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Abstract: The Heat Loss Coefficient (HLC) characterizes the envelope efficiency of a building under in-use
conditions, and it represents one of the main causes of the performance gap between the building design
and its real operation. Accurate estimations of the HLC contribute to optimizing the energy consumption
of a building. In this context, the application of black-box models in building energy analysis has been
consolidated in recent years. The aim of this paper is to estimate the HLC of an existing building through
the prediction of building thermal demands using a methodology based on Machine Learning (ML)
models. Specifically, three different ML methods are applied to a public library in the northwest of Spain
and compared; eXtreme Gradient Boosting (XGBoost), Support Vector Regression (SVR) and Multi-Layer
Perceptron (MLP) neural network. Furthermore, the accuracy of the results is measured, on the one hand,
using both CV(RMSE) and Normalized Mean Biased Error (NMBE), as advised by AHSRAE, for thermal
demand predictions and, on the other, an absolute error for HLC estimations. The main novelty of this
paper lies in the estimation of the HLC of a building considering thermal demand predictions reducing
the requirement for monitoring. The results show that the most accurate model is capable of estimating
the HLC of the building with an absolute error between 4 and 6%.

Keywords: energy efficiency; heat loss coefficient; machine learning; XGBoost; MLP; SVR

1. Introduction

Energy efficiency in buildings is a key roadmap to achieve sustainable development worldwide.
Nearly one third of the primary energy consumed in the world comes from non-industrial buildings, and it
is similar to all the energy used in the transport sector [1]. Consequently, the residential sector constitutes
the largest contributor to global warming by means of carbon dioxide emissions. To achieve the goal of
reducing building energy consumption, international cooperation is crucial. The European Union (EU)
has created a strict legislative framework implementing two important directives: Energy Performance
of Buildings Directive 2010/31/EU (EPBD) [2] and the Energy Efficiency Directive 2012/27/EU [3].
Both of them were updated and amended over the years. Specifically, the Directive amending the
Energy Performance of Buildings Directive 2018/844/EU [4] includes different aspects strengthening the
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commitment of real building stock modernisation through technological improvements [5]. On the other
hand, the International Energy Agency (IEA) is also working hard on this issue by means of its Energy in
Buildings and Community (EBC) research programme developing activities towards Nearly Zero Energy
Buildings (NZEB), the reduction of carbon dioxide emissions and energy savings technologies. One of the
high priority research project themes is the building envelope.

The envelope of a building is one of the main sources of heat transfer between the exterior and the
interior of the rooms, and it is responsible for the difference between the conditions predicted at the design
stage and the actual conditions of the use of the building, including lighting, occupancy and Heating,
Ventilation and Air Conditioning (HVAC) systems’ operation. This is called the performance gap between
building design and operation [6,7]. The envelope efficiency of a building can be characterized under
in-use conditions by calculating the Heat Loss Coefficient (HLC) [8]. This coefficient determines the rate of
heat flow through the buildings’ envelope when a temperature difference exists between the indoor air and
the outdoor air under steady state conditions [9]. Therefore, the accurate estimation of the HLC contributes
to optimizing the energy consumption of a building. On the other hand, building energy performance
simulation tools have been used in recent years to analyse the energy behaviour of buildings [10]. However,
achieving an accurate simulation is not trivial. Many sources of error are introduced into the simulation:
occupancy and user’s behaviour, weather data [11], envelope materials and thickness, the use of electric
equipment, etc. The alternative to simulation is the monitoring of the building operation, which leads to
the difficulty of the installation of sensors in in-use buildings. Therefore, in this context, the application of
advanced mathematical modelling techniques, such as machine learning methods, is becoming more and
more common [12].

There are three widely used building energy prediction models: the white-box (physics-based), black-box
(data-driven) and grey-box (a combination of physics based and data-driven) modelling approaches [13].
The application of black-box models in building energy analysis has been consolidated in recent years.
These models have received considerable attention because of their great success in learning complex patterns
and being able to make accurate predictions without specific knowledge of the subject [14,15]. Machine
Learning (ML) models, also known as black-box models, are specific mathematical models that are capable
of learning a pattern from data and extrapolating it to a new sample. Thus, they were widely applied in
studies presenting control strategies to reduce energy costs. Three of the most used are: eXtreme Gradient
Boosting (XGBoost), Support Vector Regression (SVR) and Multi-Layer Perceptron (MLP) neural network.
Among them, XGBoost is characterized for building regression trees, one-by-one, so that the subsequent
models are trained taking into account the residuals of the previous ones [16]. This algorithm has been used
in numerous fields such as biology [17,18], econometrics [19], the environment [20,21] or, as in this case,
the energy performance of buildings [22,23]. SVR models emerged as a predictive alternative due to the use
of a distinctive loss function [24,25], on the one hand, and the dual formulation of the problem [26], on the
other. This algorithm focuses on minimising an upper bound of the generalization error instead of minimising
the prediction error in the training sample (empirical risk minimization) [24]. The usefulness of this algorithm
is demonstrated by its expansion into scientific fields such as econometrics [26], health [27,28], electrical
efficiency in cities [29], as well as energy consumption in buildings [25,30]. Lastly, MLP neural networks have
stood out in past years for their great capacity to model non-linear relationships between certain inputs and
outputs, as well as for their massive interconnectivity [31–33]. Furthermore, this type of Artificial Neural
Network (ANN) has been applied to different areas of study such as chemistry [34], the environment [35,36],
sensors [37] or energy analysis of buildings [38–40].

The aim of this paper is to estimate the HLC of an existing building through the prediction of building
thermal demands using a methodology based on ML models. Specifically, three different methods are
applied to a public library in the northwest of Spain and compared: XGBoost, SVR and MLP neural
network. The dataset consists of hourly observations of two climate variables (outdoor temperatures and
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solar radiation) and two variables related to the thermal behaviour of the building (heating demand and
indoor temperatures). In addition, to improve model training, three temporal variables (hour of the year,
day of the week and hour of the day) are taken into account as model inputs. A comparison between
the errors obtained by the different machine learning models is carried out on three different validation
samples. Moreover, the accuracy of each of the models is quantified with CV(RMSE) and Normalized
Mean Biased Error (NMBE), both recommended by the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE), and their usefulness was demonstrated in [41,42]. The novelty of
this work lies in the application of machine learning models to estimate the HLC of a building through
heating demand predictions. In this context, this paper contributes with a methodology that reduces
the exigency of building monitoring, and heating demands will be accurately predicted. Additionally,
this methodology does not depend on physical simulations, which require huge amounts of input data
and specific knowledge and which have uncertainty in the evaluation of energy renovation or the energy
certification of buildings.

2. Materials and Methods

2.1. Heat Loss Coefficient Calculation

The HLC is the most used Key Performance Indicator (KPI) to describe the building envelope
energy efficiency. This coefficient reflects transmission heat losses through the envelope per degree
difference between indoor and outdoor temperatures from walls, roofs and floors (UA(kW/K)) and
ventilation and/or infiltration heat losses per degree difference between indoor and outdoor temperatures
(Cv(kW/K))) [43]. Following the method developed by Uriarte et al. [8], the HLC can be described as
Equation (1):

HLC = (UA + Cv) (kW/K) (1)

where UA stands for the building envelope transmission heat transfer coefficient (kW/K) and Cv stands
for the infiltration and/or ventilation heat loss coefficient (kW/K). Moreover, the energy balance used
to calculate the HLC, assuming stationary conditions, was developed by Uriate et al. [8,44], and it is
presented in Equation (2):

N

∑
k=1

Qk +
N

∑
k=1

Kk = HLC
N

∑
k=1

(Tin,k − Tout,k)−
N

∑
k=1

(SaVsol)k (2)

where Qk represents the heating gains (kW), Kk represents the internal gains (kW) caused by occupants
and electricity consumption (Kk = Kelectricity,k + Koccupancy,k), (Tin,k − Tout,k) summarizes the gap between
temperatures inside and outside the building in degrees Kelvin and SaVsol stands for the solar gains (kW).

Several terms of this heat exchange are difficult to measure for in-use buildings. For example, the solar
gains are complicated to know, and therefore, they introduce an important source of uncertainty into the
equation. Thus, in this study, only cold and cloudy periods are considered where solar radiation was
very low; direct solar radiation can be considered null; and all the radiation can be perceived as purely
diffuse [45]. This is why in this study, direct solar radiation is not taken into account, and only diffuse
solar radiation is considered. Another parameter that is difficult to estimate is the occupancy. Therefore,
with the aim of reducing the sources of uncertainty, the study is developed during weekends when there is
no occupancy. Then, the result of Equation (2) will give an idea of how well built the building is in terms
of the enclosure of its envelope.
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In this way, the HLC formula that is used in this analysis (average method), taking into account that
the periods analysed in this paper were weekends with no occupation and in which there was only purely
diffuse radiation, is shown in Equation (3):

HLC =
∑N

k=1 Qk

∑N
k=1(Tin,k − Tout,k)

(3)

2.2. Machine Learning Models

The different mathematical models (or black-box models) built to estimate the HLC of the analysed
building are presented in this section. In this case, the three machine learning algorithms studied are
XGBoost, SVR and MLP neural network.

2.2.1. Extreme Gradient Boosting

Gradient boosting is a meta-algorithm built on the basis of weak learners, like decision trees [19],
with the aim of obtaining a strong ensemble learner [46,47]. Specifically, XGBoost is a scalable and efficient
way to carry out the implementation of a gradient boosting algorithm. It is remarkable for its ease of
implementation and its high accuracy in predictions [20]. This algorithm focuses on the idea of combining,
in a final step, all the predictions made by a set of weak learners (additive training strategy [48]). Moreover,
XGBoost is capable of simplifying the objective function with different combinations of predictive and
regularization terms without loss in the optimal computational speed [19,20]. The specific learning process
is summarized as follows [18,20]:

• An initial learner is fitted to the whole sample of inputs.
• A second model is fitted to the residuals of the first model to reduce its deficiencies.
• These two learning steps are repeated until a particular stop criterion is reached.
• The final predictions are obtained from the sum of the individual predictions of the learners

used. The general function to obtain a prediction at step t, with additive training, is presented
in Equation (4).

G(t)
i =

t

∑
j=1

Gj(xi) = G(t−1)
i + Gt(xi) (4)

where Gt(xi) is the learner at step t, G(t−1)
i the prediction at step t− 1 and xi the input variable.

On the other hand, to prevent the problem of overfitting while maintaining an optimal computational
speed, XGBoost takes into account Equation (5) to evaluate the suitability of the model [17,20]:

O(t) =
n

∑
j=1

L(ŷi, yi) +
t

∑
j=1

Ψ(Gi) (5)

n being the number of observations, L a differentiable loss function and Ψ a regularization term
that penalizes the complexity of the model [18].

XGBoost expands the loss function into the second order to be able to optimize the problem quickly.
Furthermore, several specific techniques can reduce the possible overfitting of the algorithm [18]. One of
them consists of, after each step of boosting, the weights recently added being scaled by a factor η

(shrinkage). This process reduces the influence of the individual trees built, and therefore, the training will
be slower and more efficient.

Lastly, XGBoost optimization requires the control of multiple parameters [19], and finding the best
combination of them is important. In this analysis, the optimal combinations of parameters (max_depth,
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min_child_weight, subsample, colsample_bytree and learning_rate) are found through a k-fold cross-validation
method (k = 10) [49] carried out on the different validation samples studied.

2.2.2. Support Vector Regression

SVR is a nonlinear kernel based regression model that focuses on finding the best regression
hyperplane with the least structural risk in a high-dimensional feature space [25–27]. The SVR function is
represented in Equation (6):

g(x) = wTδ(x) + b (6)

δ(x) being a nonlinear mapping that connects the input space to the feature space, b a bias term and w the
weight coefficient vector. In this case, both w and b are estimated by resolving the following optimization
problem [26,28]:

minimize
w,b

1
2
‖ w ‖2 +C

l

∑
j=1

(τj + τ∗j )

subject to yj − g(xj) ≤ ε + τj

g(xj)− yj ≤ ε + τ∗j

τj, τ∗j ≥ 0

(7)

where the constant C > 0 represents the trade-off between training error and model complexity, ε

corresponds to a threshold value and l is the number of training patterns. As Huang et al. [28] and
Vrablecová et al. [29] showed, once having resolved the optimization problem (Equation (7)) and taking
the Lagrangian, the model solution can be reached with its dual representation (see Equation (8)):

g(x) =
l

∑
j=1

(α∗j − αj)K(x, xj) + b (8)

where αj, α∗j are the Lagrangian multipliers ( 6=0) and the solution for the dual problem, b the bias term and
K(xj, x) the kernel function based on the inner product 〈δ(xj), δ(x)〉.

Specifically, the model optimization for each of the validation samples studied is carried out through
the tuning of certain parameters. In this case, the selected parameters were penalty C and term ε [24,29].
With a cross-validation process (k-fold = 10) [49], different values of these parameters were evaluated, and
the best adjustment was obtained depending on the validation sample considered.

2.2.3. Multi-Layer Perceptron Neural Network

MLP is an ANN characterized by having several layers [32,40,50]:

• An input layer (first layer), where the inputs are introduced.
• An output layer (last layer), where the results obtained by the trained model are given.
• Hidden layers (intermediate layers) positioned between the previous ones. They can be zero,

one or more.

The specific neural network built in this study is composed of five layers (one input layer, one output
layer and three hidden layers). The internal structure of neurons in each layer of the network is as follows:
100-100-100-50-1. This architecture is selected after a k-fold cross-validation (k = 10) study [51] in which the
grid of different hidden layer options was between zero and four [52,53]. On the other hand, in relation to
the number of neurons in the network layers, the different options, as recommended by Vujicic et al. [52]
and Doukim et al. [54], take into account the size of the sample and the number of inputs and outputs.
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Moreover, due to the complexity of the problem, this grid of values was completed with more complex
options such as: 50, 100, 200 and 400.

The neural network training was developed via backward propagation; errors were propagated and
corrected through the network [55]. In this way, the real outputs must be known. In addition, the training
process was based on updating the weights with an average update (batch-learning), which was obtained
by introducing all the patterns in the input file (an epoch) and accumulating the weight updates [56,57].
The stop criterion used to avoid overfitting problems was the cross-validation due to its effectiveness
in stopping with the best model generalization [58,59]. The training will stop when the performance
of the neural network, measured by the Mean Squared Error (MSE) and evaluated with a small part of
the whole sample (test sample), stagnates or starts to decrease. Each MLP trained in this study used the
Rectified Linear Unit (ReLU) as the activation function [60], a normal kernel initializer and the Adaptive
Moment Estimation (Adam) optimizer [61]. Lastly, the batch size with which the neural networks were
trained was equal to 64, and the limit to the epochs in which the model fit did not improve was 100.
Further information about the options and variations of the MLP training process can be found in [62,63].

2.3. Case Study Data Acquisition

2.3.1. Description of the Building

The methodology proposed was tested on a public library of the Faculty of Marine Sciences at the
University of Vigo (see Figure 1) that is located in the northwest of Spain. The building has three floors that
are interconnected, and it is completely monitored and has been used for research purposes many times.
Therefore, the building, its HVAC system and its data acquisition system were further and more deeply
described in other articles such as Cacabelos et al. [64,65], Fernández et al. [66] and Martínez et al. [40].
The building envelope has a large, south-facing window (see Figure 1a), and its enclosures are made of
different concrete and insulation material. Table 1 shows the properties and composition of each material
layer of the walls, floor and roof.

(a) (b)
Figure 1. Appearance of the analysed building: (a) exterior and (b) interior.
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Table 1. Composition and properties of the enclosures of the analysed building.

EXTERIOR WALLS

Layer (Indoor-Outdoor) Material Thickness (cm) Properties
λ (W/m · K) c (kJ/kg · K) ρ (kg/m3) R (h ·m2 · K/kJ)

1 Plasterboard 2 0.11 1 900 -

2 Extruded polystyrene 4 0.03 1 31 -

3 Mineral wool 6 0.04 1 - -

4 Air 4 - - - 0.05

5 Concrete 25 1.15 1 1800 -

INTERIOR FLOOR

Layer (Indoor-Outdoor) Material Thickness (cm) Properties
λ (W/m · K) c (kJ/kg · K) ρ (kg/m3) R (h ·m2 · K/kJ)

1 Extruded polystyrene 4 0.03 1 31 -

2 Greenket 2 0.10 1.6 300 -

3 Common concrete 8 1.3 1 2000 -

4 Lightweight concrete 6 0.34 1.1 600 -

5 Concrete block 2 1.32 1 1330 -

SLAB

Layer (Indoor-Outdoor) Material Thickness (cm) Properties
λ (W/m · K) c (kJ/kg · K) ρ (kg/m3) R (h ·m2 · K/kJ)

1 Extruded polystyrene 4 0.03 1 31 -

2 Greenket 2 0.10 1.6 300 -

3 Common concrete 14 1.3 1 2000 -

4 Lightweight concrete 6 0.34 1.1 600 -

5 Concrete block 2 1.32 1 1330 -

ROOF

Layer (Indoor-Outdoor) Material Thickness (cm) Properties
λ (W/m · K) c (kJ/kg · K) ρ (kg/m3) R (h ·m2 · K/kJ)

1 Plasterboard 2 0.11 1 900 -

2 Extruded polystyrene 3 0.03 1 31 -

3 Com on concrete 10 1.3 1 2000 -

4 Reinforced concrete 36 2.30 1 2400 -

5 Air 5 - - - 0.044

2.3.2. Pre-Processing Data

This analysis is focused on the estimation of the HLC of a building. The data available in this study
to train the machine learning models were hourly observations between March 2016 and December
2017 of four variables. The variables considered were two describing the thermal behaviour of the
building (thermal demand and indoor temperatures) and two describing the climate conditions (outdoor
temperature and solar radiation). In addition, to find significant hours when the heating worked normally,
only the hours with a thermal demand of more than 5 kW were selected (n = 5727). In this case, it was
not necessary to have a continuous sample because the training did not take into account time lags in
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the explanatory variables. Therefore, three time variables (hour of the year, day of the week, and hour of
the day) were introduced into the models to provide more information and thus to improve the training.
The variables that were used as model inputs are presented in Figure 2.

Figure 2. Summary of the training and prediction process. On the left, the input variables of the models.
On the right, the objective estimations of the Heat Loss Coefficient (HLC).

The model fit was carried out through a cross-validation process in which the whole sample was
divided consecutively into two individual samples: training and testing. In the search for the optimal model
and the selection of hyperparameters, the models were tested with different partitions (or subsamples)
of the whole training sample (k-fold = 10) [49]. In addition, the models, after being trained and tested
with 10 different test samples, were validated with three independent samples to prove their efficiency in
estimating the HLC of the building:

• Sample 1: 15/12/2018 07:00 – 17/12/2018 07:00
• Sample 2: 19/01/2019 07:00 – 21/01/2019 07:00
• Sample 3: 09/03/2019 07:00 – 11/03/2019 07:00

These three samples had to comply with certain restrictions due to the specification of the HLC
formula (see Section 2.1) and because of the singularities of the monitoring of the building studied (see
Section 2.3.1). The restrictions for considering a period suitable for the calculation of the HLC are [8,44]:

• Weekend: Due to the non-availability of occupation data, the period must be on the weekend when
there was no occupancy in the building.

• Cool period: The average difference between indoor and outdoor temperature must be 10 K or more.
• Cloudy period: Solar radiation must be low: gains from solar radiation equal to or below 10% of the

thermal demand.
• Temperature stability: The average between indoor and outdoor temperature must be similar at the

beginning and end of the period to ensure steady state conditions.
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2.3.3. Validation and Error Assessment

The Coefficient of Variation of the Root Mean Squared Error (CV(RMSE)) and the Normalized Mean
Biased Error (NMBE) were the error measures calculated to evaluate the accuracy of the models presented:

CV(RMSE) = 100 ×

√
∑N

i=1(yi − ŷi)2/N

ȳ
(9)

NMBE = 100 × ∑N
i=1(yi − ŷi)

∑N
i=1(yi)

(10)

Both measurements were used to compare the performance of the different models in the three
validation samples. In addition, the CV(RMSE) was also taken into account to select the best trials of each
model (with the lowest error) and, then, represented graphically in the Results Section. These measures
have been used and their efficiency has been proven in similar studies [42,67,68].

3. Results and Discussion

A methodology, based on thermal demands’ predictions made with black-box models, to estimate
the HLC of a building is developed in this paper. In particular, the building under study was the public
library of the Faculty of Marine Sciences at the University of Vigo. The available data were hourly
observations of the variables presented in Figure 2 from March 2016 to December 2017; only taking
into account the hours with a significative thermal demand (≥ 5 kW). In this analysis, three specific
weekends were considered to study the performance of the models estimating the HLC through heating
demand predictions. A comparison between the accuracy of each ML model analysed is presented in the
following sections.

Section 3.1 presents the models performance in heating demand predictions and Section 3.2 a similar
analysis for the HLC estimations. While in the thermal demand analysis, CV(RMSE) (Equation (9)) and
NMBE (Equation (10)) were calculated for each of the models, in the HLC section, the errors were calculated
based on an absolute variation rate. Furthermore, to represent the average performance of the different
models, the predictions of the three validation samples were repeated 10 times (varying the subsamples
where the model was tested). Thus, the numerical results shown are average errors obtained through the
10 trials, as well as their standard deviations. Finally, all figures shown in the following sections were
created with the Python programming language [69].

3.1. Thermal Demand Analysis

The results of the heating demand predictions for the analysed building in the three validation
samples are presented in this section in Figure 3 and Table 2. These predictions are important as they will
be used to obtain the subsequent HLC estimations (see Section 3.2). Furthermore, in Figure 3, each of
the algorithms is represented by the prediction that obtains the lowest CV(RMSE) among the 10 trials
(best scenario).
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(a) (b) (c)
Figure 3. Results of thermal demand predictions in all samples studied: (a) Sample 1; (b) Sample 2;
(c) Sample 3. Each machine learning model is represented by the prediction curve with the lowest CV(RMSE)
among the 10 experiment trials.

In the case of Sample 1 (Figure 3a) and taking into account the CV(RMSE) results, the XGBoost
model presents the lowest average error (18.57%). The MLP neural network and SVR model show a
worse performance with an average error of 19.84% and 21.31%, respectively (see Table 2). Moreover,
Table 2 shows that in all models, the variability of errors in the 10 trials was relatively low (below ± 4),
but MLP is the one that shows the lowest dispersion (±2.41). On the other hand, regarding the NMBE
results, the lowest average error was obtained by the MLP model (−5.49%), while the other algorithms
only managed to obtain negative average errors higher than 10% (−12.52% for XGBoost and −11.63%
for SVR). In addition, in this case, while the variability of the NMBE results of XGBoost and MLP are
similar and around ± 5 (see Table 2), the SVR results show a greater dispersion (above ± 8). In general,
all the models, in the best scenario, efficiently reproduced the real behaviour of the thermal demand of
the building analysed (see Figure 3a). Although the XGBoost model obtained better results in relation to
the CV(RMSE), the MLP predictions showed a better overall adjustment to reality by obtaining a similar
average CV(RMSE) and an average NMBE much lower than XGBoost.

In Sample 2 (Figure 3b), considering the CV(RMSE) results, the XGBoost algorithm and MLP neural
network show a similar average performance. MLP obtained an average error of 17.38% and XGBoost
17.43%. In this situation, the SVR model shows better results than the other models with an average error
of 16.61% (see Table 2). Additionally, while SVR and MLP present a similar error dispersion around ± 2,
the XGBoost model is the one that presents the highest variability (above ± 4). With respect to the NMBE
results, the SVR model again obtained the lowest average error (2.99%). The MLP neural network and
XGBoost algorithm, on the other hand, present higher and negative average error (−4.01% and −8.40%,
respectively). However, as shown in Table 2, the SVR model is the one that showed the greatest dispersion
in the NMBE results (almost ± 7), even though the other models also showed an important variability.
In Figure 3b, it is demonstrated that each of the algorithms, taking into account the best scenario, is capable
of replicating the reality except for certain peaks. However, more specifically, the model that yielded the
best average performance was SVR.

Regarding Sample 3 (see Figure 3c), the three models studied obtained average CV(RMSE) values
above 20%. While the SVR algorithm and MLP neural network showed an average CV(RMSE) of 21.60%
and 21.54%, respectively, XGBoost model obtained an average error around 29% (see Table 2). Furthermore,
taking into account that the variabilities presented were not high, the MLP neural network obtained the
least variable results (±2.33) and XGBoost the most variable (±3.81). In the case of the NMBE results, the
MLP model stands out from the rest (see Table 2). It shows the lowest average of NMBE by far (0.25%).
The average results of the other algorithms were higher than 10% and negative (−13.60% for SVR and
−23.05% for XGBoost). On the other hand, the dispersion of the NMBE values among the 10 trials of this
sample is high (above 4.5) in all the models, and the MLP neural network was the model with the greatest
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error dispersion (±6.19). In addition, as in the other validation samples, Figure 3c shows that the built
models, in the best case scenario, are very close to the real values.

Table 2. Numerical results of the thermal demand predictions for all validation samples. The mean of the
CV(RMSE) and the Normalized Mean Biased Error (NMBE) obtained through the 10 trials, besides the
standard deviation (SD) of each of them, are presented.

Model
Sample 1 Sample 2 Sample 3

CV(RMSE) (%) SD NMBE (%) SD CV(RMSE) (%) SD NMBE (%) SD CV(RMSE) (%) SD NMBE (%) SD

XGBoost 18.570 3.940 −12.517 5.224 17.434 4.203 −8.404 4.759 29.143 3.808 −23.052 4.473
SVR 21.312 3.710 −11.627 8.460 16.607 2.417 2.987 6.819 21.596 3.581 −13.600 5.049
MLP 19.839 2.409 −5.491 5.693 17.381 2.301 −4.012 3.061 21.543 2.331 0.253 6.189

Lastly, it is demonstrated that all the models presented, in general, are capable of recreating reality
(see Figure 3), obtaining optimal errors in all the samples studied (see Table 2). Concretely, they normally
predict above the real values of the heating demand of the building analysed (see the negative NMBE
results in Table 2). Furthermore, encompassing all the results, the model that performed best was the MLP
neural network. In terms of CV(RMSE), it always yielded one of the best results, and in terms of NBME, it
obtained much better results than the other algorithms in two of the three validation samples.

3.2. HLC Estimation Analysis

The specific characteristics of each of the validation samples studied in this work are analysed in
Table 3 and presented in Figure 4. Moreover, the results of the HLC estimations, based on the previous
heating demand predictions, for each of the three validation samples are shown in this section in Table 4.
Although estimated from the heating demand predictions during a weekend, the HLC is represented as a
single number (see Equation (3)). As in the preceding section, the average performance of the different
algorithms among the 10 trials is summarized in Table 4.

Table 3. Thermal conditions of the three validation samples. These represent the mean difference between
indoor and outdoor temperatures, the average heating demand (Q), the solar radiation gain (Rad) over the
thermal demand and the average temperatures (indoor and outdoor) at the start (T◦ initial) and at the end of
the period (T◦ f inal). HLC, Heat Loss Coefficient.

HLCcalculated(kW/K) Tint − Tout (K) Q (kW) Rad/Q (%) T◦initial (K) T◦ f inal (K)

Sample 1 2.750 12.476 34.313 0.091 289.671 288.127
Sample 2 2.146 15.246 32.725 0.127 287.917 287.220
Sample 3 2.464 12.053 29.704 0.232 289.402 287.741

First, Table 3 shows that the three validation samples fulfilled the conditions necessary to efficiently
measure the HLC of the analysed building (see Section 2.3.2). Moreover, each of the samples has different
HLC values. The main different thermal conditions of the samples, which caused slightly different
HLC values, are also summarized in Table 3 and presented in Figure 4. The highest HLC value was
obtained in Sample 1 (2.75 kW/K) due to the fact that the weight of the radiation gains, in relation to the
heating demands, was the lowest among the samples (0.09%). This is related to the fact that the average
thermal demand throughout this period was the highest and is a numerator value in the HLC formula
(see Equation (3)). In addition, the average difference between indoor and outdoor temperatures, as shown
in Figure 4a, was one of the smallest (12.48 K). These were the main reasons for obtaining a greater HLC
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(see Table 3). On the other hand, Sample 2 is where the HLC value is the lowest (2.15 kW/K) because,
as shown in Figure 4b, the average difference between indoor and outdoor temperatures was the largest
(15.25 K). This value, which is in the denominator of the HLC formula, together with an average heating
demand significantly lower than in Sample 1 (32.72 kW) reduces the calculated HLC value (see Table 3).
Lastly, in Sample 3 (see Figure 4c), an intermediate value of the HLC (2.46 kW/K) that came from the
lowest average difference between indoor and outdoor temperatures (12.05 K) and the lowest average
thermal demand (29.70 kW) was obtained.

(a) (b) (c)
Figure 4. Summary of the thermal conditions of each of the validation samples: (a) Sample 1; (b) Sample 2;
(c) Sample 3. Solar radiation and indoor and outdoor temperatures affecting the analysed building during
the specific time periods are represented.

On the other hand, in the case of Sample 1, where the calculated HLC was 2.75 kW/K, the MLP
neural network was the most accurate model (see Table 4). While this algorithm obtained an average
absolute variation rate of 6.50%, the XGBoost and SVR models were only able to obtain an average absolute
variation greater than 10% (12.52.% and 12.16%, respectively). Thus, the average HLC value estimated
by MLP (2.90 kW/K) is the closest to the measured HLC value. Table 4 shows that all models obtained
a higher average estimation than the calculated one (the same situation as in Section 3.1). Additionally,
in relation to the variation rate dispersion, the MLP neural network was the one with the lowest variability
among the errors (±4.5). However, in general, all models showed a significant high standard deviation.

Table 4. Numerical results of the HLC estimations for all validation samples. The values shown summarize
the performance of each of the models through 10 repetitions of the experiment. The mean of the absolute
variation rates (together with the standard deviation), the mean of the estimated HLC values and the
calculated HLC are presented.

Model
Sample 1—HLCcalculated = 2.750 Sample 2—HLCcalculated = 2.146 Sample 3—HLCcalculated = 2.464

HLCestimated % Variation SD HLCestimated % Variation SD HLCestimated % Variation SD

XGBoost 3.094 12.517 5.224 2.327 8.404 4.759 3.032 23.052 4.473
SVR 3.070 12.158 7.677 2.082 5.680 4.813 2.800 13.600 5.049
MLP 2.901 6.505 4.500 2.232 4.083 2.966 2.458 4.966 3.702

In Sample 2 the calculated HLC was 2.15 kW/K, and in relation to the average absolute variation
values, the most accurate model was the MLP neural network (4.08%), but close to the SVR model (5.68%).
As in the thermal demand section, the XGBoost model performed worse with an average absolute variation
rate of 8.40% (see Table 4). Therefore, the HLC values estimated by the SVR and MLP models are very close
to the calculated HLC value; while the average value obtained by SVR is 2.08 kW/K, the average value
estimated for MLP is 2.23 kW/K. With respect to the dispersion of variation rate data and, as in Sample 1,
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Table 4 shows that the MLP neural network was the most stable model with a standard deviation below
±3. The other models presented values above ±4.

Regarding Sample 3, in which the measured HLC was 2.46 kW/K, the MLP neural network was
again the model with the best average performance. While the XGBoost and SVR algorithms presented
average absolute variation of 23.05% and 13.60%, respectively, the MLP model showed an average absolute
variation of 4.97% (see Table 4). Therefore, the average HLC value from the MLP estimations (2.46 kW/K)
was much closer to the calculated HLC value than those obtained by the other models. In addition, in this
sample, all models obtained a high variability in their results: all standard deviations were higher than
±3.5. In this situation, the MLP neural network was the model with the lowest dispersion among its errors
(±3.70).

Definitely, the HLC value that characterizes the studied building, calculated as the average of the
presented results, was 2.45 ± 0.30 kW/K. Observing the results presented in Table 4 and taking into
account the whole analysis (the results of the three validation samples), the model that presents the
best average performance was the MLP neural network. It was the model that obtained the most stable
results and had the lowest average absolute variation rate for all the samples analysed. In this way, it is
demonstrated that it is possible to estimate the HLC of the analysed building with an absolute error around
4 or 6% if an MLP model is used to make the necessary thermal demand predictions. On the other hand,
if an SVR algorithm is used, the error increases to 5-13%, and if the model is XGBoost, the errors vary
between 8 and 23%.

4. Conclusions

A new methodology for estimating the HLC of a building is presented in this paper. It is based
on the introduction of thermal demand predictions obtained with machine learning models in the HLC
formula. This study focuses on the analysis, on the one hand, of monitored data on heating demands
and indoor temperatures belonging to the Science Library of the University of Vigo. On the other hand,
two meteorological variables (outdoor temperature and solar radiation) and three temporal variables (hour
of the year, day of the week and hour of the day) are also taken into account. The aim of this paper is to
show a methodology that allows the efficient estimation of the HLC value of a building without the need
to control its heating demands (nor indoor temperatures if they are assumed to be constant). The search
for the optimal methodology considers and compares three different machine learning models (XGBoost,
SVR and MLP neural network). In addition, the performance of each one is evaluated and analysed both
through its average accuracy in thermal demand predictions and its average accuracy in HLC estimations.

The research contribution of this work is the application of mathematical models to estimate the HLC
of a building with low errors. In addition to reducing the necessity for monitoring, these models can be
useful for detecting errors in measurements from sensors installed in the building. Moreover, the black-box
models presented contributes with advantages compared to traditional research in building simulation.
The use and application of the traditional building thermal simulation models are conditioned by the need
for significant knowledge on a subject. In addition, these models need to control many different parameters
related to the energy performance of a building. Nevertheless, machine learning models, which need less
time for development than dynamic simulation methods, do not require specific prior knowledge and can
be applied in numerous fields. The only important need for these models is the availability of a significant
amount of data from which a behaviour pattern is extracted. Furthermore, the inputs introduced in the
built models are variables typically monitored in buildings. Therefore, the methodology presented here is
extractable to other studies and buildings.

The results obtained show that it is possible to efficiently estimate the HLC value of a building
over specific time periods with black-box models. To this end, it is important to obtain thermal demand
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predictions, which are used as inputs in HLC estimations, with average errors lower than the values
proposed for the calibrated models. The results also demonstrate that the MLP neural network is the
algorithm with the best average performance in HLC estimation (more stability and higher average
accuracy in all samples studied). The SVR model shows a close average behaviour, but XGBoost, except in
Sample 1, presents a much worse performance than the other two. In the first validation sample, in which
the measured HLC is 2.750 kW/K, only the MPL neural network is capable of obtaining an average absolute
variation rate below 10% (6.50%). The SVR and XGBoost models obtain an average variation of 12.16% and
12.52%, respectively. On the other hand, in the second validation sample, where the calculated HLC was
2.146 kW/K, both the MLP and SVR models performed better than XGBoost. While the first two obtain
an average absolute variation rate of 4.08% and 5.68%, respectively, XGBoost shows an average variation
of 8.40%. Lastly, in the case of the third validation sample, with a measured HLC value of 2.464 kW/K,
the MLP neural network yields an average absolute variation rate far from the other algorithms (4.97%).
The SVR and XGBoost models are only able to yield an average absolute variation of 13.60% and 23.05%,
respectively. Furthermore, regarding the dispersion in error data, MLP model is the one that shows the
most stable results in all validation samples. The other algorithms present similar variability between
them, but higher than the one obtained by the MLP model. Definitely, taking into account all the results
presented, the HLC value of the analysed building is 2.45 ± 0.30 kW/K.

From an energy point of view, the conclusion is that efficient predictions related to the thermal
conditions of a building and, in addition, made by machine learning models can be used to efficiently
estimate its HLC. This is demonstrated in this paper with three different validation samples that fulfil the
necessary conditions to calculate the HLC. The most accurate model, which in this case is the MLP neural
network, is able to estimate the HLC of the analysed building with an average absolute variation rate of
around 5% and with a standard deviation of around ±3. On the other hand, the main limitation of this
research is the many restrictions on finding suitable time periods for calculating the HLC. In this case,
the unavailability of occupation data means that only weekends are studied. For this reason, some possible
future lines of research are similar analyses considering more data such as occupation or extending the
study to more general situations.
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52. Vujicic, T.; Matijević, T.; Ljucovic, J.; Balota, A.; Sevarac, Z. Comparative Analysis of Methods for Determining
Number of Hidden Neurons in Artificial Neural Network. In Central European Conference on Information and
Intelligent Systems; Faculty of Organization and Informatics Varazdin: Varaždin, Croatia, 2016.

53. Panchal, G.; Ganatra, A.; Kosta, Y.; Panchal, D. Behaviour Analysis of Multilayer Perceptrons with Multiple
Hidden Neurons and Hidden Layers. Int. J. Comput. Theory Eng. 2011, 3, 332–337. [CrossRef]

54. Doukim, C.; Dargham, J.; Chekima, A. Finding the number of hidden neurons for an MLP neural network using
coarse to fine search technique. In Proceedings of the 10th International Conference on Information Science,
Signal Processing and their Applications (ISSPA 2010), Kuala Lumpur, Malaysia, 10–13 May 2010; pp. 606–609.

55. Liu, Y.; Liu, S.; Wang, Y.; Lombardi, F.; Han, J. A Stochastic Computational Multi-Layer Perceptron with
Backward Propagation. IEEE Trans. Comput. 2018, 67, 1273–1286. [CrossRef]

56. Guresen, E.; Kayakutlu, G.; Daim, T.U. Using artificial neural network models in stock market index prediction.
Expert Syst. Appl. 2011, 38, 10389–10397. [CrossRef]

57. Smith, L.N. A disciplined approach to neural network hyper-parameters: Part 1-learning rate, batch size,
momentum, and weight decay. arXiv 2018, arxiv:abs/1803.09820.

58. Li, M.; Soltanolkotabi, M.; Oymak, S. Gradient Descent with Early Stopping is Provably Robust to Label Noise
for Overparameterized Neural Networks. In Proceedings of the Machine Learning Research (PMLR), Palermo,
Italy, 2020; Volume 108, pp. 4313–4324.

59. Barrow, D.K.; Crone, S.F. Cross-validation aggregation for combining autoregressive neural network forecasts.
Int. J. Forecast. 2016, 32, 1120–1137. [CrossRef]

60. Eckle, K.; Schmidt-Hieber, J. A comparison of deep networks with ReLU activation function and linear spline-type
methods. Neural Netw. 2019, 110, 232–242. [CrossRef]

61. Bock, S.; Weiß, M. A Proof of Local Convergence for the Adam Optimizer. In Proceedings of the 2019 International
Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [CrossRef]

62. Nakama, T. Theoretical analysis of batch and on-line training for gradient descent learning in neural networks.
Neurocomputing 2009, 73, 151–159. [CrossRef]

63. Devarakonda, A.; Naumov, M.; Garland, M. AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks.
arXiv 2017, arXiv:1712.02029.

64. Cacabelos, A.; Eguía, P.; Míguez, J.L.; Granada, E.; Arce, M.E. Calibrated simulation of a public library HVAC
system with a ground-source heat pump and a radiant floor using TRNSYS and GenOpt. Energy Build. 2015,
108, 114–126. [CrossRef]

65. Cacabelos, A.; Eguía, P.; Febrero, L.; Granada, E. Development of a new multi-stage building energy model
calibration methodology and validation in a public library. Energy Build. 2017, 146, 182–199. [CrossRef]

66. Fernandez Rodríguez, M.; Eguía, P.; Granada, E.; Febrero Garrido, L. Sensitivity analysis of a vertical geothermal
heat exchanger dynamic simulation: Calibration and error determination. Geothermics 2017, 70, 249–259.
[CrossRef]

67. Kuo, P.H.; Huang, C.J. A High Precision Artificial Neural Networks Model for Short-Term Energy Load
Forecasting. Energies 2018, 11, 213. [CrossRef]

http://dx.doi.org/10.1109/ICSSIT48917.2020.9214206
http://dx.doi.org/10.1016/j.commatsci.2019.109203
http://dx.doi.org/10.1016/j.catena.2018.10.004
http://dx.doi.org/10.1155/2013/425740
http://dx.doi.org/10.7763/IJCTE.2011.V3.328
http://dx.doi.org/10.1109/TC.2018.2817237
http://dx.doi.org/10.1016/j.eswa.2011.02.068
http://dx.doi.org/10.1016/j.ijforecast.2015.12.011
http://dx.doi.org/10.1016/j.neunet.2018.11.005
http://dx.doi.org/10.1109/IJCNN.2019.8852239
http://dx.doi.org/10.1016/j.neucom.2009.05.017
http://dx.doi.org/10.1016/j.enbuild.2015.09.006
http://dx.doi.org/10.1016/j.enbuild.2017.04.071
http://dx.doi.org/10.1016/j.geothermics.2017.06.012
http://dx.doi.org/10.3390/en11010213


Appl. Sci. 2020, 10, 8968 18 of 18

68. Martínez, S.; Eguía, P.; Granada, E.; Moazami, A.; Hamdy, M. A performance comparison of multi-objective
optimization-based approaches for calibrating white-box building energy models. Energy Build. 2020, 216, 109942.
[CrossRef]

69. Pilgrim, M.; Willison, S. Dive Into Python 3; Springer: Berlin, Germany, 2009; Volume 2.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.enbuild.2020.109942
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Heat Loss Coefficient Calculation
	Machine Learning Models
	Extreme Gradient Boosting
	Support Vector Regression
	Multi-Layer Perceptron Neural Network

	Case Study Data Acquisition
	Description of the Building
	Pre-Processing Data
	Validation and Error Assessment


	Results and Discussion
	Thermal Demand Analysis
	HLC Estimation Analysis

	Conclusions
	References

