observations [4]. If the ensemble perturbation includes the
true observation and the model error, the unperturbed analysis will represent the analysis error [5].
However, the EDA usually suffers from the underestimation of BEC due to the limited ensemble
size, sampling errors, and model error [6]. This underestimation leads to a filter divergence problem:
the analysis diverges from the natural state by ignoring the observation influence due to a small
forecast uncertainty. Conversely, with an over-dispersive ensemble, the analysis ignores the model
errors due to a large forecast uncertainty.
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If plenty of ensemble sizes are available, the sampling error is expected to be moderately
eliminated [7,8]; however, this would be impractical due to limited computational resources. In general,
the problems related to covariance underestimation and sampling error can be solved with covariance
inflation and localization, respectively [6]—the former inflates the small uncertainty while the latter
reduces sampling errors due to limited ensemble size. In this study, we focus on the covariance
inflation only. During the last a few decades, several inflation methods have been proposed, including
multiplicative inflation (e.g., [9]), additive inflation (e.g., [10,11]), and some alternative inflation
methods using relaxation (e.g., [12–14]) and adaptive approaches (e.g., [6,15–17]). Nevertheless,
it has been found that the ensemble BEC still remains under-dispersive and underestimates the true
uncertainty [18,19].

In addition to imperfect initial conditions, forecast errors are attributed to model uncertainties,
stemming from approximations in governing equations, truncation and round-off errors,
misrepresentations of physical processes, etc. The stochastic approach with random forcing (RF)
is widely used to represent the model uncertainties in various applications [20] as well as in the
EPSs of many operational centers [1]. The stochastically perturbed physical tendency (SPPT) scheme
has been proven to be effective in ensemble spread (ES) and ensemble mean error (EME), compared
to the traditional inflation methods [4,21]. Here, the ES—a standard deviation from the ensemble
mean—provides an estimate of the forecast uncertainty [22], and its average is expected to have a
similar spread to the EME. Recently, several studies have focused on the dynamic part of a forecast
model; for instance, the stochastic kinetic energy backscatter (SKEB) assumes that the model error
is associated with inadequate scale interactions in truncated NWP models [1,23,24]. Although it
showed remarkable performance in the medium-range EPS, it has been difficult to obtain a positive
impact in EDA [11]. As an alternative method, Koo and Hong [25] proposed the stochastically
perturbed dynamical tendency (SPDT) scheme by assuming that the model error is associated with
computational representations of the underlying partial differential equations to solve the atmospheric
motion. They reported a significant improvement in prediction skills in a seasonal ensemble framework
by perturbing both dynamical and physical tendencies, especially in poleward transient eddy and
seasonal precipitation, compared to perturbing the physical tendency only. In addition, the round-off
error could be a significant source of forecast error [26]. These imply that an additional stochastic
perturbation to dynamical tendency would be beneficial in representing the model uncertainties.

In this study, we develop and implement both SPDT and SPPT schemes into an EDA system.
As the local change of a model variable is a sum of physical and dynamical tendencies, these perturbed
tendencies can account for model uncertainties. Note that SPDT has only been confirmed in the
deterministic medium-range forecasts and seasonal prediction framework [25], whereas SPPT has been
widely used in EDA as well as EPS in many operational centers [4,27]. As far as we know, this study is
the first attempt to apply SPDT and SPPT simultaneously in EDA to help the ES increase. The scheme
performance is evaluated with ensemble BEC that the ES of a 6 h forecast started from each initial
condition member, compared to the EME. In Section 2, we describe the global NWP system, the EDA
system, the stochastic perturbation hybrid tendencies scheme, and the experimental designs. Section 3
discusses the impact of the new scheme on the 6 h forecast in EDA. A summary and conclusions are
provided in Section 4.

2. Methods

2.1. Numerical Weather Prediction Model

The Korean Integrated Model (KIM) [28] is a newly developed global weather prediction model
developed at the Korea Institute of Atmospheric Prediction Systems (KIAPS); as of April 2020, it has
become an operational model at the Korea Meteorological Administration (KMA). It is composed
of non-hydrostatic governing equations on a cubed sphere, implemented with the state-of-the-art
physics parameterization packages including radiation, gravity wave drag, vertical mixing, convection,
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cloud physics, and so on (see [28]). For the ensemble forecast in the local ensemble transform Kalman
filter (LETKF) system, the horizontal resolution was about 50 km, but recently it has changed to 32 km.
The model top is set to 0.01 hPa with 91 vertical levels in the hybrid sigma-pressure vertical coordinate.
In this study, the ensemble model resolution is set to 50 km due to the limitation of computational
resources. Since the model resolution is coarse, this study focuses on synoptic-scale structures rather
than small-scale weather events.

2.2. Data Assimilation System

We use the four-dimensional (4D) LETKF, as a method of the EDA system at KIAPS,
whose analysis is obtained by assimilating the available observations within a local region [29–31].
The 50 ensemble members analyze the zonal wind, meridional wind, potential temperature, humidity
mixing ratio, and surface pressure at a 50 km horizontal resolution. The EDA system includes the
tropical cyclone initialization [32] as well as the real observations (e.g., sonde, surface, aircraft, Global
Positioning System-Radio Occultation, Infrared Atmospheric Sounding Interferometer, Advanced
Microwave Sounding Unit-A, Cross-track Infrared Sounder, Microwave Humidity Sounder, Advanced
Technology Microwave Sounder, and Atmospheric Motion Vector) [33,34]. The initial conditions of
the LETKF cycle are produced by modifying the analysis with the lagged forecast differences that are
used to generate the static BEC for the hybrid 4D ensemble-variational data assimilation system of
KIAPS [35].

Several inflation methods have been implemented to prevent filter divergence [31], such as the
following: (1) additive inflation that adds perturbations randomly sampled from the bias-corrected
lagged forecast differences used to generate the static BEC to each ensemble member after the analysis
step [36]; (2) adaptive multiplicative inflation that multiplies perturbations using an adaptively
estimated inflation factor [6]; and (3) relaxation to prior spread (RTPS) that relaxes the ensemble
standard deviation of analysis (posterior) back to the background (prior) by defining a relaxation
parameter with a range from 0 to 1 [12]. In the current system, the RTPS with the relaxation parameter
of 0.95 and the additive inflation showed better performance than any other configurations that we
have tried (not shown).

Regarding the covariance localization, the horizontal localization is given by a Gaussian-like
piecewise fifth-order rational function [6,37] and varies from 660 to 1800 km in radius of influence
(ROI) depending on vertical levels [38]. The vertical localization differs as to the observation type.

For the conventional data, it is defined by a Gaussian-like rational function as 2
√

10
3 σv where σv is

dependent on pressure p: σv is 0.2 ln(p) for wind and surface pressure and 0.1 ln(p) for mass variables.
For the radiance data, the vertical weighting function is defined by the gradient of transmittance of the
measured radiance [39].

2.3. Stochastic Perturbation Hybrid Tendencies Scheme

In the stochastic perturbation hybrid tendencies (SPHT) scheme (i.e., SPDT+SPPT), the dynamic
tendencies are from the explicitly resolved dynamics and horizontal diffusion while the physical
tendencies are from the physical parameterization schemes. The SPPT assumes that uncertainty in
the parameterized physical tendencies is proportional to the net physical tendency [40]; similarly,
the SPDT supposes that uncertainty in dynamical tendencies is in proportion to the net dynamical
tendency. Consequently, the multiplicative perturbation is applied to each tendency at each model
time step and every grid point via

xn∗ = xn + (1 + µr)
(

∂xn

∂t

)
dyn

∆t, (1)

and

xn+1 = xn∗ + (1 + µr)
(

∂xn∗

∂t

)
phy

∆t, (2)
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where
(

∂x
∂t

)
dyn

and
(

∂x
∂t

)
phy

represent the dynamical and physical tendencies, respectively; µ ∈ {0, 1}

represents the vertical tapering function, eη−1, in the generalized vertical coordinate η, and r the RF;
the state x consists of temperature and humidity mixing ratio only. Note that in KIM, physics and
dynamics are coupled by a time-splitting method, thus this approach differs from the method of
perturbing total model tendency, i.e., (1 + µr)[( ∂x

∂t )dyn + ( ∂x
∂t )phy].

To generate RF at every grid point, we transform RF from the spectral space to the grid space
on a cubed sphere [41]. The new RF is applied at every time step and time correlations are described
with auto-regressive processes of the first order (AR1) in the spectral space. Furthermore, RF follows
a Gaussian distribution with a zero mean and a standard deviation of perturbation (σ). Optionally,
it decreases exponentially upwards through µ. In particular, these perturbations have been tapered to
zero in the lowermost and the uppermost atmosphere to avoid numerical instability [4]. Finally, this
RF is applied to the tendency after all the dynamical and physical forcings are computed.

2.4. Experimental Designs

We designed the experiments based on the RF tuning parameters, whose values are listed in
Table 1. Each parameter is defined as follows: L, the horizontal correlation length scale, determines how
much perturbed errors propagate in a horizontal direction; τ, the de-correlation time scale, determines
how long the perturbed errors will be sustained; σ, the standard deviation, controls the amplitudes
of RF; and µ, the tapering function, determines whether the error would exponentially decrease or
remain the same in the vertical layers. With these parameter settings, each stochastic perturbation
is activated simultaneously in a stable state. Under the same RF, the tendency fluctuation in SPDT
is larger than that in SPPT; thus, in order to suppress spurious instability, we designed the SPDT to
generate sufficiently small RF by setting smaller σ while activating µ to render the RF smaller with
height [25].

Table 1. Configuration of the random forcing (RF) tuning parameters for the experiment using
stochastically perturbed dynamical tendency (SPDT) and stochastically perturbed physical tendency
(SPPT): L is the horizontal correlation length scale (in km), τ the de-correlation time scale (in s), σ the
standard deviation, and µ the tapering function.

Experiment L τ σ µ

SPDT 500 10,800 0.5 on
SPPT 500 21,600 1.0 off

We conducted two sets of EDA runs—the control run (CTL) and the stochastic perturbation run
(STO)—to assess the SPHT scheme. The additive inflation and the RTPS were included in both runs;
however, the SPDT and the SPPT were simultaneously activated only in the STO. Thus, the differences
between the results from CTL and STO are solely due to the stochastic perturbation. The experiments
started at 12:00 UTC on 22 June 2018 and ended at 18:00 UTC on 7 July 2018; this period was long
enough to examine the response of BEC in an EDA system. We specified the first 78 h as a spin-up
period and excluded this period from the error analyses.

We assessed the proposed scheme by quantifying the ensemble features. The ES was examined
with regard to the areas that were underestimated or overestimated, compared to the EME that is
defined as the root-mean-square deviation (RMSD) with respect to the ensemble mean. The EME
was evaluated against the Integrated Forecast System (IFS) analysis from the European Centre for
Medium-Range Weather Forecast (ECMWF), having a horizontal resolution of 25 km with 25 pressure
levels from 1000 to 1 hPa. Currently, the analysis of IFS/ECMWF shows the smallest RMSD compared
with the analyses of other operational centers (see [42]); thus, we regard the IFS analysis as the true
state against which the EME is estimated.We also checked the performance of EDA by the new SPHT
scheme through the accuracy and reliability. The accuracy was measured by the reduction of EME
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while the reliability was evaluated by comparing the ES and the EME [43]. In particular, we define the
reliability index (γ) as

γ =
ES

EME
, (3)

which depicts the balance between the ES and the EME.

3. Results

We first diagnosed the status of ensemble quality in CTL in terms of the zonally-averaged EME
and ES (Figure 1). For temperature, large EMEs are found in the lower atmosphere over the Arctic
and Antarctica regions and in the overall stratosphere (Figure 1a); for specific humidity, the tropics
and mid-latitudes have larger EMEs than the other regions, especially below 700 hPa (Figure 1c); for
zonal wind, large EMEs are found in the tropics from the middle troposphere to the lower stratosphere,
Antarctica, and most of the stratosphere except the Northern Hemisphere (NH) (Figure 1e).

These model errors should be correspondingly represented in the ESs (Figure 1b,d,f); however,
the ESs were relatively underestimated compared to the EMEs. In summary, all the variables have
insufficient ESs in the troposphere below 700 hPa in both hemispheres and above 10 hPa in the
Southern Hemisphere (SH). Although the current inflation methods are quite effective in increasing
the ES, this result evidently shows that we can further augment the ES. Note that the ES of zonal wind
is quite similar to the EME in terms of patterns and magnitudes (cf. Figure 1e,f). Therefore, the zonal
wind is considered to have sufficient ES already, especially in the jet regions, and additional inflation
may have a negative impact on the mean error. For this reason, we perturbed only temperature and
humidity mixing ratios that were the prognostic variables.

Prior to the EDA runs, we compared the background ESs of SPDT, SPPT, and SPHT for
temperature at the first cycle (see Figure 2). The ES was mainly affected by the SPPT below 700 hPa,
with prominent increases over the subtropics and extratropics in the NH and over the subtropics and
polar region in the SH; the ES was also increased by the SPDT below 700 hPa over the extratropics in
the SH and in the polar stratosphere but with much smaller magnitudes. This can be expected because
the RF amplitude is relatively small in the SPDT, along with vertical relaxation (see Table 1). The SPHT
scheme increases the ES considerably in the overall troposphere and weakly in the stratosphere—these
regions are where we desire to enlarge the ES. This supports our idea to run the SPDT and the SPPT
simultaneously as a new stochastic perturbation approach.

In Figure 3, we examine the effect of the SPHT scheme on the ES by comparing differences
between STO and CTL for the globally averaged vertical profiles of temperature, specific humidity,
and zonal wind. Starting with zeroes at the initial time, the differences gradually increased with time
for all the variables. For temperature, the ES mainly increased in the troposphere below 500 hPa while
it weakly increased in the stratosphere above 10 hPa (Figure 3a). For specific humidity, primarily
distributed at the middle and lower troposphere, the ES also increased below 500 hPa (Figure 3b).
However, the ES for zonal wind slightly increased as the others increased (Figure 3c), though the zonal
wind was not perturbed. The increasing pattern of the zonal wind profile was quite similar to that
of the temperature profile. Therefore, we confirm that the SPHT scheme leads to an increase in the
ensemble BECs of the 6 h forecasts, serving as an inflation method.
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Figure 1. The zonal mean ensemble mean error (EME) (left panels) and ensemble spread (ES)
(right panels) against the Integrated Forecast System (IFS) analysis for (a,b) temperature (in K),
(c,d) specific humidity (in g kg−1), and (e,f) zonal wind (m s−1) as for the 6 h forecasts of the control
run (CTL). Results are averaged from 18:00 UTC on 25 June 2018 to 18:00 UTC on 7 July 2018, excluding
the spin-up period (first 78 h of the experiment time), with a composite of the 49 cycles’ background
fields (i.e., one cycle per 6 h).
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Figure 2. The zonal mean ES for temperature from (a) the SPDT, (b) the SPPT, and (c) the stochastic
perturbation hybrid tendencies (SPHT) scheme (i.e., SPDT+SPPT). Results are shown for the first cycle
background fields at 12:00 UTC on 22 June 2018.

Figure 3. Differences in the ES between stochastic perturbation run (STO) and CTL (i.e., ESSTO-ESCTL)
in the globally averaged vertical profiles of (a) temperature (in K), (b) specific humidity (in g kg−1),
and (c) zonal wind (in m s−1) for forecast times of +3 h (blue), +6 h (green), and +9 h (red) from the
initial time (+0 h; black dots) at 12:00 UTC on 22 June 2018. Variations in the ES reflect the effect of the
new SPHT scheme.

In Figure 4, we show the effect of our proposed scheme on the accuracy of EDA, by showing
the zonal mean differences of ES and EME between STO and CTL for the 6 h forecasts during the
experimental periods. As expected, in most areas the ES increased (red) while the EME decreased
(blue). It is noteworthy that, for all variables, the EME significantly decreased (i.e., the accuracy
increased) over the tropics, especially below 700 hPa (Figure 4b,d,f). For temperature, the accuracy
increased over higher latitudes as well in the lower atmosphere while it prominently decreased in
the stratosphere over the SH (Figure 4b); for zonal wind, the accuracy also increased in the middle to
upper troposphere but decreased in the stratosphere over the tropics while it generally decreased at
high latitudes, especially over the SH (60◦ S) (Figure 4f). The ES generally enlarged in all variables:
for temperature, the ES substantially increased in most latitudes and atmospheric layers except in the
mid- to upper-troposphere and over the low-level tropics (10◦ S–10◦ N) below 700 hPa (Figure 4a);
for specific humidity, the ES was mostly enhanced within the mid-latitudes below 700 hPa (Figure 4c);
for zonal wind, the ES was significantly augmented in most of the global atmosphere, especially in
the subtropical troposphere below 700 hPa and in most of the stratosphere except over 40◦ S–10◦ N
(Figure 4e). For the mass variable variation, the SPDT acts indirectly through the mass-wind balance
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and the cycling, thus having a weaker impact on the temperature and specific humidity than the SPPT,
while the wind field variation is induced comparably by both SPDT and SPPT.

Figure 4. The zonal mean differences between STO and CTL for the 6 h forecasts of the ES (ESSTO-ESCTL;
left panels) and the EME (EMESTO-EMECTL; right panels) against the IFS analysis: (a,c) temperature
(in K), (b,d) specific humidity (in g kg−1), and (e,f) zonal wind (in m s−1). Results are represented with
a composite of the 49 cycles’ background fields from 18:00 UTC on 25 June to 18:00 UTC on 7 July 2018.
Dots indicate the composite differences with the 99% statistical significance based on the two-tail t-test.

Regarding the reliability, Figure 5 shows a time series of the reliability index (γ; see Equation (3))
for the 6 h forecasts. When the ES is properly described, γ ≈ 1. Compared to CTL, the reliability has
widely improved (i.e., γ increased) in STO: for temperature, in the layer below 150 hPa; for specific
humidity, in the layer below 850 hPa; for zonal wind, in the mid-troposphere to lower stratosphere
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(700–30 hPa). The globally averaged value of γ has increased by about 4% in temperature and specific
humidity—from 0.706 to 0.734 for temperature, and from 0.386 to 0.401 for specific humidity; for zonal
wind, it has increased by about 3% from 0.757 to 0.779. We also note that, for all the variables, the γ

values nearest to unity appear in the middle atmosphere in both CTL and STO—around 100–700 hPa
for temperature and zonal wind and around 900–300 hPa in specific humidity.

Figure 5. Time series of the reliability index γ for CTL (left panels) and STO (right panels):
(a,b) temperature (in K), (c,d) specific humidity (in g kg−1), and (e,f) zonal wind (in m s−1).

Overall, by considering the model error representation, it is evident that the SPHT scheme
improves both the reliability and the accuracy of the EDA system in KIAPS.
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4. Conclusions and Discussion

Ensemble data assimilation (EDA) systems suffer from underestimated background error
covariance, which leads to the filter divergence problem. Model errors stem from uncertainty
sources in both dynamical and physical processes, including underlying governing equations and
approximations, computational schemes, physical parameterizations, etc.; thus, we have implemented
the stochastic perturbation hybrid tendencies (SPHT) scheme—by combining the stochastically
perturbed dynamical tendency (SPDT) and stochastically perturbed physical tendency (SPPT)—into
the local ensemble transform Kalman filter (LETKF) system of the Korea Integrated Model (KIM).

By employing the SPHT scheme we found that for temperature, the ensemble spread (ES)
increased in the troposphere below 700 hPa and in the stratosphere while the ensemble mean error
(EME) decreased in the troposphere below 700 hPa; for specific humidity, both ES and EME have
been improved in the troposphere below 700 hPa over the tropics and the extratropics; for zonal wind,
the ES increased in most of the global atmosphere, especially in the low-level subtropical troposphere
and in most of the stratosphere except over 40◦ S–10◦ N, whereas the EME substantially decreased in
the tropical troposphere.

The new SPHT scheme satisfactorily increases the ES in the areas where the model errors are
underestimated. This could not be achieved with existing inflation methods. In particular, the most
effective and positive impacts appear over the tropics below 700 hPa on temperature and specific
humidity. We will further improve the scheme’s performance to reduce the EME and generate stable
and adequate perturbations. To avoid model instability due to random forcing in SPPT, we plan to
include a transition zone with vertical dependency, as in SPDT. This is because the total physical
tendency is known to be different between the troposphere and stratosphere—relatively larger scale
and smaller error in the stratosphere—due to radiative forcing [4]. As far as we know, this study is the
first attempt to increase the ES by simultaneously perturbing the physical and dynamical tendencies
in EDA.
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