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Abstract: Compared to image-image retrieval, text-image retrieval has been less investigated in the
remote sensing community, possibly because of the complexity of appropriately tying textual data to
respective visual representations. Moreover, a single image may be described via multiple sentences
according to the perception of the human labeler and the structure/body of the language they use,
which magnifies the complexity even further. In this paper, we propose an unsupervised method
for text-image retrieval in remote sensing imagery. In the method, image representation is obtained
via visual Big Transfer (BiT) Models, while textual descriptions are encoded via a bidirectional
Long Short-Term Memory (Bi-LSTM) network. The training of the proposed retrieval architecture
is optimized using an unsupervised embedding loss, which aims to make the features of an image
closest to its corresponding textual description and different from other image features and vise-versa.
To demonstrate the performance of the proposed architecture, experiments are performed on two
datasets, obtaining plausible text/image retrieval outcomes.

Keywords: remote sensing; big transfer (BiT); text-to-image retrieval; bidirectional long short-term
memory network (B-LSTM); unsupervised embedding

1. Introduction

Remote sensing refers to remotely acquiring, interpreting, and possibly pinpointing information
about the changes and manifestations that the earth’s surface undergoes. It has been possible via
observation platforms such as satellites and aerial systems. The significance of remote sensing has
seen a rapid rise in the amount of data in several civilian and military applications.

The potential of remote sensing technology has been used in a variety of applications,
including environmental assessment and monitoring, precision agriculture, renewable natural resources,
military surveillance, meteorology, mapping, and reconnaissance [1]. Information in these applications
is acquired via sensors mounted on large satellites, medium aerial vehicles, or even miniaturized
drones (which can either be passive or active) [2].

The availability of remote sensing data, especially high-resolution images, has stimulated research
in the remote sensing community. Typically, the primary research focus is on image classification and
image retrieval [3–5]. Image classification is important because it allows the determination (and often
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the spatial localization) of certain objects across a given image volume. Image classification schemes
typically attempt to tie meaningful feature representations (i.e., either spatial and/or spectral) to an
efficient classification model, which has been shown to produce plausible results. On the other hand,
image retrieval retrieves a query image (or an ensemble thereof) from a large-scale archive of image
data. Efficient image retrieval methods do not only aim to achieve high retrieval scores but also to
cope with the processing overheads due to the size of the retrieval archive. Furthermore, the advent
of powerful processing machines has paved the way for deep architectures that have significantly
improved the performance of remote sensing image classification and retrieval [6–12].

Traditional image classification schemes, owing to their discrete nature (i.e., single labeling),
remain inefficient with respect to the abundant visual information an image may uncover (i.e.,
where visual content outweighs discrete semantic attributes). As opposed to traditional single-label
image classification, image multi-labeling balances the visual attributes of images with respect to their
semantic tenor, which is commonly termed the semantic gap. To address this problem, the computer
vision community has focused on developing multi-label approaches to reduce the semantic gap and
improve the retrieval efficiency. For example, in [13], a multi-label technique for detecting an indoor
scene was proposed to help blind people sense nearby objects around them. This technique gave rise to
similar approaches in remote sensing [14,15]. Inspired by this, another work [16] proposed a multi-label
for remote sensing image retrieval archive, where one or more labels based on visual inspection have
been assigned for each image in the archive is manually. However, coherence between the labels
themselves remains questionable because multiple labels are assigned to an image without taking in
consecration their semantic reciprocity. Therefore, incorporating this element (i.e., relativity among the
objects) can elevate the quality of semantic descriptions.

It is evident that image matching has been a major interest [17–19]. However, there have been
limited works on text image matching in the field of remote sensing, possibly because of the complexity
of remote sensing images. One of the few examples include the work in [18], which is similar to that
in [20], that uses convolutional neural networks (CNNs) to extract image descriptors and a sequence
long short term memory (LSTM) model to generate a sentence describing the remote sensing images.

Recent works from the general literature have suggested that by addressing the retrieval problem
from a cross-modal text-image, instead of image-to-image, the learning perspective seems to offer a more
practical solution. This concept has attracted much attention in recent studies, particularly in image
captioning, where images are combined with natural language processing. Essentially, it generates
a sequential text that describes visual data, which is similar to how humans realize it. For example,
in [17], a semantic attention model was proposed to enhance image captioning via convolutional neural
network (CNN) and recurrent neural network (RNNs) models to obtain high-level attributes from
images, which has improved the description generation of the image and has produced interesting
experimental results. Similarly, CNNs and RNNs were combined for image captioning in [20]. On the
other hand, a different graph-based pipeline was proposed in [21].

Other studies have mainly tackled the problem of learning common representations that enable
the textual description of visual data and vice versa [22–25]. Frome et al. [22] proposed a deep visual
semantic embedding framework to use semantic information and labeled images to recognize visual
objects. Karpathy and Li [23] developed a deep model by using inferred latent alignment between the
region of the image and the segment of the text that describes it to generate a description of image
regions. Wang et al. [24] developed an approach for image and text embedding by using a dual-branch
deep network with multiple layers. Wang et al. [25] implemented a two-branch deep network for
text-image embedding as well as a similarity network to determine the correspondence of an image-text
pair. Yao et al. [26] proposed a hashing technique to build a discrete supervised hashing model for
cross-modal retrieval to learn a potent similarity matrix. Kiros et al. [27] proposed a framework that
utilizes LSTM to represent the sentence, CNN to learn the representation of the image, and triplet
loss to push the matched image-sentence pair closer to each other than the unmatched pairs in the
embedding space. Huang et al. [28] introduced a multi-regional multi-label CNN to learn image



Appl. Sci. 2020, 10, 8931 3 of 14

semantic concepts and LSTM for representing the sentence. Niu et al. [29] adopted a tree-structured
LSTM to learn the hierarchical relations between images and sentences, in addition to learning the
relation between phrases and visual objects. Zhang et al. [30] developed a cross-modal projection
matching/classification using a CNN to encode visual image features and LSTM to extract text features.

It appears clearly from the literature of computer vision that the core problem in image retrieval
is given a query one is interested to retrieve the most similar image in the database. This query can
be an image or textual descriptions or a combination of them. Compared to image-image retrieval,
text-image retrieval has been less investigated in the remote sensing community, possibly due to the
complexity of appropriately tying textual data to respective visual representations. To cope with these
limitations, the authors in [31] have proposed a new dataset for text-to-image matching named TextRS.
They used a Deep Bidirectional Triplet Network (DBTN) for matching text to images based on CNN
and LSTM networks. In this work, we propose an alternative approach based on asymmetric Siamese
network. The first branch of this network uses BiT models for image representation, while the second
branch relies on bidirectional Long Short-Term Memory (Bi-LSTM) for text encoding. The image and
text representations are normalized and projected in a low dimensional space. The embedding features
of the pair image-text should be invariant, while the features of different images and text instances
should spread-out. The experimental results obtained on TextRS and Merced datasets are reported
and discussed.

The paper is structured as follows. In Section 2, we introduce the proposed methodology. While,
in Section 3, we present the experimental results. Finally, conclusion and future developments for the
proposed work are declared in Section 4.

2. Proposed Methodology

The proposed architecture addresses the task of text-to-image matching. This task aims to retrieve
the matching image/sentence that resides in a training setD prepared offline.

Let us assume a training set D = {Xi, Yi}
N
i=1 consisting of N images alongside their respective

sentences. In the test phase, given a query sentence tq, we aim to retrieve the most relevant image from
the training setD (Figure 1a). On the side, in the image-to-text retrieval scenario, however, a query
image is presented at the text-to-image matching model to retrieve the most likely textual description
(Figure 1b). Figure 2 gives the detailed architecture of the proposed method, which is divided into two
branches for learning appropriate image and text embedding, i.e., f (Xi) and g(Ti). Further details are
provided in the subsequent sections.

Figure 1. Bidirectional text-image retrieval: (a) text-image retrieval; (b) image-text retrieval.
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Figure 2. Flowchart of the proposed method.

2.1. Image Representation Using (BiT) Models

The backbone of image-embedding module is based on BiT models (i.e., BiT-S, BiT-M,
and BiT-L) [32]. These BiT models are trained on three upstream datasets with different scales:
ImageNet-1k [33] (BiT-S), ImageNet-21k (BiT-M), and JFT-300 M [34] (BiT-L). While ImageNet-1k is a
dataset designed for ILSVRC image classification task, which is composed of more than 1.28 M images
and 1k classes. On the other hand, ImageNet-21k is a large-scale few-shot dataset that contains 14
M images and 21k classes; it is also called the full ImageNet. The JFT-300 M dataset is a subsequent
version of the dataset introduced in [35,36]. It has 300 M real-world images and 18k classes with
each image approximately having 1.26 labels, resulting in a total of 375 M labels. Note that these BiT
models yield state-of-the-art performances on several benchmark datasets for transfer learning with
928 M parameters.

BiT models adopt a standard ResNet-v2 [37] architecture with different sizes (i.e., a ResNet-50
(R50 × 1), a ResNet-50 that is three times wider (R50 × 3), a ResNet-101 × 1, a ResNet-101 that is three
times wider (R101 × 3), and a ResNet-152 that is four times wider (R152 × 4)), and some updates.
Unlike the standard ResNet architecture, BiT models are based on the idea that two new layers,
called group normalization (GN) and weight normalization (WN), supersede batch normalization
(BN) in all convolutional layers (Figure 3). Note that there are other normalization methods, such as
layer norm (LN) and instance norm (IN), which can be considered as extreme cases of GN. Figure 4
illustrates the various normalization techniques and the relations between BN, LN, IN, and GN.
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Figure 3. Architecture of Big transfer (BiT) model.

Figure 4. Demonstration of various normalization techniques.

GN has proven to be effective in many applications, such as detection and segmentation [38]
and video classification [39], which makes it a better alternative for BN. It has been proposed with a
layer that divides the channels into groups, and then the normalized features in each group according
to the mean and the variance of the group. It has been shown that GN is more stable than BN with
respect to batch size. This is because in GN, calculations of the batch statistics are inherently avoided.
Furthermore, the batch dimension is not exploited in GN and it can be transferred to fine-tuning from
pre-training irrespective of batch size changes.

In this work, we use these BiT models for image representation. In particular, we feed the image
as input to the network and extract the corresponding feature representation before the classification
layer. Then these feature are further projected and normalized into a low dimensional feature space
using a dense layer as shown in Figure 2.

2.2. Text Representation Using Bi-LSTM

The sentence is fed through a word embedding layer followed by Bi-LSTM. Note that Bi-LSTM [40]
is an extension of conventional LSTMs, while an LSTM network is a modified version of RNNs.
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These last are based on the idea of connecting current and previous information, which enables
understanding of the sequence of data [41]. RNNs tries to remember information they learned during
the training procedure as well as what they learned from the previous input. This is achieved by
repeatedly applying transformations to the input sequence data. After the output has been generated,
it is copied and returned to the recurrent network.

Although RNNs have been used in various tasks, they encounter major problems such as gradient
vanishing and exploding. To cope with these limitation the LSTM network [42] has been introduced as
an alternative solution. The LSTM network depends on the so-called memory cell, which can learn
(make decisions) how to allow data to be entered, left, or removed from the cell state through an
iterative process. This is done at a time step through special structures called gates. The LSTM has three
gates, i.e., input, forget, and output gates. The input gate controls how the input data would change
the state of the memory cell. The forget gate controls the cell of the previous state, whether it has to
remember or forget it. The output gate enables the memory cell to influence the outputs. The equations
for the gates are as follows:

As mentioned previously, in this work, we use Bi-LSTM which comprises two LSTMs. During the
training process, one of the LSTMs is trained on the input sequence and the other one is trained on
the reversed copy of the input sequence. In other words, the input sequence is processed in both
forward (past to future) and backward (future to past) directions by using two recurrent networks
(two separate hidden layers, a forward state sequence and a backward state sequence). Both of the
networks then connect to the same output layer to generate the output. Similar to the image branch,
the output of Bi-LSTM is fed to a fully connected layer followed by l2-normalization yielding a feature
representation f (Yi) for the sentence Yi.

2.3. Optimization

Retrieval tasks are usually solved by learning a distance metric [43]. Inspired by accomplishments
of deep learning in computer vision [26], deep neural networks have been used to learn how to
embed discriminative features useful for learning these distances [44,45]. In this case, the embedded
features of similar samples should be closer, while those of dissimilar samples should be farther.
The literature of computer vision convoys several loss functions such as triplet [45], quadruplet [46],
lifted structure [47], N-pairs [48], and angular [49] losses. In this work, we extend the softmax
embedding variant mainly proposed for image-to-mage retrieval to the case of text/image retrieval.
Because of memory requirements, we learn iteratively these distances on small batches sampled from
the complete dataset. The aim is to make the features of an image closest to its corresponding textual
description and different from other image features and vise-versa.

If we consider Bk = {Xi, Yi}
m
i=1 as the k th mini-batch of size m sampled instances from the full

dataset D, then for a sentence Yi, its corresponding image Xi should be classified into instance i,
while other images X j, with j , i are not classified into instance i. Therefore, the probability of the
image Xi being recognized as instance i is defined by:

P(i|Xi) =
exp

(
f T(Yi) f (Xi)/τ

)
∑m

k=1 exp( f T(Yk) f (Xi)/τ)
(1)

where τ is a temperature parameter controlling the sharpness of the distribution. Similarly, the probability
of a sentence Y j not being assigned to instance i can be defined by 1− P

(
i
∣∣∣Y j

)
where

P
(
i
∣∣∣Y j

)
=

exp
(

f T(Yi) f
(
Y j

)
/τ

)
∑m

k=1 exp
(

f T(Yk) f
(
X j

)
/τ

) , k , j (2)
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Then under the assumption that different sentences being recognized as instance i are independent,
the joint probability image Xi being recognized as instance i and the sentence Y j not assigned to
instance i where j , i is simply P(i|Xi)

∏
j,i

(
1− P

(
i
∣∣∣Y j

))
.

Then the corresponding negative log-likelihood for the min-batch Bk can be given as follows:

Ji = −log(P(i|Xi)) −
∑

j,i
log

(
1− P

(
i
∣∣∣Y j

))
(3)

The corresponding total log-likelihood J over the entire dataset is:

JSentence = −
∑

i
log(P(i|Xi)) −

∑
i

∑
j,i

log
(
1− P

(
i
∣∣∣Y j

))
(4)

Similarly, we can extend this formulation in the reverse direction that form image Xi to sentence
Yi yielding the following log-likelihood:

JImage = −
∑

i
log(P(i|Yi)) −

∑
i

∑
j,i

log
(
1− P

(
i
∣∣∣X j

))
(5)

Then the total log-likelihood used as loss for learning the parameters of the proposed asymmetric
Siamese network is given by:

J = λ1 JSentence + λ2 JImage (6)

where λ1 and λ2 are balancing weights.

3. Experimental Results

3.1. Dataset Description

In this work we use two different benchmark datasets to validate the performances of the proposed
method. The first one is the TextRS dataset [50], which consists of 2144 images collected from several
scene datasets (i.e., AID [31], Merced [51], PatternNet [52], and NWPU [53]) (see Figure 5). In particular,
this dataset is built by selecting randomly 16 images from each class of four popular heterogeneous
scene datasets: AID (30 classes), UC Merced (21 classes), PatternNet (38 classes), and NWPU (45 classes).
TextRS has 2144 images: 720 images with spatial resolution 0.2 to 30 m, 608 images with spatial
resolution 0.062 to 4.7 m, 480 images with spatial resolution 0.5 to 8 m, and 336 images with spatial
resolution 30 m as shown in Table 1. Each remote sensing image is annotated by five various sentences;
therefore, the total number of sentences is 10,720. The second dataset is the Merced Land-Use
dataset, which consists of remote sensing images with 21 classes [54]. Each class has 100 RGB images
(256 × 256 pixels). The total number of images is 2100, with every image labeled also with five different
sentences (see Figure 5b).
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Figure 5. Example of images with five sentences in the following datasets: (a) TextRS and (b) Merced.

Table 1. TextRS Images Distribution.

No. of Images Images from No. of Sentences Spatial Resolution Image Size

720 NWPU 3600 0.2 to 30 m 256 × 256

608 PatternNet 3040 0.062 to 4.7 m 256 × 256

480 AID 2400 0.5 to 8 m 600 × 600

336 UC Merced 1680 30 m 256 × 256

Total: 2144 Total: 10,720

3.2. Experimental Setup

We implemented the proposed method using Tensorflow-keras. We divided the TextRS dataset
according to [32], while we randomly split the Merced dataset into: 80% is for training and 20%
is for testing. We use a mini-batch size of 50 images for training the network. For optimization,
we use Adam optimizer with its default parameters. In addition, we set the regularization parameters
λ1 and λ2 controlling the contribution of the two losses to 1. We train the models for 50 iterations.
For performance evaluation of the proposed method, we use the Recall@K (R@K) metric, which is
widely used to match the scores of an image with a query sentence and vice versa. In the subsequent
sections, we present the results in terms of R@K for different values of (K = 1, 5, and 10) calculated as
follows:

R@k = (true positives @k)/((true positives @k) + (false negative @k)) (7)

All experiments are conducted on a workstation with an Intel Core i9 processor with a speed of
3.6 GHz, 64 GB of memory, and a GPU (with 11 GB GDDR5X memory).
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3.3. Results

3.3.1. Results on TextRS and Merced Datasets

Table 2 shows the results obtained with our model using m-R50x1 as a pre-trained CNN for the
image branch. In the case of text-to-image retrieval, the scores (R@1, R@5, and R@10) are 19.02%,
55.25%, and 71.72%, respectively, on the TextRS dataset and they are 21.86%, 60.00%, and 75.58%,
respectively, for the Merced dataset. On the other hand, the image-to-text matching scores are 22.95%,
59.52%, and 77.23%, respectively, on the TextRS dataset and 25.47%, 59.76%, and 72.61%, respectively,
on the Merced dataset. We observe that retrieval accuracy increases significantly when going from
R@1 to R@10, which indicates the difficulty of getting the exact match for the first retrieved query.

Table 2. Bidirectional retrieval results on the TextRS and Merced datasets.

Pretrained Architecture
TextRS Merced

R@1 R@5 R@10 R@1 R@5 R@10

Text-to-image m-R50x1 19.02 55.25 71.72 21.86 60.00 75.58
Image-to-text m-R50x1 22.95 59.52 77.23 25.47 59.76 72.61

In Figure 6, we show two successful scenarios for query sentences with their corresponding
ground-truth images. The retrieval results show that the output images almost have the same objects.
On the other hand, Figure 7 shows two unsuccessful scenarios, where the true matched image was
not retrieved correctly. It is worth recalling that during training, we learn an embedding loss that
aims to learn close representations of images with the same descriptions. However, this task is very
challenging as the dataset is not very large (each image is associated with a textual description).

Figure 6. Successful scenarios of text-to-image retrieval.
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Figure 7. Failed scenarios of text-to-image retrieval.

3.3.2. Sensitivity Analysis

We next investigated the results using different models pre-trained on two types of ImageNet
datasets (i.e., ImageNet-21k and ImageNet-1k). Table 3 shows the results on the TextRS dataset using
three different BiT architectures (m-R50x1, m-R50x3, and m-R101x1). As can be seen the models
pre-trained on ImageNet-21k yields better results compared to the model pre-trained on ImageNet-1k.
In particular, the obtained R@1, R@5, and R@10 values for the text branch are 19.02%, 55.25%,
and 71.72%, respectively. On the other hand, the obtained values for the image branch are 21.86%,
60.00%, and 75.58%, respectively. These results suggest that the modes pre-trained on ImageNet-21 are
more suitable compared to the one pre-trained on ImageNet-1k. In terms of computation complexity
and accuracy, the m-R50 x 1 seems a good a choice compared to the other models.

Table 3. Text-to-image and image-to-text retrieval results on the TextRS dataset.

Pre-Trained Architecture
Text-to-Image Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

ImageNet-21k
m-R50x1 19.02 55.25 71.72 21.86 60.00 75.58
m-R50x3 18.27 52.23 68.79 23.25 60.93 74.41

m-R101x1 15.11 51.96 67.76 18.13 53.25 71.86

ImageNet-1k s-R50x1 15.53 46.97 63.25 18.13 49.53 68.13

Regarding Merced dataset (Table 4), we observe that for the largest model m-R101x1 it yields
23.68%, 60.38%, and 78.52%, respectively for text-to-image retrieval. While for image-to-text retrieval,
the scores are 21.86%, 60.00%, and 75.58%, respectively. In comparison, using ImageNet-1k, the obtained
R@1, R@5, and R@10 values are 19.71%, 56.04%, and 74.76%, respectively. Here again, the models
pre-trained on ImageNet-2k exhibits a better behavior with m-R50x1 as a good compromise between
accuracy and computation complexity.
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Table 4. Text-to-image and image-to-text retrieval results on the Merced dataset.

Pre-Trained Architecture
Text-to-Image Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

ImageNet-21k
m-R50x1 22.95 59.52 77.23 25.47 59.76 72.61
m-R50x3 23.23 58.95 77.00 25.47 59.76 72.61

m-R101x1 23.68 60.38 78.52 21.19 56.90 75.23

ImageNet-1k s-R50x1 19.71 56.04 74.76 21.66 53.57 72.82

In order to assess further the proposed model, we propose to carry additional experiments by
changing the size of the fully connected layer from 256 to 512. The results obtained in Tables 5 and 6
suggest that setting the number of neurons 256 yields in general better results.

Table 5. Retrieval results on the TextRS dataset using two different configurations for the hidden layer.

Pre-Trained Hidden Layer Size
Text-to-Image Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

ImageNet-21k
m-R50x1

256 19.02 55.25 71.72 21.86 60.00 75.58
512 18.18 52.10 67.53 21.86 54.88 73.25

Table 6. Retrieval results on the Merced dataset using two different configurations for the hidden layer.

Pre-Trained Hidden Layer Size
Text-to-Image Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

ImageNet-21k
m-R50x1

256 22.95 59.52 77.23 25.47 59.76 72.61
512 22.76 58.47 78.38 25.00 56.66 70.47

Finally, we compare our results to the method based on triplet networks proposed recently
in [31] (Table 7). As can be seen the proposed method yields better retrieval results in terms of R@1,
R@5, and R@10 scores. For instance, our method yields on TextRS dataset scores of 19.02%, 55.25%,
and 71.72% versus 14.18%, 44.18%, and 62.55% for the method based on triplet networks. Similarly,
our method obtains on Merced dataset scores of 22.76%, 58.47%, and 78.38%, while the one based on
triplet networks gives 18.52%, 50.12%, and 69.20%.

Table 7. Comparison of the proposed method with other methods.

- - R@1 R@5 R@10

TextRS
Triplet [31] 14.18 44.18 62.55
Proposed 19.02 55.25 71.72

Merced
Triplet [31] 18.52 50.12 69.20
Proposed 22.76 58.47 78.38

4. Conclusions

In this work, we have proposed an unsupervised learning method for image retrieval in remote
sensing imagery. Unlike traditional remote sensing image-to-image retrieval, this approach addresses
the problem of text-to-image retrieval. The network consists of two asymmetric branches for image and
sentence encoding, respectively. The experiments provided on two different benchmark datasets show
interesting results compared to a recent method based on triplet networks. For future developments,
we propose to investigate other embedding models in addition to more robust losses to increase the
retrieval accuracy.
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