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Abstract: For building material distributors, order planning is a key process as a result of the increase
in construction projects’ scale and complexity. In this paper, the integration of simulation modeling
and the response surface methodology (RSM) is presented to solve an order planning problem in
the construction supply chain. The interactions of various factors are examined to observe their
effects on key system measurements, and a combination of factor levels is determined to achieve the
optimal performance. RSM is applied to find the possible values of the optimal setting for system
responses, which consists of three main steps: central composite design (CCD), Box–Behnken design
(BBD), and a comparison of both designs. The model is tested with a realistic case study of a building
material distributor in Vietnam to demonstrate its effectiveness. Controllable factors (independent
variables), which are the review period (T), order quantity (Q), and safety stock (SS), are found to
significantly affect system responses, which are the total cost (TC) and customer service level (CSL).
The results provide the best settings of factor levels that produce the possible minimum TC and
maximum CSL. The developed framework could be applied as a useful reference for decision-makers,
purchasing managers, and warehouse managers to obtain the most suitable order policy for a robust
order planning process.

Keywords: building material distributors; central composite design (CCD); Box–Behnken design
(BBD); optimal cost; customer service level; forecasting; order planning; inventory management

1. Introduction

Buildings are becoming increasingly complex because of the ongoing rise in the size and scope
of construction projects. Following that, the rising segmentation of the construction industry goes
hand-in-hand with the growth of specialist suppliers or contractors, and the diversity of products,
designs, and control activities [1]. Relationships in the construction industry are short-term and
normally informal/ad-hoc, which focus on the projects, not the business. Construction demand is
inherently unstable as the industry is project-based with defined start and endpoints, and a conventional
separation between design and construction. Demand is viewed by temporary coalitions as a series
of competitively tendered prototypes. Competencies between construction projects vary from time
to time and are distinguished from each other. In the supply chain of the construction industry,
order planning is the key process, especially for building material distributors. Adequate order
planning is quintessential to a more comprehensive integrated supply chain solution, by which
businesses can achieve real-time capabilities to act as an intermediary between manufacturing, sales,
and customer service concerns, in order to guarantee on-time, effective and reliable processes of
order fulfillment and delivery [2]. For building material distributors, the most common problems
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are inaccurate forecasts of annual projects received and the overloading in stock due to the delayed
construction work progress. Therefore, demand forecasting and inventory management are crucial
tasks in the order planning process, as the progress of construction projects is often not always as
smooth as scheduled. Accurately forecasting spikes in demand and appropriate levels of safety stock
can give a competitive advantage in the industry.

In the context of demand variability, sufficient order planning policies are crucial [3]. Some common
challenges of order planning problems in all different types of industries are accurate monitoring of all
stock-keeping units (SKUs) and stock levels, availability of historic sales forecasting data, calculating
correct supplier lead-times, new product introductions, and centralizing stock control [4]. In this
context, building material distributors often deal with serious stock-outs (unknown/unaware projects)
or extreme overstock (delayed projects). Consequently, additional costs are incurred due to extra
shipments, transportation and transferring activities, inventory holding, and handling costs, to name
a few. In addition, the expectation of customers for timely and reliable products and service is
ever-increasing, so that a more efficient ordering operation is indispensable and is a key measure for
customer service. Incomplete and delayed orders are the most common causes of worsening customer
satisfaction. Hence, strategies in ordering planning problems, namely which order to fulfill and in
what sequence that strongly affects customer satisfaction and businesses’ profits, as it decides how to
divide the inventory between orders and how to attend to orders to provide an efficient process [5].

Some strategies are used to mitigate risk in the ordering process: classifying stock [6],
drop-shipping [3], prepurchasing stocks [7], using hybrid strategies [8,9], and setting stock minimization
policies [10]. Many studies developed stock control policies to solve the problem of managing inventory.
They applied lot sizing, stockpiling, and period length instead of controlling on-hand inventory, at
the same time examining certain stochastic variables in the ability to respond with high demand
fluctuations and shortages in the multistage supply chain [11,12]. In practice, demands vary from time
to time, they are more of fuzzy numbers than deterministic ones. Problems concerning production
and inventory decisions are regarded as a joint economic lot-sizing problem (JELP), of which a
vendor and a buyer with stochastic demand and variable lead time are considered [13]. Jauhari and
Laksono [14] solved the JELP with the demand changing over time, imperfect production emission
cost, and defective production rate. By considering the fuzzy annual demand, their mathematical
model contributed to the existing inventory literature. Chiang Kao and Wen-Kai Hsu [15] provided
a framework for the development of the fuzzy total inventory cost with uncertain demand and the
used Yager’s ranking method to minimize the total cost and to prevent lost-sales. Kim et al. [16]
introduced a multiperiod newsvendor problem, which formulated integer recourse decisions as a
multistage stochastic programming model. The proposed method offered novel knowledge to optimize
the trade-off between delivery, transshipment, shortage, and holding costs, which is the gap to other
studies that suggested stochastic inventory models. Additionally, most studies suggested different
considerations for customer service’s perception, assumed that quality products, sales price, corporate
social responsibility, and recycling commitment are key factors to the customer service level [17–22].

In this paper, simulation modeling is developed to explain the ordering process for building
materials in a distributor. For this case study, key system performance measures are the total cost
(TC) and the customer service level (CSL). The total cost includes transportation cost, holding cost,
over-storage cost, and shortage cost. On the other hand, CSL simplifies by the accumulation of total
demand satisfied. Parameters of products include unit weight, unit holding cost, unit shortage cost,
and unit over-storage cost. Controllable factors of the ordering process are the monthly demand,
review period (T), order quantity (Q), and safety stock (SS), which are treated as independent variables.
Using RSM, the best settings, which are appropriate combinations of T, Q, and SS are determined as
an indicator to measure the performance of each possible setting, in which TC and CSL are response
variables. The solution is to place the right order quantities at the right time, with the appropriate
safety stock to achieve customer satisfaction levels between 90 and 95 percent at minimum costs.
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The contributions of our paper are three-fold. First, the paper proposed a computational framework
to solve the order planning problem by a heuristics approach using RSM, which includes the central
composite design (CCD), Box–Behnken design (BBD), and variance dispersion graph (VDG), in order
to offer the best possible time-efficient and resource-saving solution in terms of key performances.
Most exact methods cannot solve the problem within a satisfactory amount of time, especially for
large-scale problems. In contrast, most heuristics allows decision-makers to obtain a feasible and
timelier solution. For order planning problems in the construction industry, managing the demand,
duration, and progress between projects that are supposed to be implemented simultaneously by
a distributor is a complicated task. Thus, to facilitate the practical process and available resources,
heuristics can provide decision-makers feasible short-term solutions within a reasonable amount of
time. Second, the proposed heuristic model is validated by a realistic case study of a distributor in
Vietnam to illustrate the effectiveness of the model’s result. Third, the managerial implications of the
paper could be a beneficial guide for decision-makers, purchasing managers, and warehouse managers
to obtain the most suitable order policy for a robust order planning process. In addition, the practical
contribution of this study is the comprehensive insight into order planning problems contributed by
the case study of the building material distributor in Vietnam.

The paper is divided into five sections. The introduction and relevant studies are discussed
in the first section. In the second section, the research procedure and related methodology are
included. This paper proposed a computational framework to solve the order planning problem.
Additionally, the case study of a distributor is presented in the third section. In the fourth section, the
empirical results are shown, including the results of excel spreadsheet simulation, and experimental
design of central composite design, and Box–Behnken design. Moreover, discussions, conclusions,
and recommendations are given in the last section.

2. Literature Review

This paper combined simulation modeling and the response surface methodology (RSM) to solve
an order planning problem. A simulation and/or computational experiment are used to model a
comprehensive supply chain network that corresponds with a number of supply chain operational
elements and management levels [23]. Some studies that proposed simulation-based optimization
models to explain supply chain systems are discussed in [24,25]. Supply chain dynamics (response) are
typically quantified in terms of order and inventory variance ratios. To experiment with the stochastic
supply chain model, a simulation modeling approach was adopted. As a result of modifying the
controllable variables, the simulation model was run to generate the various supply chain responses,
and thus the functional relationship could be fitted and its response surface defined. RSM is a feasible
alternative to modeling, on the other hand, which optimizes stochastic, dynamic, and complex systems
such as supply chains. This approach is used to find a functional link between the complex responses
of the supply chain and significant controllable variables that influence them [26]. Giddings et al. [27]
used RSM for optimality analysis of the cost coefficients in mixed integer linear programming in
facility location problems. The study implemented the design of experiments and applied least squares
regression to determine cost coefficients that significantly affect the optimal total cost surface within
setup coefficient ranges. In a problem of finding the suitable capacity for a factory, Shang et al. [28]
aimed at integrating simulation, Taguchi techniques, and RSM. Findings of this hybrid approach is
a useful reference for businesses to analyze the dynamic relations among various factors, so as to
determine the best combination of their levels that optimizes the impact of demand uncertainty on the
performance of the supply chain. Buchholz et al. [29] developed a hybrid model of a process-based
simulation ProC/B toolset and RSM for the optimization of the process chain models. In this paper,
the experiment of the central composite design was applied to find the optimal values of response
variables. The “bullwhip” effect, known also as order variance amplification, is a major cause of supply
chain deficiencies. Hassanzadeh et al. [30] studied a three-stage simulation with a single retailer,
a single wholesaler, and a singer-producer under both centralized and decentralized chains, in order
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to analyze the causes of the bullwhip effect from two dimensions of order and inventory variance
using RSM. As an extension, a multiobjective minimization problem in which the order and inventory
variance ratios are separated into two objective functions was developed by Devika et al. [31]. RSM was
used in a hybrid evolutionary approach to analyze interactions between the variance ratios and their
corresponding effects, in order to optimize supply chain systems. For measuring design parameters
on the bullwhip effect and dynamic responses, Tang et al. [32] analyzed its influences on the supply
chain’s performance using a hybrid Taguchi and dual RSM. This paper offered practical solutions to the
supply chain managers and designers in the trade-off between customer service level and inventory
holding cost under an uncertain environment.

To provide an overview of recent contributions, several studies that presented relevant problem
characteristics are shown in Table 1. Concerning order planning problems, many studies approached
exact methods such as NLP [33], MOLP [34,35], and mathematical models [36–39]. The widely used
method is applying inventory policies such as the economic order quantity (EOQ), economic production
quantity (EPQ), (S, T), or (R, Q) model [36,39,40]. The order planning problem is actually the flow
shop (FS) problem, which is an NP-hard problem [41]. Most exact methods cannot solve large-scale
problems within an acceptable amount of time. Therefore, heuristics [33,42] have widely been applied
currently, which produce good feasible solutions timely and effectively. In this paper, to optimize an
order planning problem, namely to minimize total relevant costs and maximize customer satisfaction
level, RSM was used to determine the best combination of the system parameters. Independent
variables, which are the review period (T), order quantity (Q), and safety stock (SS), were treated as
factors for response variables, which are the total cost (TC) and customer service level (CSL). Analytical
approaches have many limitations to simultaneously solve two or three factors [23]. It is difficult to
observe the factor interactions and predict their effects on the overall objective when multiple factors
are considered at a time. By using RSM, our research aims to determine the best parameter settings
of considered factors to find the possible optimum values of the responses. Findings are expected
to offer purchasing managers or decision-makers to obtain the optimal combination of the levels of
independent factors, which strongly affect the key system performance measures, i.e., total relevant
costs and customer satisfaction level.

Table 1. List of common problem characteristics for several previous studies.

Authors Independent Variables Response Variables Methods/Techniques

Zhang et al. [33], 2015
Number of orders
Planning horizon

Production capacity

Penalty for delivery
Penalty for order

Inventory cost
Production cost

NLP
PSO algorithm

Guo et al. [34], 2015
Due date of order

Production workload
Capacity efficiency

Completion time
Production capacity

Processing time

MOLP
DOE

Lim et al. [35], 2017 Demand variability
Lead time

Holding cost
Supply cost
Safety stock

Simulation modeling
MOLP

Singha et al. [36], 2017
Reorder point
Order quantity

Inventory policies

Ordering cost
Shortage cost
Holding cost

Over-ordering cost

EOQ
(R, Q) model

Mathematical model

Jansen et al. [37], 2019 Planned lead time
Production plan

Holding cost
Penalty cost Mathematical model

Thinakaran et al. [40], 2019
Time-varying
Stock demand

Lot size

Backorder
Lost sales

EOQ
EPQ
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Table 1. Cont.

Authors Independent Variables Response Variables Methods/Techniques

Wang et al. [42], 2020

Ordering quantity
Reorder point
Target stock

Inventory policies

Holding cost
Penalty cost

Simulation modeling
DOE

Kokuryo et al. [38], 2020
Order quantity

Production schedule
Order period

Delivery time
Profit Mathematical model

Tai et al. [39], 2020
Order quantity

Lead time
Inventory policies

Over-storage amount
Inventory cost

EOQ
(S, T) model

Mathematical model

This paper, 2020
Review period
Order quantity

Safety stock

Holding cost
Shortage cost

Over-storage cost
Transportation cost

Simulation modeling
RSM

Note: NLP: nonlinear programming, PSO: particle swarm optimization, MOLP: multi-objective linear programming,
DOE: design of experiment, EOQ: economic order quantity, EPQ: economic production quantity, RSM: response
surface methodology.

3. Materials and Methods

3.1. Response Surface Methodology (RSM)

Response surface methodology (RSM) was used to design and perform an experimental design
via statistical and mathematical approaches. RSM was applied to determine the possible optimal
values of factors (i.e., independent variables) to minimize and/or maximize the outputs (response
variables). RSM was assumed that there is no correlation among independent variables. There are
many stages to perform the process of optimization using RSM. The following parts present the simple
and polynomial regression model [43–46].

The simple regression model is presented in Equation (1) as follows.

Y = βo + β1X1 + β2X2 + . . .+ βkXk + ε (1)

where Y denotes response variables, X1, X2, . . .Xk denotes independent variables, k is the total of
independent variables, βo is the intercept, β1, β2, . . . βk is the slope, and ε is the random error.

Equation (2) shows the quadratic polynomial regression model.

Y = βo +
∑

β1X1 +
∑

β2X2
2 +
∑

β3X1X2 + . . .+ ε (2)

where Y denotes response variables, X denotes independent variables, βo is the intercept, β1 is the
coefficient for the linear terms, β2 is the coefficient for the square terms, β3 is the coefficient for the
interaction among terms, and ε is the random error.

In the polynomial regression model, CCD and BBD are two types of experimental designs often
referred to by the researchers. CCD is an experimental design with two-level. Minitab provides the
rotatability value (α) to ensure the design displays the desirable properties. Meanwhile, BBD is the
experiment with a three-level design. BBD does not have the rotatability value (α) and embedded
factorial design. Points on the diagrams represent the experimental runs of CCD and BBD are shown
in Figure 1 as follows [47].
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3.2. A Computational Framework

In this paper, a computational framework was built (Figure 2), which consists of two parts,
described as follows: (1) an Excel spreadsheet was used to develop the order planning model,
and calculate the response variables, i.e., total cost and customer service level. Then, (2) Minitab was
used to find the feasible values of the optimal setting for those responses using RSM, CCD, and BBD.
Besides, a VDG was applied to validate these experimental designs. Three independent variables were
being considered to have effects on the response variables in this experiment, consisting of the review
period (T, month), order quantity (Q, unit), and safety stock (SS, unit). The combination in the total
cost (TC, USD) that includes the holding cost, shortage cost, over-storage cost, transportation cost,
and customer service level (CSL, %) were chosen as response variables of the order planning model.
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4. A Case Study

4.1. Problem Description

The description of the primary building materials of a distributor in Vietnam is shown in
Figure 3. There are four main material products for coating in construction works: Spectite CW100 (a),
Spectite WS (b), Spectite HP600 (c), and Speccoat PE145 (d). The statistical summary of historical sale
data (2017–2019), and the component costs of materials are demonstrated in Tables 2 and 3, respectively.
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Table 2. Statistical summary of historical sale data added up to 36 months (2017–2019).

2017 Spectite CW100 Spectite WS Spectite HP600 Speccoat PE145

Max 1663 131 224 40
Min 215 0 0 1
Avg 1044.58 45 36.33 5.83
SD 470.18 47.13 63.58 11.81

2018 Spectite CW100 Spectite WS Spectite HP600 Speccoat PE145

Max 2140 965 100 114
Min 411 0 0 2
Avg 1093.50 198.17 21.42 31.83
SD 538.73 265.93 35.64 34.91

2019 Spectite CW100 Spectite WS Spectite HP600 Speccoat PE145

Max 2290 359 75 83
Min 219 0 0 0
Avg 1387.75 142.42 32.67 30.17
SD 649.19 124.85 30.79 24.88

Note: calculated by the researchers.

Table 3. Component costs of materials.

Materials Spectite
CW100

Spectite
WS

Spectite
HP600

Speccoat
PE145 Unit

Packing size 22 kg/set 25 kg/bag 20 L/pail 15 L/pail -
Wholesale price 11 20 78 49.5 USD/unit

Receipt cost 12.93 22.12 84.73 54.70 USD/unit
Selling price 18.42 32.89 116.22 87.72 USD/unit
Holding cost 0.075 0.129 0.494 0.319 USD/unit/month
Shortage cost 0.553 0.987 3.487 2.632 USD/unit

Over-storage cost 0.162 0.277 1.059 0.684 USD/unit/month

Note: calculated by the researchers.

Currently, the company places orders from a supplier every three or four months. Afterward,
the transportation freight charge for 20 ft and 40 ft containers that are used for shipments directly
to a warehouse. For inventory management, each unit of products (set, pail, or bag) is charged for
holding cost per unit per month. Over-storage cost per unit is charged when ending inventory excesses
the warehouse capacity. Shortage cost per unit is charged if satisfied demand is less than the actual
demand. Key performances are measure periodically, which are the total cost, calculated by the sum of
holding inventory, shortage cost, over-storage cost, and transportation cost, as presented in Equation
(3); and the customer service level, which is determined by the accumulation of the total demand
satisfied, as shown in Equation (4). Subsequently, the company is facing a problem in which should
setup different factors (i.e., referred to independent variables in this paper) that affect the performance
of the inventory system. Therefore, designing a computational framework to find the feasible values of
the optimal setting of levels for independent variables that strongly affect the minimum total cost of
holding cost, shortage cost, over-storage cost, transportation cost, and customer service level is needed.

Total cost (TC) can be calculated from the following Equation (3):

TC = Ch + Cs + Co + Ct (3)

where Ch is holding cost, Cs is shortage cost, Co is over-storage cost, and Ct is transportation costs.
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The customer service level (CSL) in this model simplifies by the accumulation of the total demand
satisfied, and it can be calculated from the following Equation (4):

CSL =
Demand− Shortage Amount

Total Demand
× 100% (4)

4.2. Numerical Example

In order to demonstrate the model’s effectiveness, the authors chose “Spectite CW100”, the key
product of the company. Compared to other products, Spectite CW100 is always indispensable for
construction projects, yet often running out of stock. Additionally, this product was selected based on
ABC analysis (i.e., highest sale volume and high order frequency) [48,49]. The ABC classification divides
inventory stock-keeping units (SKUs) into three groups based on their annual monetary purchases.
These SKUs are high-value items, i.e., the 15–20% of the total inventory that accounts for 75–80% of the
total annual inventory value. The product is distributed to customers and given inventory carrying
cost, shortage cost, and over-storage cost of each unit. Based on product behaviors and the current
order planning process, the interval ranges of the variables were set by the decision-makers as shown
in Table 4 and were chosen as potential values in the factorial design for this problem.

Table 4. The interval ranges of the variables.

No. Variables Notation Interval Range Unit

1 Review period (categorical factor) T (3, 4) Month
2 Order quantity (continuous factor) Q (3500, 4000) Unit
3 Safety stock (continuous factor) SS (1000, 1300) Unit
4 Total cost (response) TC TC (Ch, Cs, Co, Ct) USD
5 Customer service level (response) CSL CSL (90% and 95%) %

Note: calculated by the researchers.

5. Empirical Results

5.1. Excel Spreadsheet Simulation

First, the authors pivoted the quantity of historical sale data to count monthly order frequency to
generate the probability of demand. Next, the authors used the random function in excel to simulate
customer demand and get the values response variables (TC and CSL). The experimental design was
created using a central composite design and Box–Behnken design to find the possible independent
variables settings for solving the order planning problem. The excel spreadsheet simulation template
for the experimental design is described in Figure 4.

In this paper, a case study of a distributor is presented to demonstrate the effectiveness of the
developed computational framework to solve the current order planning problem in the company.

The model’s parameters setup is described as follows.

• Unit holding cost, Ch = 0.075 USD/unit/month;
• Unit shortage cost, Cs = 0.553 USD/unit;
• Unit over-storage cost, Co = 0.162 USD/unit/month;
• Warehouse capacity = 5000 units;
• Weight (CW100) = 22 kg/unit;
• Maximum capacity of container type 20 ft = 21,000 kg;
• Maximum capacity of container type 40 ft = 42,000 kg;
• Freight charge of container type 2 0ft = 1500 USD/trip;
• Freight charge of container type 40 ft = 2700 USD/trip.
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5.2. Statistical Analysis

In the initial step, the statistical analysis using the full factorial design was performed to test the
curvature of the response variables (TC and CSL) and independent variables (T, Q, and SS). Then,
the data was analyzed in Minitab using stepwise, and the result shows curvature. The analysis
of variance of factorial regression and the Pareto chart of the standardized effects are presented in
Figures 5 and 6, respectively.
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In Figure 5, the analysis of variance of factorial regression, the results suggested that the model
had significant curvature because the p-value (p-value = 0.000) was less than the confidence level at
95%. The presence of curvature usually indicates that the factor settings were near a feasible response
value. Therefore, two response surface designs, central composite design, and Box–Behnken design
were considered afterward to find the possible parameter settings for this case. In the step of full
factorial design, for the starting center point, T = 3, Q = 3500, and SS = 1000, were considered. Figure 6
shows the Pareto chart of the standardized effects from the results and factors. It can be seen that their
interaction significantly affected the model’s results.

5.3. Central Composite Design (CCD)

In this section, a central composite design was performed to find the effects of independent
variables on the response variables. In this paper, the CCD experiment (one continuous factor and two
categorical factors) used the 20-run design with two blocks. Minitab provides the rotatability value (α)
to ensure the design displays the desirable properties. The rotatability value of the CCD experiment
was chosen based on factorial run and factorial point, α = 1.41 was applied in this experimental design.
The CCD experiment running setup and randomized design table are presented in Figure 7 and Table 5
below. Figure 7 shows all set-up parameters for the experimental CCD in the research. From the results
of Table 5, TC and CSL were calculated based on independent variables, which T, Q, and SS. Note:
StdOrder (standard order), RunOrder (run order), and PtType (center point type).

The initial experimental model was built for the response variables. Figure 8 shows the response
surface regression of total cost versus T, Q, and SS. In the first running, the results suggest that the
terms SS, the square terms SS*SS, and the interaction among Q*SS, Q*T, and SS*T were not significant
(p-value > 0.05), and the paper considered the confidence level of the experimental design at 95%.
In the next steps, these terms were eliminated from the CCD model.
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Figure 7. Central composite design running setup.

Table 5. Central composite design (one continuous factor and two categorical factors).

StdOrder RunOrder PtType Blocks T Q SS TC CSL

1 1 1 1 1 −1 −1 76,990.53 86
2 2 1 1 1 1 −1 78,115.85 93
3 3 1 1 1 −1 1 76,789.66 87
4 4 1 1 1 1 1 79,264.98 94
5 5 0 1 1 0 0 76,829.35 91
6 6 1 1 2 −1 −1 66,298.47 69
7 7 1 1 2 1 −1 64,918.34 78
8 8 1 1 2 −1 1 65,582.80 74
9 9 1 1 2 1 1 67,053.43 81
10 10 0 1 2 0 0 65,334.14 75
11 11 −1 2 1 −1.41 0 77,047.57 84
12 12 −1 2 1 1.41 0 96,797.76 94
13 13 −1 2 1 0 −1.41 76,971.17 90
14 14 −1 2 1 0 1.41 78,037.13 91
15 15 0 2 1 0 0 76,826.26 92
16 16 −1 2 2 −1.41 0 66,215.61 70
17 17 −1 2 2 1.41 0 74,732.52 81
18 18 −1 2 2 0 −1.41 65,732.97 73
19 19 −1 2 2 0 1.41 69,031.07 78
20 20 0 2 2 0 0 63,287.22 75

Note: calculated by the researchers.
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and safety stock (SS).

After excluded these terms, the experiment was run once more. The results are shown in Figure 9,
the reduced model. From the results, term T and the square term Q*Q were highly significant



Appl. Sci. 2020, 10, 8959 12 of 21

(p-value < 0.05), while term Q was barely significant. Thus, term Q was kept for the next analysis to
see the effects of these independent variables on the objective functions.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22 
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For the second objective function, CSL (%), the CCD experiment was performed consequentially.
The response surface regression of the CSL versus T, Q, and SS is presented in Figure 10. In the first
running, the results display that the square terms SS*SS, and the interaction among Q*SS and Q*T was
not significant (p-value > 0.05). Then, these terms were eliminated from the CCD model.
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Figure 10. CCD—response surface regression of the customer service level (CSL; %) versus T, Q, and SS.

After excluded these terms, the CCD model was run again, the reduced model is shown in
Figure 11. The results proposed that only the square term Q*Q was not significant because of the
p-value = 0.068 was out of the confidence level at 95%. Meanwhile, the terms Q, SS, T, and the
interaction of SS*T dramatically affected the CCD model (p-value < 0.05).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22 

 
Figure 9. CCD—response surface regression of TC versus T, Q, and SS (reduced model). 

For the second objective function, CSL (%), the CCD experiment was performed consequentially. 
The response surface regression of the CSL versus T, Q, and SS is presented in Figure 10. In the first 
running, the results display that the square terms SS*SS, and the interaction among Q*SS and Q*T 
was not significant (p-value > 0.05). Then, these terms were eliminated from the CCD model. 

 
Figure 10. CCD—response surface regression of the customer service level (CSL; %) versus T, Q, and 
SS. 

After excluded these terms, the CCD model was run again, the reduced model is shown in Figure 
11. The results proposed that only the square term Q*Q was not significant because of the p-value = 
0.068 was out of the confidence level at 95%. Meanwhile, the terms Q, SS, T, and the interaction of 
SS*T dramatically affected the CCD model (p-value < 0.05). 

 

Figure 11. CCD—response surface regression of CSL (%) versus T, Q, and SS (reduced model). 

After reducing the CCD model into the final form, the residual plots for TC and CSL are 
displayed in Figure 12, including normal probability plot, histogram, versus fits, and versus order. 

Figure 11. CCD—response surface regression of CSL (%) versus T, Q, and SS (reduced model).



Appl. Sci. 2020, 10, 8959 13 of 21

After reducing the CCD model into the final form, the residual plots for TC and CSL are displayed
in Figure 12, including normal probability plot, histogram, versus fits, and versus order. The results
show that the assumption of the model had no concern about the violation of the acceptable outliner.
In detail, the normal probability plot nearly followed a straight line, then the residuals could assume
from a normal distribution. The versus fits were used to verify that the residuals were scattered
randomly about zero. From the plots, the non-constant variance of the residuals was fit. The histogram
in the CCD model approximately followed a distribution. The versus order shows the residuals in the
order of data collection. As can be seen, the versus order did not show any pattern, hence, there was
no time correlation in the residuals.
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Figure 12. CCD—residual plots for TC and CSL.

Figure 13 shown the response optimizer of the CCD experiment to find the feasible response
variables with CSL at 90% and 95%. From the result, the CSL set to target that was 90% with the
possible minimum total cost 76,330 of the possible settings were T = 3, Q = 3428, and SS = 1336.
Meanwhile, when the CSL was increased up to 95%, the possible minimum total cost was 77,090 of the
optimal settings that were T = 3, Q = 3520, and SS = 1354.
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Figure 13. CCD—response optimizer for TC and CSL.

Besides, the surface and contour plots for CSL are displayed in Figure 14. According to the contour
plot, the CSL located in an area of dark green color was more satisfying. The trade-off existed in the
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objective function of the model. The more the customer service level is satisfied, the more of the total
cost will be paid by the distributor.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22 
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5.4. Box–Behnken Design (BBD)

Following the results from the experiment of the central composite design, Box–Behnken design
was performed to compare the effects of independent variables on the response variables. In this
experiment, BBD with three continuous factors used the total 15-run design with one block. Compared
to the central composite design, the BBD experiment did not have an embedded factorial design and
extreme points, and the BBD experiment also did not have the rotatability value (α) in the experimental
design. The advantage of the BBD model was that the design usually had fewer design points, hence,
they were often less expensive to run than the CCD design with the same number of independent
variables. The BBD experiment running setup and randomized design table is presented in Figure 15
and Table 6 as follows. Figure 15 shows all set-up parameters for the experimental BBD. From the
results of Table 6, TC and CSL were calculated based on considered independent variables using an
excel spreadsheet.

The initial model was obtained for the response variables (TC and CSL). Figure 16 shows the
response surface regression of total cost versus T, Q, and SS. In the first running, the results suggest
that the square terms Q*Q, SS*SS (p-values were 0.976 and 0.915 respectively), and the interaction
among T*SS and Q*SS (p-values were 0.721 and 0.902, respectively) were not significant (all p-value
> 0.05), while the paper considered the confidence level of the BBD at 95%. Then, these terms were
eliminated from the BBD model to obtain the following final model.

After excluded insignificant terms, the experimental BBD was run again, the results of the reduced
model are shown in Figure 17. The results display that term SS was statistically significant while the
terms T, Q, square term T*T, and the interaction of T*Q significantly affected the model (p-value < 0.05).
The authors decided to keep the term SS for further analysis to see the effects of these independent
variables on the objective functions.
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Table 6. Box–Behnken design (three continuous factors).

StdOrder RunOrder PtType Blocks T Q SS TC CSL

1 1 2 1 2 3250 1000 134,828.00 100
2 2 2 1 4 3250 1000 65,946.84 71
3 3 2 1 2 3750 1000 171,568.82 100
4 4 2 1 4 3750 1000 64,635.88 79
5 5 2 1 2 3500 750 151,097.12 100
6 6 2 1 4 3500 750 65,616.60 73
7 7 2 1 2 3500 1250 154,401.55 100
8 8 2 1 4 3500 1250 64,982.51 77
9 9 2 1 3 3250 750 76,990.53 86
10 10 2 1 3 3750 750 78,115.85 93
11 11 2 1 3 3250 1250 76,789.66 87
12 12 2 1 3 3750 1250 79,264.98 94
13 13 0 1 3 3500 1000 76,826.26 92
14 14 0 1 3 3500 1000 80,511.79 100
15 15 0 1 3 3500 1000 77,198.46 87

Note: calculated by the researchers.
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For the second objective function related to CSL (%), the BBD was performed consequentially.
The response surface regression of the CSL versus T, Q, and SS is presented in Figure 18. In the first
running, the results display that the term SS (p-value was 0.585) and the square terms Q*Q and SS*SS
(p-values were 0.461 for both) were not significant (p-value > 0.05). In this case, the square terms
Q*Q and SS*SS were eliminated from the BBD model in priority, the term SS was kept for further
analysis purposes.
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Figure 18. BBD—response surface regression of CSL (%) versus T, Q, and SS.

After excluded these terms, the BBD experiment was run again, the reduced model is shown in
Figure 19. The results show that only the term Q, SS, and the square term T*T (p-values were 0.054,
0.564, and 0.067, respectively) were slightly significant because the p-value was slightly out of the
confidence level at 95%. Otherwise, only the terms T was highly significant to the BBD experiment
(p-value < 0.05).
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Figure 19. BBD—response surface regression of CSL (%) versus T, Q, and SS (reduced model).

After reducing the BBD model into the final form, the residual plots (normal probability plot,
histogram, versus fits, and versus order plot) for the response variables (TC and CSL) are displayed
in Figure 20. The results show that all residual plots satisfied the normality and constant variance
assumptions, which means the simulated data was random and followed normal distribution.
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Figure 20. BBD—residual plots for TC and CSL.

Figure 21 shows the response optimizer of BBD to determine the feasible response variables,
i.e., TC and CSL (CSL, 90%, 95%). From the result, the CSL set to target was 90% with the possible
minimum total cost 70,870 of the possible settings were T = 3, Q = 3603, and SS = 1250. Otherwise,
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when the CSL was at 95%, the possible minimum total cost was 85,920 of the optimal settings were
T = 3, Q = 3690, and SS = 1250.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22 
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Moreover, the surface and contour plots for CSL are shown in Figure 22. The results suggest that
the possible minimum total cost was in an area of light green (<74,000), the area of SS less than 1000,
and the area of Q was less than 3500 according to the contour plot. The trade-off existed in the objective
function of the model, which means, the more the customer service level is satisfied, the more of the
total cost will be paid by the distributor.
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5.5. The Comparision of the CCD and BBD Experiment

This section performs the comparisons of the CCD and BBD experiments. The summary of the
response optimizer results of CCD and BBD are displayed in Table 7 below. Next, the overlaid variance
dispersion graph for CCD and BBD are drawn as in Figure 23. RSM was applied to build the prediction
models, hence, prediction variance was significant. For more than two independent variables in the
model, the variance dispersion graph (VDG) was one of the useful tools to validate the surface’s results.
VDG shows the value of minimum, maximum, and average of the scaled prediction variance (SPV)
versus the distance of the design point from the center point [50].
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Table 7. The summary of the response optimizer results of CCD and BBD.

Central Composite Design (CCD) Box-Behnken Design (BBD)

CSL (90%) CSL (95%) CSL (90%) CSL (95%)

T 3 3 3 3
Q 3428 3520 3603 3690
SS 1336 1354 1250 1250
TC 76,330 77,090 70,870 85,920

Note: calculated by the researchers.
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Figure 23. Variance dispersion graph for the CCD and BBD experiment.

According to the terms of the variance in Figure 23, the blue lines show the BBD experiment while
the green lines display the CCD experiment. Both of these designs almost had significant differences in
the total cost results with 2000 difference, which means, the distance of design point from the center
point, and the scaled prediction variance (SPV) shows the CCD design had better SPV (smallest values)
than the BBD design, therefore, CCD experiment can be considered as the best model in this paper.
On the other hand, based on the results of the response optimizer, BBD design gave the smallest total
cost. In other words, this paper provided useful insights for reference decision-makers in the related
industry. Based on the objective of the industry, the managers or policymakers can consider the possible
experimental designs that give the best performance toward the strategy of sustainable development.

6. Discussions and Conclusions

This paper proposed a computational framework for the order planning problem in a distributor.
In the proposed model, values of response variables were simulated and calculated, and Minitab was
used to determine the possible optimal setting for those responses using the central composite design
and Box–Behnken design. In the case study, a combination of the review period (T), order quantity (Q),
and safety stock (SS) was selected as independent variables of the model. Additionally, the total cost
of the holding cost, shortage cost, over-storage cost, and transportation cost, and customer service
level was selected as response variables. The objective of the paper was to minimize the total cost by
planning on placing the right order quantities, in the right periods, with the possible safety stock in
order to reach customer satisfaction around 90–95 percent using RSM.

For solving an order planning problem of Spectite CW100, the statistical result from the factorial
design shows that the curvature had a significant effect on the responses, therefore, two response
surface designs, central composite design, and Box–Behnken design, were considered afterward to find
the possible parameter settings. Based on the results in the response optimizer, the following values
for the response surface design were as follows:
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1. Central composite design (CCD), customer service level CSL was at 90%, the minimum total
cost was 76,330 with the possible optimal settings were the time period (T) = 3, order quantity
(Q) = 3428, safety stock (SS) = 1336; (2) customer service level CSL was at 95%, the minimum
total cost was 77,090 with the possible optimal settings were T = 3, Q = 3520, and SS = 1354.

2. Box–Behnken design (BBD), customer service level CSL was at 90%, the minimum total cost was
70,870 with the possible optimal settings were the time period (T) = 3, order quantity (Q) = 3603,
and safety stock (SS) = 1250; (2) customer service level CSL was at 95%, the minimum total cost
was 85,920 with the possible optimal settings were T = 3, Q = 3690, and SS = 1250.

According to the scaled prediction variance (SPV), the CCD design had better SPV (smallest values)
than the BBD design, therefore, the CCD experiment could be considered as the best model in this
paper. On the other hand, based on the results of the response optimizer, BBD design gave the smallest
total cost. When the CSL increased from 90% to 95%, the total cost also increased in both designs.
The proposed computational framework can be applied to other products of the distributor (Spectite WS,
Spectite HP600, and Speccoat PE145), or any ordering process in businesses within the supply chain.
In summary, our contributions include (1) the paper proposed a computational framework to solve the
order planning problem by a heuristics approach using RSM, (2) the model was tested with a case
study of a distributor to show the model’s effectiveness, and (3) The insights implication of the model’s
results was to provide a useful reference for purchasing managers or decision-makers to obtain the
most suitable order policy for a robust order planning process, which includes responses that were
considered in monetary values. Besides, this could be used as a guideline for other related industries.
However, there were some limitations to this paper. To get more robust solutions, future studies
should consider considerable data on the products and address this problem under stochastic demand,
lead time uncertainty, and unstable markets.
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