
applied  
sciences

Article

Modified Gingival Index (MGI) Classification Using
Dental Selfies

Guy Tobias 1,† and Assaf B. Spanier 2,*,†

1 Department of Community Dentistry, Faculty of Dental Medicine, Hadassah School of Dental Medicine,
The Hebrew University, Jerusalem 9190501, Israel; guy.tobias@mail.huji.ac.il

2 Department of Software Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel
* Correspondence: assaf.spanier@mail.huji.ac.il
† Contributed equally.

Received: 31 October 2020; Accepted: 11 December 2020; Published: 14 December 2020
����������
�������

Featured Application: iGAM app is the first m-Health app for monitoring gingivitis to promote
oral health using self-photography. The innovation the paper proposes is a method that—based
on dental selfies alone—can inform both the user and the dental healthcare provider whether the
patient is suffering from gingivitis.

Abstract: Background: Gum diseases are prevalent in a large proportion of the population worldwide.
Unfortunately, most people do not follow a regular dental checkup schedule, and only seek treatment
when experiencing acute pain. We aim to provide a system for classifying gum health status based
on the MGI (Modified Gingival Index) score using dental selfies alone. Method: The input to
our method is a manually cropped tooth image and the output is the MGI classification of gum
health status. Our method consists of a cascade of two stages of robust, accurate, and highly
optimized binary classifiers optimized per tooth position. Results: Dataset constructed from a pilot
study of 44 participants taking dental selfies using our iGAM app. From each such dental selfie,
eight single-tooth images were manually cropped, producing a total of 1520 images. The MGI score
for each image was determined by a single examiner dentist. On a held-out test-set our method
achieved an average AUC (Area Under the Curve) score of 95%. Conclusion: The paper presents a
new method capable of accurately classifying gum health status based on the MGI score given a single
dental selfie. Enabling personal monitoring of gum health—particularly useful when face-to-face
consultations are not possible.

Keywords: mobile app; gum diseases; AutoML; classification; COVID-19 pandemic

1. Introduction

1.1. Dental Scientific Background

The two most common oral diseases among adults are dental caries (tooth decay) and periodontal
inflammations (gum diseases) [1]. Caries are caused by bacteria present in dental plaque, which ferment
sugars, producing acid which demineralizes tooth enamel, then the bacteria enter the tissues under the
enamel [2]. Periodontal diseases [3] are classified as either gingivitis or periodontitis based on severity.
Gingivitis is the reversible stage, only the gums are affected, exhibiting symptoms of redness, swelling,
and bleeding. With professional treatment, and maintaining a regimen of daily oral hygiene, recovery
time from gingivitis is usually about 10–14 days [4]. Gingivitis which goes untreated usually escalates to
periodontitis, the irreversible stage of gum disease. Acids, which are the immune system’s response to
the presence of toxic bacteria, cause a deterioration and finally destruction of the tooth-support tissues
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and can lead to teeth loss [5]. There are several pathways of reversing inflammation. The two modes
most studied in the literature are (1) mechanical plaque removal, and (2) chemical plaque removal.
It has been demonstrated [6] that alcohol-free mouthwash along with regular toothbrushing is capable
of reducing gingival inflammation. The significant difference between caries and periodontal disease
is that caries often causes pain even in the early stages, while gum infections are often asymptomatic
until a quite advanced stage [7]. What the two diseases have in common is their progression and
escalation, producing a situation where delayed care can necessitate complex and expensive treatment
or lead to loss of teeth [1].

Dentists have developed numerous indices to assess the severity of gingivitis [8,9], based on one
or more of the following criteria: gum coloration (redness), gum contour, bleeding presence, stippling,
and crevicular fluid flow [10,11]. Another method for distinguishing unhealthy oral tissue from healthy
tissue is bioimpedance, unhealthy tissue has been found to offer lower resistance to electrical current
than healthy ones [12]. Most of the indices developed require both visual and invasive measures
(probing of the gums with instruments) to assess gum health status and reach a rating. Exceptional
is the Modified Gingival Index (MGI) [8] which is completely noninvasive (i.e., exclusively visual).
A survey study demonstrated that the variety of gingivitis indices in common use are all strongly
correlated, including in particular MGI [9]. The MGI (Table 1) uses a rating score between 0 and 4,
with 0 indicating a tooth with healthy gums and 4 the most severe inflammation with spontaneous
bleeding, for a precise definition of each rating see Table 1.

Table 1. The Modified Gingival Index (MGI).

Score Inflammation Appearance

0 Normal None

1 Mild inflammation Slight changes in color and texture, but not in all portions of
gingival marginal or papillary

2 Mild inflammation Slight changes in color and texture in all portions of gingival
marginal or papillary

3 Moderate Bright surface inflammation, erythema, edema,
and/or hypertrophy of gingival marginal or papillary

4 Severe inflammation Erythema, edema, and/or marginal gingival hypertrophy of the
unit or spontaneous bleeding, papillary, congestion, or ulceration

Numerous epidemiological studies concluded that gingivitis [8] is prevalent in children,
adolescents, and adults [11,13–15] and more than 80% of the world’s population suffers from mild to
moderate forms of gingivitis from time to time [1]. Treating gingivitis is relatively simple, mostly at
home, based on oral hygiene maintenance methods, including brushing twice daily, mouthwash,
interproximal flossing, and dental toothpicks when appropriate [16–18]. In the clinic, gingivitis is
usually treated in a single visit to a dental hygienist to remove plaque and calculus (tartar, or hardened
plaque) [19]. If a proper oral hygiene regimen is not maintained, gingivitis is likely to prolong and
progress to periodontitis.

Despite the fact that routine checkups are essential for monitoring and maintaining oral health,
most people do not follow a recommended checkup schedule [20]. The problem is intensified even
beyond irregular checkups when people are instructed to practice social distancing and avoid all
unnecessary contact, such as during the current COVID-19 pandemic. This calls for a paradigm shift
and new protocols and new software tools that will enable patients to have their oral health monitored
by a dental healthcare provider in a more accessible, user-friendly way, not requiring a major effort on
their part (such as visiting a clinic).

Recently, we presented iGAM [21] which is the first mHealth app for monitoring gingivitis using
dental selfies. In a qualitative pilot study, we showed the potential acceptance of iGAM to facilitate
information flow between dentists and patients, which may be especially useful when face-to-face
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consultations are not possible. By using iGAM the patient’s gum health is remotely monitored.
The patient is instructed by the app how to use it to take and upload weekly gum photographs, and the
dentist can monitor gum health (MGI score) without the need for face-to-face meeting. The data is
stored and transferred between the dentist and patient by a data storage server (Figure 1).
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Figure 1. Interaction between participant (patient), app admin (researcher, dentist), and data storage
server (Firebase).

The goal of this paper is to take the next step with the iGAM app and use the patient dental selfies
toward automatically classifying the patients’ gum health status by predicting the MGI score.

1.2. Machine Learning Background

Automated machine learning has proven to be a very effective accelerator for repetitive tasks in
machine learning pipelines [22], aiding data preprocessing, and streamlining and successfully resolving
tasks like model selection, hyperparameter optimization, and feature selection and elimination [23].
AutoML packages are enabling considerable advances in machine learning by shifting the focus of the
researcher to the feature engineering aspect of the ML pipeline, rather than spending a large amount
of time trying to find the best algorithm or hyperparameters for a given dataset [24]. In particular,
AutoML-H2O trains a variety of algorithms (e.g., GBMs, random forests, deep neural networks, GLMs),
providing diversity of candidate models, which can then be stacked—producing more powerful final
models. Despite the fact that it uses random search for hyperparameter optimization, AutoML-H2O
frequently outperforms other AutoML packages [25,26]. All machine learning training processes and
testing performed in this paper were done using the AutoML-H2O [27]. Our goal is to develop a suite
of features to be evaluated, that we tailored especially to the unique characteristics of our cropped
single tooth images. Dental selfies taken by users vary widely due to differences between cameras used
(variations between vendors and quality), lighting conditions, image perspective, and more. We aim
to make our features robust against such variations. An advantage we can exploit is that we know
there is an underlying significant degree of homogeneity of the content being depicted—teeth and
gums; our overall purpose is that our suite of features should be correlative to the visual characteristics
dentists use to establish the MGI score—redness, swelling, irregularity, and more.

This paper will present a method to analyze the dental images, extract the most relevant image
features from the dental selfies (that correspond to the MGI), and use machine learning algorithms to
classify the state of gum health.

The innovations of our proposed method mainly include three aspects. (1) Accurate method
which predicts the gum health status using noninvasive selfie image alone, (2) light method that can be
implemented on mobile devices, and (3) just 35 scalar features, tailored to the unique characteristics
of dental selfies and robust against wide variation between cameras used, lighting conditions,
image perspective, and more.
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2. Materials and Methods

2.1. Dataset

The data used in this research study was collected between September 2019 and May 2020 at the
Department of Community Dentistry Faculty of Dental Medicine, The Hebrew University—Hadassah
School of Dental Medicine. The protocol was approved by Hadassah research ethics committee
(IRB, 0212-18-HMO), and written informed consent was obtained from all participants. There was
no compensation for participating. The participants were using the application developed by us,
the iGAM app which is currently available on the Google Play store (https://play.google.com/store/

apps/details?id=com.igmpd.igam). The application development process was described in a recently
published article [21]. Following initial registration, the patient logs in, personal patient data (such as
age, gender, etc.) is collected. In order to characterize the patient’s interest in the app, the patient is
prompted to fill out a questionnaire about dental knowledge and behaviors, including oral hygiene
habits. Participants were instructed to photograph themselves once a week for 8 weeks. Nevertheless,
not everyone completed the full experiment, as will be described shortly. In the app, the flash was
set up to turn on automatically and to simultaneously initiate a 10-s timer, giving the participant
time to position the camera. A sound indicated that the phone had started taking photographs,
and another sound signaled the end of the photographing time. Seventy-five participants took part
in this group study. The majority were male (74.7%), native to Israel (97.3%), Jewish (100%), “single”
(50.7%), nonsmoker (74.7%), and did not take medications (85.3%), 41.3% indicated their occupation as
“student” and 28% were “secular”.

Regarding the inclusion and exclusion criteria, the inclusion criteria are as follows: the subject
must be 18 years or older, must understand Hebrew, and have a smartphone with the Android
operating system. Exclusion criteria: as outlined [21] the app had several initial versions, and tested
with different mouth openers. Once the app was stabilized, and the second generation “optimal”
mouth opener was used [21], there were no other exclusion criteria, any subject who successfully used
the app and uploaded a photo, their dental selfie was included in the dataset.

We ended up with 44 participants. In total we collected 190 dental selfies. The distribution of
participants by length of participation is shown in Figure 2. A total of 11 participated for one week,
four for two weeks, eight participated for six weeks, and five participants completed all eight weeks of
the trial period.
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For each of the 190 dental selfies, a dentist marked bounding boxes (see Figure 3) around the eight
front-most teeth (see Figure 4 for the notation)—the four central incisors (upper right: 11, upper left:
21, lower left: 31 and lower right: 41) and four lateral incisors (upper right: 12, upper left: 22, lower
left: 32 and lower right: 42)—and each bound area was cropped as a separate image. Producing a total
dataset of 1520 single tooth (and surrounding gum) images.
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Figure 4. The ISO 3950 Teeth notation system.

Next, Figures 5 and 6 illustrate the distribution of MGI scores—overall, and per tooth position,
indicating healthy, mild or severe inflammation, as was determined by a single board-certified examiner
dentist that was blind to the participants.
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Figure 6. Eight histograms, one for each of the eight tooth positions we dealt with. In each histogram the
five bins are MGI score: 0 (no inflammation), 1–2 (mild inflammation), and 3–4 (severe inflammation).

2.2. Methods

The input to our method is a cropped tooth image and the output is classification of the tooth
gum health status (healthy, mild, or severe inflammation). Our proposed method (Figure 7) consists of
two main parts: (1) feature engineering, extraction of just 35 features per image—specifically tailored
to tooth images and the MGI properties. (2) Two-stage cascade of binary classifiers, for classifying gum
health status based on the MGI score.
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Figure 7. Overview of the method described in the paper. Dataset acquisition: eight single tooth
images manually cropped from each dental selfie taken by iGAM users. Fed into two-part classification
method: part (1) image transformation and feature engineering—extraction of features tailored to
dental images; part (2) two-stage cascade of binary classifiers—Healthy/Unhealthy, Mild/Severe.

Next, is a detailed explanation of each of the two parts in our method.

2.2.1. Part 1 Image Transformation and Feature Engineering

The 35 features were extracted using the following 3-step process; Step 1: separate the image into
two regions—the tooth region and gum region (Figure 8). Step 2: image transformation to achieve
normalization of colors and hues, and edge enhancement. Step 3: feature extraction from the resulting
transformed image. We will now describe these three steps more closely.
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Figure 8. Image separation into two regions—left: the original tooth image; right: the separation into
two regions (clusters) produced by the K-mean algorithm.

Step 1: image separation into two regions–we used the K-mean clustering algorithm with K = 2 to
separate the image into its two most prominent clusters (regions)—the gum region and tooth region.
See Figure 8 for an example of separation into two clear and distinct regions.

Step 2: image transformation—as mentioned, the dental selfies taken by users vary widely due
to differences between cameras used, lighting conditions, image perspective, distance and zooming,
lighting conditions, and more. Thus, we utilize six transformations to normalize image variation.
Five of the six transformations we utilize are widely known from the literature. One transformation we
developed specifically for normalizing dental images. The six are: Teeth Normalized (TN), Histogram
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Equalization Matching (HistMatch) [28], HSV (Hue), Bilateral Filter (BF) [29], Histogram of Oriented
Gradients (HOG) [30], and Canny edge detector (CNY) [31]. These transformations can be divided into
three: the first three (TN, HistMatch, and Hue) serve to normalize differences in lighting conditions
between images, based on color-tone comparison. The fourth de-noises the image. The last two
(HOG and CNY) were used to enhance the gradient, magnitude, and angle at the edge between the
tooth and gum regions, as we assumed that the greater the contrast between gums and teeth the
worse the inflammation (redness). Next is a short explanation about each of the transformations used:
we start by describing the new transformation we developed, which we call teeth normalized (TN),
tailored especially for images from a dental context—it normalizes the image colors by dividing each
pixel’s value by the mean color value of the tooth region as determined by the K-mean clustering
algorithm. We rely on the assumption that the difference in average tooth color between individuals,
effectively normalizes color variation. Histogram Equalization Matching (HistMatch)—is a method
which equalizes image contrast to a preselected randomly picked tooth image. Since the images
were produced by different cameras and under different conditions the HistMatch transformation
normalized all images to one scale. HSV representation (Hue)—HSV (hue, saturation, value) is an
alternative form of encoding color (comparable to RGB), Hue transformation simply means using
only the Hue channel (from the HSV encoding) of the image, as we assume that inflammation can be
identified by the Hue of the color regardless of lightness and saturation. Bilateral filter (BF) [29]—is a
nonlinear, edge-preserving, and noise-reducing method which normalizes and smoothens each pixel
with the average value of its neighbors. Here, our aim is to clean the image of noise, while preserving
the distinction between gum and tooth regions as much as possible. Histogram of Oriented Gradients
(HOG)—is a method that captures the gradient and the orientation in a localized section of the image.
As HOG enhances features from areas where contrast is high, it will focus on the edge between the
gum and tooth regions, the higher the contrast—likely indicating worse gum health status. The last
transformation is Canny (CNY) edge detector, one of the widely known edge detector algorithms;
Here, also, the ‘stronger’ the edge identification—the higher the contrast—likely representing worse
gum inflammation.

Step 3: feature extraction—the following features were extracted: first, we used two values for the
gum region that the K-mean algorithm extracted during Step 1, (1) K-mean centroid (K-MEAN cent)
and (2) std (K-MEAN var). We utilized LBP with rough histograms using three bins to approximate
(3) edges (LBP (edges)), (4) flats (LBP (flats)), and (5) corners (LBP (corners)). Next, the following
six features were extracted from the original image and from the five transformed images: (6) image
mean (IM), (7) standard deviation (SD), (8) gradient-mean (GM), (9) magnitude-mean (MM), and (10)
angle-mean (AM). It might be argued that the statistical measures (such as mean and standard deviation)
depicting global characteristics of the entire image can hardly be used as meaningful features. However,
in our case, because the images for which they are being computed are in fact relatively small, localized
patches cropped from the original dental selfie—as seen in Figure 8—they are indeed significant.
Thus, in total, our method uses just 35 features for each image.

2.2.2. Feature and Classifier Selection

The second part of our method consists of a cascade of two per-tooth-position binary classifiers.
At the first stage we used binary classifiers to classify whether gums are healthy or inflamed. Class 0
(healthy gums) are the images that received an MGI score of 0 (i.e., no gingivitis) and Class 1 (inflamed)
are all images with MGI scores 1 through 4 (some degree of inflammation). At the second stage of
the cascade, another binary classifier classifies the level of inflammation as mild or severe, based on
the MGI score. Class 0 (mild) = MGI score 1 or 2. Additionally, Class 1 (severe) = MGI score 3 or 4.
The input to this second part is the 35 tailored features for each tooth image and the output is a per
stage per tooth position accurate and robust classifier method accompanied by the dominant features
(see part 2 in Figure 7). During the training phase, we utilized the AutoMl-H2O package to evaluate
(by means of 5-fold cross-validation) and automatically select the most accurate classifier per tooth
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position per stage, and the five highest-contribution features per classifier. Then, testing was run only
with the selected classifier-features combinations. The role of the first set of classifiers is to predict if
the given tooth image gum health status is healthy or not (i.e., MGI score is zero or higher). The role of
the second set of classifiers is to predict the severity of the gum inflammation: mild or severe, namely
an MGI score of 1 or 2 vs. score of 3 or 4 (see part 2 of Figure 7).

3. Results

We randomly divided our 44 participants into two groups—39 for training and five for testing,
resulting in a training dataset of 1336 tooth images and a test dataset of 184 tooth images. As described
in the method section, just 35 features were extracted from each image. We utilized the H2O AutoML
package with its default settings, to guarantee reproducibility, we set the max_model (the number of
algorithms to be tested) to 30, and the seed to 1 (Source code for h2o.automl.autoh2o).

Next, we will report results, for each of the two stages of the cascade. First, training results
will be presented: a table reporting the accuracy by the Average AUC (Area Under the Curve) score,
achieved by the best performing classifier for each tooth-position in 5-fold cross-validation, and a
histogram of the features selected—by contribution to accuracy of these classifiers. Then, test-set
results will be presented in a table reporting the accuracy (AUC score) achieved by each tooth-position
classifier-features combination.

Looking at Table 2, which sets out the statistics for the best-performing classifier per tooth position,
you can see that XGBoost was found to be the most accurate classifier for six of the eight positions.

Table 2. Average AUC (Area Under the Curve) results of the best performing classifier, in the first stage of
the cascade, best classifier per tooth-position selected during the training step in 5-fold cross-validation.

Tooth Number Classifier AUC Score

12 XGBoost 0.99
11 XGBoost 0.92
21 MLP 0.76
22 XGBoost 0.85
42 XGBoost 0.98
41 XGBoost 0.88
31 GBM 0.72
32 XGBoost 0.95

Regarding feature selection, the five features found to have the greatest contribution to successful
classification during training were selected. Figure 9 presents the five features with greatest contribution,
for the eight classifiers—one per tooth-position. K-mean var was found to be among the most
contributing features for six of eight tooth positions. TN (IM)—the specialized dental-image feature
we developed—was among the most contributing for five of eight positions. HistMatch (SD) had the
third most positions and it was among the most contributing for four of eight.

Now, let us turn to the test-set results. Table 3 presents the AUC score results. It is noteworthy that
although the test-set is quite small (about 20 images per tooth-position) the AUC score obtained ranges
from 1.0 for positions #12 and #42 to 0.69, with just two positions scoring below 0.8. Additionally,
note that the accuracy of our method is generally higher for the lateral incisors (position #s ending with
2) than the central incisors (those ending with 1), and higher for the lower teeth (position #s beginning
with 3 and 4) than the upper teeth. Additional information regarding the performance of the first
stage test-set, including F1at threshold scores and confusion matrices, can be found in Table A1 and
Figure A1.



Appl. Sci. 2020, 10, 8923 10 of 15

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 15 

Table 2. Average AUC (Area Under the Curve) results of the best performing classifier, in the first 
stage of the cascade, best classifier per tooth-position selected during the training step in 5-fold cross-
validation. 

Tooth Number Classifier AUC Score 
12 XGBoost 0.99 
11 XGBoost 0.92 
21 MLP 0.76 
22 XGBoost 0.85 
42 XGBoost 0.98 
41 XGBoost 0.88 
31 GBM 0.72 
32 XGBoost 0.95 

Regarding feature selection, the five features found to have the greatest contribution to 
successful classification during training were selected. Figure 9 presents the five features with 
greatest contribution, for the eight classifiers—one per tooth-position. K-mean var was found to be 
among the most contributing features for six of eight tooth positions. TN (IM)—the specialized 
dental-image feature we developed—was among the most contributing for five of eight positions. 
HistMatch (SD) had the third most positions and it was among the most contributing for four of eight. 

 
Figure 9. Feature contribution at the first stage of the cascade (healthy/inflammation). The histogram 
represents the five most contributing features for the most accurate classifier for each of the eight 
tooth-positions. 

Now, let us turn to the test-set results. Table 3 presents the AUC score results. It is noteworthy 
that although the test-set is quite small (about 20 images per tooth-position) the AUC score obtained 
ranges from 1.0 for positions #12 and #42 to 0.69, with just two positions scoring below 0.8. 
Additionally, note that the accuracy of our method is generally higher for the lateral incisors (position 
#s ending with 2) than the central incisors (those ending with 1), and higher for the lower teeth 
(position #s beginning with 3 and 4) than the upper teeth. Additional information regarding the 
performance of the first stage test-set, including F1at threshold scores and confusion matrices, can be 
found in Table A1 and Figure A1. 
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Table 3. First stage of cascade; test-set performance: for each tooth position, the AUC score for the
classifier-features combination selected is reported.

Tooth Number AUC Score

12 1.0
11 0.83
21 0.69
22 0.8
42 1.0
41 0.84
31 0.78
32 0.94

At the second stage of the cascade, another binary classifier classifies the degree of inflammation
as mild or severe, based on the MGI score. Here, again, we will first report the 5-fold cross-validation
results from training for the best performing classifiers and selected—most-contributing—features
(Table 4), then we will show the test-set results for the classifier-features combinations (Table 5).

Table 4. Average AUC results of the best performing classifier, in the second stage of the cascade, best
classifier per tooth-position selected during the training step in 5-fold cross-validation.

Tooth Number Classifier AUC Score

12 GBM 0.92
11 XGBoost 0.93
21 MLP 0.95
22 XGBoost 0.87
42 XRT 0.98
41 XGBoost 0.88
31 MLP 0.72
32 MLP 0.97
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Table 5. Second stage of cascade; test-set performance: for each tooth position, the AUC score for the
classifier-features combination selected is reported.

Tooth Number AUC Score

12 0.87
11 0.86
21 0.94
22 0.91
42 0.84
41 1.0
31 1.0
32 1.0

The most contributing features are presented in Figure 10. As evident, our unique dental-image
feature, TN (IM) was found to be among the most contributing for seven of eight tooth position classifiers.
k-mean (var) and angle-mean (AM) were among the most contributing for four of eight positions.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 
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the eight tooth-positions.

Test set results of the second stage of the cascade, as can be seen in Table 5, XGBoost classifier,
which dominated the first stage, was still among the most accurate, but MLP outperformed XGBoost.
We observe high accuracy for all teeth, with higher accuracy achieved for the lower teeth, the accuracy
ranging between 1.0 and 0.84. Additional information regarding the performance of the second stage
test-set, including F1atthreshold scores and confusion matrices, can be found in Table A2 and Figure A2.

4. Discussion

This study is the first to our knowledge that utilized an mHealth app (iGAM) to study the use of
dental selfies to reduce gingivitis in the home setting. We present a new method capable of accurately
classifying gum condition based on the MGI score. From the results presented it is evident that despite
the small dataset our method produced accurate classification of gum condition. Our method can
aid the diagnostic process, towards prognosis by automatically reporting whether gums are healthy
or inflamed, based on dental selfies taken by the user, using an efficient and focused set of features.
Among the classifiers considered in our testing, XGBoost was most accurate for the most cases overall
(6/8 positions at the first stage of the cascade and another 3/8 at the second stage). This is not surprising,
considering XGBoost has proven accurate and efficient in many contexts [32]. Moreover, XGBoost is
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computationally relatively light, making it ideal for implementation on mobile devices. MLP proved
most accurate for four cases.

Our method uses a classifier per tooth per stage. The results of our lower teeth classifiers achieved
higher accuracy than those for the upper teeth. In addition, lateral incisor classifiers were more accurate
than central incisor classifiers. These results demonstrate the reliability of our method, since they
correlate with clinical dental findings that the gums of the lower teeth tend to show inflammation and
escalation first, due to proximity to the salivary glands and poor brushing technique [33].

As to the feature selection, we focused on a set of 35 features extracted per image, chosen specifically
with the characteristics of our dental tooth images in mind (wide variability in lighting, perspective,
cameras, and other qualities, with underlying similarity in content). The analysis by AutoML-H2O
found the most contributing features for each of the classifiers (see Figures 9 and 10). Note that our
innovative feature tailored to the dental context—TN (IM)—was selected by AutoML-H2O for the
most cases 5/8 positions at the first stage, and 7/8 at the second stage, proving its value.

Despite the two-stage cascade, note that at the second stage, our accuracy for three of the four lower
teeth—which as we mentioned are the more significant ones—is 1.0 (see Table 5 and Figure A2) which
means the accuracy of the model overall is dependent on the accuracy of the first stage. Looking at the
Confusion Matrices in Table A2 teeth positions #11 and #22 have an overall accuracy of 0.9, but have
an accuracy of 0 for healthy gums—meaning the system is oversensitive. This can be considered an
advantag—false positives rather than false negatives, so as not to miss any images where gums are
inflamed, we prefer a dentist to have to unnecessarily inspect healthy gums, than that they might miss
a case of inflammation.

The limitation for this research was the small dataset. We believe that the dataset size was a
central reason we needed to train per-case classifiers. Since the attempt to train a single classifier for
all teeth positions was unsuccessful, we trained a unique classifier-features selection per position.
Moreover we could not train a single classifier to classify cases between three classes (healthy gums,
mild inflammation, and severe inflammation), though in this case the cause may be the AutoML-H2O
package, which while proving itself capable of achieving high accuracy for binary classification is
known to underperform on multiclass classification tasks, leading us to adopt a two-stage cascade of
binary classifiers [26]. To advance and improve our method we need to gather a more comprehensive
dataset, and have MGI ratings from several dentists, allowing for a generalization of the model.
Another avenue to be explored is the degree of correlation between gum condition at the frontal teeth
and overall gum condition, especially in the molar teeth [32].

Another drawback of the implementation we explored in this paper is the need to manually mark
a bounding box around each tooth for cropping single tooth images from dental selfies, at the next
stage, to provide an end-to-end automated system, we intend to develop an automatic segmentation
process, also implementing advanced methods such as deep learning.

5. Conclusions

iGAM app is the first m-Health app for monitoring gingivitis to promote oral health using
self-photography [21]. The innovation of the paper is our proposal of a method that—based on dental
selfies alone—can inform both the user and dental healthcare provider whether the patient is suffering
from gingivitis, and alert them to any deterioration in gum health over time, and this information
can easily be used by the periodontist for recommending the best course of treatment or hygiene to
improve gum health or maintain healthy gums.
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Appendix A

Herein we include additional results from the study, which are not strictly necessary to the
argument of the main text, but nevertheless offer important insights and elaborate on the data
presented in the main text.

Table A1 and Figure A1 present results of the first stage of the cascade.

Table A1. First stage of cascade; test-set performance: for each tooth position, the AUC and F1 at
threshold score for the best performing classifier-features combination selected reported.

Tooth Number F1 at Threshold AUC Score

12 1.0 at 0.64 1.0
11 0.94 at 0.24 0.83
21 0.93 at 0.41 0.69
22 0.94 at 0.1 0.8
42 1.0 at 0.54 1.0
41 0.86 at 0.99 0.84
31 0.97 at 0.4 0.78
32 0.97 at 0.33 0.94
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Figure A1. Test-set performance, per tooth-position binary classifier (healthy/inflamed) results at the
first stage of the cascade. In the confusion-matrix class-0 indicates healthy gums (MGI score of 0) and
class-1 inflamed (MGI scores 1 through 4).

Table A2 and Figure A2 present results of the second stage of the cascade.

Table A2. Second stage of cascade; test-set performance: for each tooth position, the AUC and F1 at
threshold score for the classifier-features combination selected are reported.

Tooth Number F1 at Threshold AUC Score

12 0.82 at 0.9 0.87
11 0.84 at 0.4 0.86
21 0.88 at 0.36 0.94
22 0.88 at 0.08 0.91
42 0.8 at 0.76 0.84
41 1.0 at 0.76 1.0
31 1.0 at 0.57 1.0
32 1.0 at 054 1.0
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