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Abstract: This paper considers the dynamic vehicle routing problem where a fleet of vehicles deals
with periodic deliveries of goods or services to spatially dispersed customers over a given time
horizon. Individual customers may only be served by predefined (dedicated) suppliers. Each vehicle
follows a pre-planned separate route linking points defined by the customer location and service
periods when ordered deliveries are carried out. Customer order specifications and their services
time windows as well as vehicle travel times are dynamically recognized over time. The objective
is to maximize a number of newly introduced or modified requests, being submitted dynamically
throughout the assumed time horizon, but not compromising already considered orders. Therefore,
the main question is whether a newly reported delivery request or currently modified/corrected one
can be accepted or not. The considered problem arises, for example, in systems in which garbage
collection or DHL parcel deliveries as well as preventive maintenance requests are scheduled and
implemented according to a cyclically repeating sequence. It is formulated as a constraint satisfaction
problem implementing the ordered fuzzy number formalism enabling to handle the fuzzy nature of
variables through an algebraic approach. Computational results show that the proposed solution
outperforms commonly used computer simulation methods.

Keywords: dynamic vehicle routing problem; ordered fuzzy numbers formalism; declarative modelling;
service delivery management

1. Introduction

The Industry 4.0, also referred to as “smart” factory, and including solutions such as smart
networking, mobility, flexibility of industrial operations and their interoperability, integration with
customers and suppliers [1] using the possibilities of modern IT technologies, enables to monitor
physical processes and make smart decisions through real-time communication and cooperation
with humans, machines, sensors, etc. In this context, the Maintenance 4.0, also known as predictive
maintenance, seems to be its main application area [2]. This is because by using advanced Artificial
Intelligent (AI) methods to predict disruptions in the functioning of technical systems, predictive
maintenance enables the minimization of downtime, prolonging machine life, increasing production
efficiency, resource utilization, and reducing costs [3–5]. There is no common definition of Maintenance
4.0 or Industry 4.0, however, a number of studies undertaking these issues are growing rapidly and are
also witnessed by many taxonomies of problems identified in both these areas, which presented, inter
alia, in the works [2,6–8].
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Technological changes such as the high need for transparency (e.g., supply chain visibility) and
integrity control (right products, at the right time, place, quantity, condition, and at the right cost) in
the supply chains make it possible to improve the level of requested services ordered by geographically
dispersed customers. By analogy to the names of the aforementioned areas, the expectations mentioned
here underlie the new concept of Logistics 4.0 [1].

In the context of the last two of the aforementioned concepts, i.e., Maintenance 4.0 and Logistics
4.0, it is worth paying attention to the next one called Perfective Maintenance. The idea behind this
approach is to strive to improve the functioning of the system by supplementing it with additional
functionalities and properties that improve it, e.g., improve accuracy, increase resistance, decrease to
cost, etc. The essence of this concept, derived from Perfective Software Maintenance, the aim of which
is to improve the performance (e.g., updating the software according to changes in the user interface),
maintainability, or other attributes of a computer program [9]; it can also be used in systems providing
ordered services with transport to the customer. The presented idea can be used in the course of
maintenance of dispatcher’s functionality responsible for planning of cyclically repeated delivery/service
missions servicing spatially dispersed customers. In the considered case, the functioning of the vehicle
fleet planning system could be improved by supplementing it with additional functionalities enabling
to react to ad hoc changes in the ordered services. Consequently, such a perfective-maintenance-based
approach concerned with the functional enhancement of the vehicle fleet planning system or enhancing
its user interface would be especially useful in situations connected with the dynamic planning of
milk-run driven systems providing ordered services while taking into account the constraints imposed
by customer requests’ uncertainty.

The milk-run routing and scheduling problems are usually recognized and formulated as a special
case of the vehicle routing problem (VRP), [10–13]. Just as some authors distinguish between the
inbound logistics referring to the transport, storage and delivery of goods coming into a business, and the
outbound logistics referring to the same for goods going out of business [14], other authors distinguish
in-plant milk-run (referring to raw materials, work in process and finished goods distribution) and
out-plant milk-run supporting commodities and products transport between manufacturers and
customers as well as service visits [15,16]. In both cases, the decisions regarding the vehicles routing
policies are considered, i.e., the determination of routes along which customers are visited, and the
schedule guaranteeing the congestion-free movement of the vehicles.

Milk-run problems usually concern planning routes that are cyclically repeated according to a fixed
schedule in a fixed sequence and with fixed arrival times to plan whom to serve, how much to deliver
and which regularly repeated routes to travel on using which fleet of vehicles. Relevant examples
are provided by public transport systems including rail transport, urban transport, and intercity bus
transport etc. Rhythmic delivery, repeated at regular intervals, is also a feature of systems of the cyclic
delivery of food products to distribution centers, waste, recycling and composting pickup, packs to
parcel locker-machine points, periodic service inspections as well as restocking beverages in street
vending machines.

Since VRPs, which are Non-deterministic Polynomial-time (NP)-hard problems, only approximate
solutions with the help of heuristic methods can be obtained [17,18]. In real-live cases, these kinds
of problems become more complex due to the necessity of taking into account the influences caused
by disruptions (following changes in execution of already planned deliveries and the appearance of
new requests/orders, congestion or accidents) and the fuzzy nature of the parameters determining
the timeliness of the performed services/deliveries. From a dynamic perspective, arising from the
fact that orders are revealed incrementally over time, the considered outbound dynamic routing
problem (DRP) consists of designing the vehicle routes (determined by customers’ visit sequences) in
an online fashion, i.e., communicating to the vehicle which customer to serve next as soon as the visit
is accomplished. All related decisions are made without the knowledge of future orders. The need
to take DRP commonly arises in the area of maintenance operations, where the ability to redirect a
moving vehicle to a new request nearby allows for additional savings [19–21]. However, the fulfillment
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of these expectations is conditioned by the ability to track the vehicle’s position on an ongoing basis
and communication ensuring the quick assignation of a new destination, i.e., with a guarantee of
dynamically delivered services.

The uncertainty of DRP data due to traffic disruptions as well as changing the dates of the
services completion implying the uncertainty of the final result force the necessity to adopt a model
implementing the formalism of fuzzy sets. In turn, considering the necessity to take into account
the aforementioned constraints of the nature of inequalities, implications and logical conditions,
the declarative model seems to be best suited to guarantee these expectations. Therefore, the DRP can
be formulated as a fuzzy constraint satisfaction problem and solved using both computer simulation
and an analytical ordered-fuzzy-numbers-driven approach. It should be noted, that in opposition
to standard fuzzy numbers, the support of the fuzzy number being a result of algebraic operations
performed on ordered fuzzy numbers domain does not expand. This is the reason why the proposed
use of the oriented fuzzy numbers algebra increases the competitiveness of the analytical approach
in relation to the time-consuming computer simulation-based calculations of the feasible scenario of
outbound mobile teams’ dynamic rerouting.

In this context, the purpose of our research was to develop an ordered-fuzzy-numbers-driven
declarative model, enabling to define the DRP subject to fuzzy maintenance time and transportation
time constraints, the solution to which provides the possible dynamic rerouting scenarios. Unlike most
of the problems discussed in the literature which focus on the search for solutions that optimize the
path traveled or the cumulative cost of the mission carried out, in our approach, an answer to the
following question was sought: can the newly reported delivery requests or the performance date
correction of the already requested ones be accepted or not?

The present study is a continuation of our previous work that explored methods of the fast prototyping
of solutions to the problems related to the routing and scheduling of tasks typically performed in batch
flow production systems [22–28]. Its main contribution are threefold:

• Outbound mobile teams-driven maintenance services require taking into account disruptions
occurring in road traffic (e.g., congestion-restricted delivery time) and the uncertainty of the
delivery (e.g., unpacking and storage) operations or maintenance (e.g., repair or condition
monitoring) services as well as changing the ordered dates of the service/delivery performance.

• Formulation of the DRP implementing the algebra of ordered fuzzy numbers allows one to plan
mobile teams’ operation, taking into account the uncertainty of their travel time and the time of
conducted repairs.

• In opposition to standard fuzzy numbers, the support of the fuzzy number as a result of algebraic
operations performed on ordered fuzzy numbers domain does not expand, which determines its
dominance on the currently used computer simulation methods, the proposed algebraic approach
allows for online vehicle rerouting and/or rescheduling forced by disturbances caused by ad hoc
changes in the orders performed.

The structure of the paper is organized as follows. Section 2 includes the review of the literature.
Section 3 provides preliminaries briefly referring to some known concepts from ordered fuzzy numbers
theory and constraint programming techniques. The problem statement and the methodology used for
its solution are described in Sections 4 and 5, respectively. Computational results are then reported
and analyzed in Section 6, while conclusions and future directions of work are considered in Section 7.

2. Related Work

Most of the problems appearing in the milk-run systems are aimed at searching for an optimal
periodic distribution policy. Examples of such problems [15,29] include both simple ones, e.g., Mix Fleet
VRP, Multi-depot VRP, Split-up Delivery VRP, Pick-up and Delivery VRP, VRP with Time Windows,
VRP with Backhauls, and more complex ones, e.g., VRP with multi-trip multi-traffic pick-up and
delivery problem with time windows and synchronization being a combination of variants of the
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vehicle routing problem with multiple trips, a vehicle routing problem with a time window, and a
vehicle routing problem with pick-up delivery. Since milk-run routing and scheduling problems
follow VRPs which are NP-hard, hence their solutions derived from the milk-run distribution policy
while, for instance, aimed at determining in what time windows parts, can be collected from suppliers,
and how many logistic trains and along which routes they should run, can be obtained with the help
of heuristic methods [17,18,20,30]. Regardless of the class of the problems whether typical for in-plan
or out-plant milk-run systems [14] or accentuating either the dynamic or static character of vehicle
routing [15,17,21,29,30], their goal is to search for optimal solutions. These studies implicitly assume
that there exist admissible solutions, e.g., ones that ensure the congestion-free flow of concurrently
executed transport processes [31,32] and/or that planned routings and schedules are robust to assumed
disruptions [20,21]. The most studies, which address outbound milk-run systems, focus on the
routings and schedules of the vehicle fleet used. Most of the implemented mathematical model-based
frameworks employ heuristic approaches using different metaheuristics, such as hybrid ant colony
optimization and Tabu search.

It is worth noting that among the aforementioned issues, relatively few studies are devoted to
the problems of outbound milk-run dynamic routing and the systems in which services are provided
by appointment. In systems of this type, the dynamic multi-period vehicle problem is solved, which
boils down to services scheduling being implemented in a rolling horizon fashion, in which new
requests are received while unfulfilled during the first period together with the set of customer requests
preplanned for the next period constitute the new portfolio of orders to be considered for subsequent
scheduling [13,16,33]. Mentioned approaches do not take into account many the practical requirements
and limitations imposed by, for example, the need to take into account the specificity of the same
services and the capabilities of the teams performing these services. In general, in addition to the
need to balance the needs of the serviced customers with the capability of the team implementing the
ordered services, the issues of the synchronization of works carried out for a given user by various
service teams (e.g., in mutual exclusion or rendez-vous mode) should also be noticed. A broad review
of VRP taxonomy-inspired problems formulated in the milk-run systems class are presented in the
works [10–12,19].

In many real situations, DRP data uncertainty due to traffic disruptions (uncertain travel times
caused by weather conditions, daily changes in traffic intensity etc.) as well as the degree of difficulty
of the service provided (caused by intertwined overhauls, condition monitoring, product repairs
operations, etc.) cannot be valued in a precise way. However, the minority of models of the so-called
Fuzzy VRP only assume vagueness for fuzzy demands to be collected and fuzzy service or travel
times. Literature on these issues is very scarce [34], despite the rapidly growing demand for predictive
maintenance-oriented service providers [10]. The rapidly developing enterprise servitization indicates
the growing demand for this type of services [35–37].

It is worth adding that the development of the servitization-based approach is determined by
the ability to reconfigure a delivery/service system, e.g., by taking into account the change of used
vehicles’ number and their capacity, the number and location of refilling stations (concerning fuel,
tools, materials) and so on. In that context, the reconfigurability of the outbound milk-run driven
delivery/services system can be seen as the answer to expectations related to achieving the desired
level of system flexibility as well as the requirements of the outbound logistics resilience (referring
to maintaining the assumed system’s stability and robustness levels). It is worth noting that such
challenges fit into the concept of intertwined supply network viability, guaranteeing survival in a
changing environment [38].

To summarize, the presented review shows that there is an urgent need to develop analytical
methods that would replace the labor-intensive and time-consuming methods of the computer
simulation-based assessment of possible maintenance service scenarios. The methods sought should
take into account the fact that the mobile service missions carried out require taking into account
the uncertainty factor resulting from the fuzzy nature of the vehicle movement and services period.
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It seems that the requirements mentioned above meet our approach, which combines the declarative
modeling paradigm (implemented through the constraints of programming techniques) with an algebra
of ordered fuzzy numbers.

3. Preliminaries

3.1. An Ordered Fuzzy Numbers Framework

The routing and scheduling problems developed to date have limited use due to the data
uncertainty observed in practice. The values describing parameters such as transport time or loading/

unloading times depend on the human factor, which means they cannot be determined precisely. It is
difficult to account for data uncertainty by using fuzzy variables due to the imperfections of the classical
fuzzy numbers algebra [26]. Equations which describe the relationships between fuzzy variables
(variables with fuzzy values) using algebraic operations (in particular, addition and multiplication) do
not meet the conditions of the Ring (among others if the condition∀A∈F A+ 0 = A is met, then condition
∀A∈F ∃!B∈F A + B = 0 is not met). In addition, algebraic operations based on standard fuzzy numbers
follow Zadeh’s extension principle. In practice, this means that no matter what algebraic operations are
used, the support of the fuzzy number, which is the result of these operations, expands. Consequently,
it is impossible to solve algebraic equations with fuzzy variables. In particular, this means that for
any fuzzy numbers a, b, c, the following implication (a + b = c)⇒ [(c− b = a)∧ (c− a = b)] does not
hold. This makes it impossible to solve a simple equation A +X = C. This fact significantly hinders the
use of approaches based on declarative models, in which most of the relationships between decision
variables are described as linear/nonlinear equations and/or algebraic inequalities.

We address these issues by proposing the formalism of ordered fuzzy numbers (OFNs) algebra [39]:

Definition 1. An OFN is a pair of continuous real functions:

Â = ( fA, gA), where : fA, gA : [0, 1]→ R. (1)

The functions fA and gA are called the up part and the down part of the OFN Â, respectively.
The values of these continuous functions are limited ranges, which can be defined as the following
bounded intervals: UPA = (lA0, lA1) and DOWNA = (pA1, pA0). Assuming that fA is increasing and
gA is decreasing as well as that fA ≤ gA, the membership function µA of the OFN Â is as shown in
Figure 1a,b:

µA(x) =


f−1
A (x)

g−1
A (x)

1
0

when x ∈ UPA
when x ∈ DOWNA
when x ∈ [lA1, pA1]

otherwise

(2)

A property called the orientation (direction) is defined for an OFN. There are two types of
orientation: positive, when Â = ( fA, gA) the direction is consistent with the direction of the OX axis,
and negative, when Â = (gA, fA), the direction is opposite to the direction of the OX axis. Assuming
that the values of all fuzzy variables may have a different orientation, the definitions of the algebraic
operations used are as follows:

Definition 2. Let Â = ( fA, gA) and B̂ = ( fB, gB) be OFNs. Â is a number equal to B̂ (Â = B̂), Â is a number
greater than B̂ or equal to or greater than B̂ (Â > B̂; Â ≥ B̂), Â is less than B̂ or equal to or less than B̂ (Â < B̂,
Â ≤ B̂) if: ∀x∈[0,1] fA(x) ∗ fB(x)∧ gA(x) ∗ gB(x), where the symbol ∗ stands for: =, >, ≥, <, or ≤.

Definition 3. Let Â = ( fA, gA), B̂ = ( fB, gB), and Ĉ = ( fC, gC) be OFNs. The operations of addition
Ĉ = Â + B̂, subtraction Ĉ = Â − B̂, multiplication Ĉ = Â × B̂ and division Ĉ = Â/B̂ are defined as
follows: ∀x∈[0,1] fC(x) = fA(x) ∗ fB(x)∧ gC(x) = gA(x) ∗ gB(x), where the symbol ∗ stands for +, −, ×, or ÷.
The operation of division is defined for B̂ such that

∣∣∣ fB|>0 and
∣∣∣gB|>0 for x ∈ [0,1].
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In recent years, the concept of OFNs has been continuously developed and used in various
practical applications. Many publications have been devoted to the analysis of the OFN model in
relation to convex fuzzy sets [40–43].Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 21 
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Figure 1. (a) Ordered fuzzy number (OFN) Â represented as a convex fuzzy number; (b) functions
fA, gA determining Â (positive orientation); and (c) the discrete representation of Â (dx = 0.5).

3.2. Illustrative Example

Let us consider the graph G = (N, E)modelling a transportation network composed of |N| = ω = 11
delivery points (hereinafter referred to as nodes), i.e., customers and the service base, as shown in
Figure 2. The points include 1 node representing the service point N1 and 10 nodes representing
customers N2–N11. The customers N2–N11 are cyclically serviced (with period T = 2000 u.t.) by the
mobile service teams (MSTs) traveling form node N1. The beginning moment of the node Nλ occupation
(service) by team Uk is described by variable yk

λ
. The service is executed in intervals determined by the

service deadline ∆λ = [ldλ; udλ] ∈ ∆ (see Table 1), i.e., yk
λ
≥ ldλ and yk

λ
+ tλ ≤ udλ (where tλ is time of

node Nλ occupation). Moreover, each node Nλ can be serviced by MSTs offering required qualifications
and confirmed with the appropriate certificates. The considered sets of qualifications ψλ ∈ Ψ which
are required by customers Nλ are shown in Table 2.
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Table 1. Service deadlines for customers N2–N11.

N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

ldλ 1200 300 900 300 450 700 900 300 600 700
udλ 1900 600 1500 600 750 1200 1300 800 1200 1100

Table 2. Sets of required qualifications N2–N11.

N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

ψλ {B} {A} {A, B} {B} {B, C} {C} {C} {A} {A} {C, A}

For example, customer N4 should be serviced within the interval time [900; 1500] by MSTs offering
qualifications A and B (one MST offering set {A, B} or two MSTs: the first offering A and the second
offering B).

Each edge
(
Nβ, Nλ

)
∈ E linking nodes Nβ and Nλ is labelled with a fuzzy variable (in the OFN

representation) representing the uncertainty of the traveling time dβ,λ between the nodes Nβ and Nλ

(see Figure 3). Given is a set of MSTsU = {U1, . . . , Uk, . . . , UK} servicing customers spatially dispersed
in network G.
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For each Uk the set Φk of the offered qualifications is assigned. For example, the available set
U = {U1, U2, U3} in a network G (Figure 2) contains three MSTs offering the following qualifications:
Φ1 = {A, B}; Φ2 = {C, A}; Φ3 = {B, C}. This means that:

• The team U1 can completely satisfy the expectations of the nodes: N2, N3, N4, N5, N9, N10,
and partially those of the nodes: N6, N11;

• The team U2 can completely satisfy the expectation of nodes: N3, N7, N8, N9, N10, N11, and partially
of nodes: N4, N6;
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• The team U3 can completely satisfy the expectations of the nodes: N2, N5, N6, N7, N8, and partially
those of the nodes: N4, N5 and N11.

The routes traveled by team Uk are denoted by sequences of nodes: πk = (Nk1 , . . . , Nki , Nki+1 , . . . , Nkµ),

where ki ∈ {1, . . . , K}, ∀ki,k j Nki , Nk j ,
(
Nki , Nki+1

)
∈ E. Nodes representing the service point (e.g., N1)

appear along every route. Moreover, each route πk consists of nodes in which customers Nλ assigned
to them expect services that require qualifications ψλ, i.e., for each team Uk offering qualifications Φk
the following condition holds Φk ∩ ψλ , ∅.

In this context, the problem of the proactive planning of service team trips boils down to the
question: do the schedule and routings of MSTs guarantee the timely execution of the ordered services?

Given a setU of MSTs providing services (according to given qualifications Φk) to the customers
allocated in a network G (ordering an assumed kind of services Ψ). Does there exist a set of routes Π
guaranteeing the timely execution of the ordered services (according to given service deadlines ∆λ)?

The examples of such routesΠ and the associated fuzzy schedule for the network G for Figure 2 are
illustrated in Figures 4 and 5. The routes are specified by the sequences of nodes: π1 = (N1, N9, N10, N4, N1),
π2 = (N1, N3, N11, N1),π3 = (N1, N5, N6, N7, N8, N2, N1). It should be noted that in the presented solution,
customer service is provided only by the necessary MSTs. Moreover, despite the uncertain (fuzzy) traveling
times dβ,λ, it is also assumed that all customers are serviced cyclically (with period T = 2000) due to given
service deadlines ∆λ—see Figure 5.
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Due to the occurrence of unforeseen disturbances, the implementation of proactively designated
customers service plans becomes practically impossible. An example of such a disturbance are the
unforeseen changes of service deadlines. Such a kind of disturbance is presented in Figure 5 where
the dispatcher receives information about changing the date of the customer service being located
at the node N6 (from ∆6 = [450; 750] to ∆∗6 = [650; 950]), see the second window (moment t∗ = 2500
when U1 occupies N9, U2 occupies N3 and U5 occupies N5). Due to this change, the adopted routes
do not guarantee the implementation of maintenance services on the set dates—the handling of N6

according to the new service deadline ∆∗6 = [650; 950] prevents the timely handling of the client N8

and vice versa. In such a situation, it becomes necessary to answer the following question:
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Given a setU of MSTs providing services (according to given qualifications Φk) to the customers
allocated in a network (ordering assumed kind of services Ψ), MSTs move along a given set of routes
Π according to a cyclic fuzzy schedule Ŷ. Given is a disturbance changing ∆λ to∆∗λ at the moment t∗ .
Does there exist a rerouting ∗Π and rescheduling ∗̂Y: of MSTs, which guarantee the timely execution
of the ordered services?

The possibility of the reactive (dynamic) planning of MST missions in the event of the disruption
of service deadlines is the subject of the following chapters.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 21 

 
 

Given a set 𝒰 of MSTs providing services (according to given qualifications Φ௞) to the customers 
allocated in a network 𝐺 (ordering assumed kind of services Ψ), MSTs move along a given set of 
routes 𝛱 according to a cyclic fuzzy schedule 𝕐෡. Given is a disturbance changing Δఒ to Δఒ∗  at the 
moment 𝑡∗. Does there exist a rerouting 𝛱 ∗  and rescheduling 𝕐 ∗෢: of MSTs, which guarantee the 
timely execution of the ordered services? 

The possibility of the reactive (dynamic) planning of MST missions in the event of the disruption 
of service deadlines is the subject of the following chapters. 

 
Figure 5. Fuzzy schedule for the implementation of maintenance services. 

4. Problem Description 

4.1. Assumptions 
The following assumptions are met: 

• Given is a network 𝐺 = (𝑁, 𝐸), 
• Each node 𝑁ఒ ∈ 𝑁 is labelled with a fuzzy value 𝑡ఒෝ  (represented in terms of OFN) denoting the 

duration of node occupation (service); 
• Each edge ൫𝑁ఉ, 𝑁ఒ൯ ∈ 𝐸 is labeled with a fuzzy value 𝑑ఉ,ఒ෢  denoting the travel time between nodes 𝑁ఉ and 𝑁ఒ; 
• Given is a set 𝒰 of MSTs, in which each MST 𝑈௞ travels route 𝜋௞ (𝜋௞ ∈ 𝛱); 
• Each 𝑈௞ offers the set of qualifications Φ௞ expected by the served customers; 
• Node 𝑁ଵ representing a service point occurs uniquely in all routes; 
• Customer assigned to the node 𝑁ఒ  ( 𝜆 > 1 ) expects services that require proper set of 

qualifications 𝜓ఒ; 

-  ribbon-like arterial road whose width 
determines the time period of 𝑈ଵ 
movement  

-  ribbon-like arterial road whose width 
determines the time period of 𝑈ଶ 
movement  

- service deadline Δఒ 

Legend: 
-  ribbon-like arterial road whose width 

determines the time period of 𝑈ଷ 
movement  

0 

1 moment of service 
beginning on 𝑁ଵଵ 

moment of service 
termination on 𝑁ଵଵ 
cycle 𝑞 = 1 𝑞 = 2 cycle 𝑞 = 3 

change of service 
deadline ∆଺  

moment when the 
disturbance occurs 

service deadline 
on 𝑁ଵ଴  

Figure 5. Fuzzy schedule for the implementation of maintenance services.

4. Problem Description

4.1. Assumptions

The following assumptions are met:

• Given is a network G = (N, E),

• Each node Nλ ∈ N is labelled with a fuzzy value t̂λ (represented in terms of OFN) denoting the
duration of node occupation (service);

• Each edge
(
Nβ, Nλ

)
∈ E is labeled with a fuzzy value d̂β,λ denoting the travel time between nodes

Nβ and Nλ;
• Given is a setU of MSTs, in which each MST Uk travels route πk (πk ∈ Π);
• Each Uk offers the set of qualifications Φk expected by the served customers;
• Node N1 representing a service point occurs uniquely in all routes;
• Customer assigned to the node Nλ (λ > 1) expects services that require proper set of qualificationsψλ;
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• Each route πk consists of nodes in which customers Nλ assigned to them expect services that
require qualifications ψλ following Φk ∩ ψλ , ∅;

• Customers are serviced cyclically in time windows repeated with period T;
• Customer assigned to the node Nλ is serviced by deadline ∆λ = [ldλ; udλ];

• Fuzzy beginning moments ŷk
λ

(represented as OFN) of the node Nλ occupation make up final

fuzzy cyclic schedule Ŷ;
• Disruption is understood as a change of the service deadlines from ∆ to ∆∗;
• Moment t∗ determines the disruption occurring.

It is also assumed that—values of the decision variables are represented as OFN, see Definition 1.
Consequently, the OFN Â is described by sequences fA

′ and gA
′ containing the values of functions fA

and gA obtained by discretization of the interval [0, 1]:

fA
′ = ( fA(0), fA(dx), . . . , fA((M − 1) dx), fA(1)), (3)

gA
′ = (gA(1), gA((M− 1)dx), . . . , gA(1dx), gA(0)), dx =

1
M

, (4)

where (M + 1) is the number of samples (Figure 1c).

4.2. Declarative Model

Following the assumptions stated above, the proposed reference model consists of:

Parameters:

Crisp parameters:

G : graph of a transportation network G = (N, E), where N = {N1, . . . , Nλ, . . . , Nn} is a set of nodes

and E =
{(

Ni, N j
)∣∣∣∣ i, j ∈ N , i , j

}
is a set of edges, n—the number of nodes;

U: set of MSTs: U = {U1, . . . , Uk, . . . , UK}, where Uk is the k-th MST;
K: size of the fleet;
Ψ: family of required sets of service qualifications: Ψ =

{
ψ1, . . . ,ψλ, . . . ,ψn

}
, where ψλ is a set of

qualifications required by customer Nλ (see example in Figure 3);
Φ: family of sets of offered qualifications: Φ = {Φ1, . . . , Φk, . . . , ΦK}, where Φk is a set of qualifications

offered by Uk (see example in Figure 3);
∆: set of service deadlines: ∆ = {∆1, . . . , ∆λ, . . . , ∆n}, where ∆λ = [ldλ; udλ] is a deadline for service

at the customer Nλ (see example in Figure 5);
IS: disturbance IS = (M, ∆∗) where: M is a state of fleet mission at the moment t∗: M =

((µ1, . . . ,µk, . . . ,µK), t∗), where µk ∈ N is the node occupied by Uk (or the node the Uk is headed
to) at time t∗, the information about the disturbance is received. For example, in the situation
shown in Figure 5, the information about the disturbance IS was received at moment t∗ = 2500
where the mission state is equal to: M = ((N9, N3, N5), 2500);

∆∗ isasetofchangedservicedeadlines (causedbytheappearanceofdisturbances): ∆∗ =
{
∆∗1, . . . , ∆∗λ, . . . , ∆∗n

}
,

where ∆∗λ =
[
ld∗λ; ud∗λ

]
is a new deadline (after the occurrence of disturbance) for providing a

service to customer Nλ;
T: window width, understood as a period, repeated at regular intervals, in which all nodes should

be serviced (see Figure 5–T = 2000);
Π: set of routes πk before the occurrence of the disturbance IS, where πk is a route of Uk:

πk =
(
Nk1 , . . . , Nki , Nki+1 , . . . , Nkµ

)
, where xk

ki,ki+1
= 1 for i = 1, . . . , µ− 1 and xk

kµ,k1
= 1
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xk
β,λ =

1 if Uk travels from node Nβ to node Nλ

0 otherwise

Imprecise parameters: (defined as positive-oriented OFNs and marked by “ˆ”):

d̂β,λ: traveling time along edge
(
Nβ, Nλ

)
;

t̂λ: time of node Nλ occupation;

Ŷ: fuzzy schedule of fleetU, Ŷ =
(
Ŷ, Ŵ

)
before the disturbance IS:

Ŷ: family of Ŷk, where Ŷk is a sequence of moments ŷk
λ

: Ŷk =
(
ŷk

1, . . . , ŷk
λ

, . . . , ŷk
n

)
, ŷk
λ

is fuzzy

time at which Uk arrives at node Nλ;

Ŵ: family of Ŵk, where Ŵk is a sequence of laytimes ŵk
λ

: Ŵk =
(
ŵk

1, . . . , ŵk
λ

, . . . , ŵk
n

)
, ŵk

λ
is

laytime at node Nλ for Uk.

Variables:

Crisp variables:

∗xk
β,λ: binary variable indicating the travel of Uk between nodes Nβ, Nλ after disturbance IS:

∗xk
β,λ =

1 if Uk travels from node Nβ to node Nλ

0 otherwise

Imprecise variables (positive-/negative-oriented OFNs):

∗̂yk
λ

: fuzzy time at which Uk arrives at node Nλ, after occurrence of the disturbance IS;

∗̂wk
λ

: laytime at node Nλ for Uk, after occurrence of the disturbance IS;

∗̂sk: take-off time of Uk.

Sets and sequences:

∗πk: route of Uk, after occurrence of the disturbance IS: ∗πk =
(
Nk1 , . . . , Nki , Nki+1 , . . . , Nkµ

)
, where:

∗xk
ki,ki+1

= 1 for i = 1, . . . , µ− 1 and ∗xk
kµ,k1

= 1;

∗Π: set of routes ∗πk;

∗̂Wk: sequence of laytimes ∗̂wk
λ

: Ŵk =
(
∗̂wk

1, . . . , ∗̂wk
λ

, . . . , ∗̂wk
n

)
;

∗̂W : family of ∗̂Wk;

∗̂Yk: sequence of moments ∗̂yk
λ

: ∗̂Yk =
(
∗̂yk

1 , . . . , ∗̂yk
λ

, . . . , ∗̂yk
n

)
;

∗̂Y: family of ∗̂Yk;
∗̂Y: fuzzy schedule of fleetU, after occurrence of the disturbance IS: ∗̂Y =

(
∗̂Y, ∗̂W

)
.

Constraints:

Routes. Relationships between the variables describing MST take-off times/mission start times
and the task order:

∗̂sk ≥ 0 ; k = 1 . . .K, (5)(
ŝk ≤ t∗

)
⇒

(
∗̂sk = ŝk

)
; k = 1 . . .K (6)
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(
ŷk

j ≤ t∗
)
⇒

(
∗xk

i, j = xk
i, j

)
; j = 1 . . . n; i = 2 . . . n; k = 1 . . .K, (7)(

ŷk
j ≤ t∗

)
⇒

(
∗̂yk

j = ŷk
j

)
; j = 2 . . . n; k = 1 . . .K, (8)(

ŷk
j ≤ t∗

)
⇒

(
∗̂wk

j = ŵk
j

)
; j = 2 . . . n; k = 1 . . .K, (9)∑n

j=1
∗xk

1, j = 1 ; k = 1 . . .K, (10)(
∗xk

1, j = 1
)
⇒

(
∗̂yk

j =
∗̂sk + d̂1, j

)
; j = 1 . . . n; k = 1 . . .K, (11)(

∗̂yk
j > 0 ∧ ∗̂yq

j > 0
)
⇒

(∣∣∣∣∣∗̂yk
j −
∗̂yq

j

∣∣∣∣∣ ≥ 0
)

; i = 1 . . . n; k, q = 1 . . .K ; k , q, (12)(
∗xk

i, j = 1
)
⇒

(
∗̂yk

j =
∗̂yk

i + d̂i, j + t̂i + ∗̂wk
i

)
; j = 1 . . . n; i = 2 . . . n; k = 1 . . .K, (13)(

Φk ∩ ψ j = ∅ )⇒ (
∑n

i=1
∗xk

i, j = 0) , j = 2 . . . n; k = 1 . . .K, (14)

∪k∈X j
Φk = ψ j, j = 2 . . . n, X j = {k :

∑n

i=1
∗xk

i, j > 0} (15)

∗̂sk + T = ∗̂yk
1 + t̂1 + ∗̂wk

1; k = 1 . . .K, (16)

∗̂yk
j ≥ 0; i = 1 . . . n; k = 1 . . .K, (17)∑n

j=1
∗xk

i, j =
∑n

j=1
∗xk

j,i; i = 1 . . . n; k = 1 . . .K, (18)

∗̂yk
i ≤ T, i = 1 . . . n; k = 1 . . .K, (19)

∗xk
i,i = 0; i = 1 . . . n; k = 1 . . .K. (20)

Service deadlines. All customers Nλ should be serviced by the given deadlines ∆∗λ =
[
ld∗λ; ud∗λ

]
:

∗̂yk
i + t̂i + c× T ≤ ud∗λ, i = 1 . . . n; k = 1 . . .K, (21)

∗̂yk
i + c× T ≥ ld∗λ, i = 1 . . . n; k = 1 . . .K. (22)

4.3. Fuzzy Constraint Satisfaction Problem

The model proposed above allows to define the problem under consideration in the following way:

Given a set U of MSTs servicing customers allocated in a network G (customers are serviced by
prescheduled deadlines ∆), MSTs move along a given set of routes Π according to a cyclic fuzzy
schedule Ŷ. Assuming that there occurs a disturbance IS which changes ∆ to ∆∗, a feasible way of
rerouting (∗Π) and rescheduling (∗̂Y) of MSTs, guaranteeing timely execution of the ordered services,
is sought.

The response to the signaled disturbance IS is the rescheduling and rerouting of the MSTs resulting
then in a new plan of service delivery. In that context, when disturbance IS occurs, the new set of
routes ∗Π and a new schedule ∗̂Y, which guarantees the timely servicing of customers, are determined
by solving the following fuzzy constraint satisfaction (FCS) problem (23):

F̂CS
(
Ŷ,Π, IS

)
=

((
V̂, D̂

)
, Ĉ

(
Ŷ,Π, IS

))
, (23)

where:
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V̂ =
{
∗̂Y, ∗Π

}
is a set of decision variables: ∗̂Y—a fuzzy cyclic schedule guaranteeing the timely

provision of service to customers in the case of disturbance IS, and ∗Π—a set of routes determining
the fuzzy schedule ∗̂Y;

D̂— a finite set of decision variable domains: ∗̂yk
λ

, ∗̂wk
λ
∈ F (F is a set of OFNs (1)), ∗xk

β,λ ∈ {0, 1};

Ĉ— a set of constraints which take into account the set of routes Π, fuzzy schedule Ŷ and disturbance
IS, while determining the relationships that link the operations occurring in MSTs cycles (5)–(22).

To solve F̂CS (23), it is necessary to determine the values of the decision variables from the adopted
set of domains for which the given constraints are satisfied. The implementation of F̂CS in a constraint
programming environment, such as IBM CPLEX ILOG, enables to find the solution.

5. Solution Methodology

The approach proposed assumes that the reaction to randomly occurring disruptions IS (resulting
in, e.g., resignation from services and/or change of the dates of their implementation) takes place on an
ongoing basis in the online mode. This is done through dynamic adaptation (i.e., the rerouting and
rescheduling) of previously adopted routes Π, and schedules Ŷ, i.e., adjusting them (if possible) to the
changes in services timetable.

It is understood that the considered output schedule Ŷ sets the dates of periodically performed
inspections/service repairs ordered by customers. Let Ŷ(q) denote the fuzzy schedule of the q-th cycle
defined as

Ŷ(q) =
(
∗̂Y(q), ∗̂W(q)

)
(24)

where ∗̂Y(q) and ∗̂W(q) are families of the following sets:

∗̂Yk(q) =
(
∗̂yk

1(q), . . . ,
∗̂yk
λ
(q), . . . , ∗̂yk

n(q)
)

and ∗̂yk
λ
(q) = ∗̂yk

λ
+ (q− 1) × T, q = 1, 2 . . . , Q

∗̂Wk(q) =
(
∗̂wk

1(q), . . . ,
∗̂wk

λ
(q), . . . , ∗̂wk

n(q)
)

and ∗̂wk
λ
(q) = ∗̂wk

λ
+ (q− 1) × T, q = 1, 2 . . . , Q

The considered implementations of recurring service missions describe the routesΠ and schedules:
Ŷ(1), Ŷ(2), . . . , Ŷ(Q) sequences, where Q is the number of cycles performed. It is assumed that
disturbance IS can occur in any cycle q.

An algorithm that supports dynamic planning, i.e., vehicle fleet rerouting and rescheduling, based
on the proposed concept of F̂CS (23), is shown in Figure 6. The algorithm processes the successive
customer service cycles q = 1, 2 . . . , Q. If there is a disturbance (IS , ∅) in a given cycle q (at moment t∗),
then the problem F̂CS is solved (solve function). The function solve represents algorithms implemented
in declarative programming environments (responsible for the search for admissible solutions to the
decision problems considered).

The existence of an admissible solution (i.e.,
(
∗̂Y , ∅

)
∧ (∗Π , ∅)) means that there are routes

which ensure that customers are serviced on time when the disturbance IS occurs in the cycle Q. If an
admissible solution does not exist, then the currently used routes and the associated vehicle schedule
should be modified (reduce function) in such a way as to remove the servicing operation at node Nλ at
which disturbance IS occurs. The reduce function is responsible for modifying (rerouting) the routes.
The proposed algorithm formulated in the constraints programming framework was implemented in
the IBM CPLEX ILOG environment.

The presented algorithm generates in reactive mode (in situations of occurrence of service date
change IS) alternative corrected versions of the assumed customer service plan. It needs to be highlighted
that the proposed changes must not disrupt the timing of the customers’ services to whom the disturbance
does not apply to. Thus, there are situations in which such changes resulting in corrected versions of
services delivery mission are not possible. In such cases, it is assumed that the affected customers will
not be served in a given cycle (unhandled requests are not carried over to subsequent cycles).
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The computational complexity of the algorithm from Figure 6 depends on the methods used to
solve the problem F̂CS (function solve). Due to the fact that the problem F̂CS is an NP-hard possibility
of the reactive change of assumed proactively scheduled services is limited to a small scale of problems.
The assessment of the effectiveness of the proposed approach is the subject of the experiments described
in the next section.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 21 

 
 

 
Figure 6. A dynamic rerouting and rescheduling algorithm. 

6. Computational Experiments 

Considering the graph model of the transportation network from Figure 2, in which three MSTs 𝒰 = {𝑈ଵ, 𝑈ଶ, 𝑈ଷ} periodically (with the period 𝑇 = 2000 [u.t].) review the serviced stands owned, by 
using the customers located at nodes 𝑁ଶ– 𝑁ଵଵ, MSTs offer the following sets of qualifications: Φଵ ={𝐴, 𝐵} ; Φଶ = {𝐶, 𝐴} ; Φଷ = {𝐵, 𝐶} . The assumed service deadlines Δ , required qualifications Ψ  and 
fuzzy traveling times between the nodes 𝑑ఒ,ఉ෢  are collected in Tables 1 and 2, Figure 3, respectively. 
Routes 𝜋ଵ = (𝑁ଵ, 𝑁ଽ, 𝑁ଵ଴, 𝑁ସ, 𝑁ଵ) , 𝜋ଶ = (𝑁ଵ, 𝑁ଷ, 𝑁ଵଵ, 𝑁ଵ) , 𝜋ଷ = (𝑁ଵ, 𝑁ହ, 𝑁଺, 𝑁଻, 𝑁଼, 𝑁ଶ, 𝑁ଵ)  determine the 
fuzzy schedule 𝕐෡ of the service mission being carried out as shown in Figure 4. It is easy to see (Figure 
4) that in the second cycle of the fuzzy schedule (in the state 𝑀 = ൫(𝑁ଽ, 𝑁ଷ, 𝑁ହ), 2500൯  ), an information 
about suddenly reported changes in the service deadline Δ଺∗ = [450; 750] (instead Δ଺ = [650; 950]) on 
node 𝑁଺ is announced. Given this, an answer to the following question is sought: 

Does there exist a set of routes 𝛱 ∗  operated by MSTs 𝑈ଵ , 𝑈ଶ  and 𝑈ଷ  for which the fuzzy cyclic 
schedule 𝕐 ∗෢ will guarantee that all customers are serviced on time when disturbance 𝐼𝑆 = (𝑆, Δ ∗) 
occurs? 

In order to find the answer to this question, the algorithm shown in Figure 6 has been employed. 
The problem 𝐹𝐶𝑆෢  (23) was then implemented in IBM ILOG CPLEX (Windows 10, Intel Core Duo2 
3.00 GHz, 4 GB RAM). 

The solution time for the problems of this size does not exceed 60s—see Figure 7c. The following 
routes were obtained: 𝜋ଵ ∗ = (𝑁ଵ, 𝑁ଽ, 𝑁଺, 𝑁ଵ଴, 𝑁ସ, 𝑁ଵ) , 𝜋ଶ ∗ = (𝑁ଵ, 𝑁ଷ, 𝑁଺, 𝑁଻, 𝑁ଵ) , 𝜋ଷ ∗ =(𝑁ଵ, 𝑁ହ, 𝑁ଵଵ, 𝑁଺, 𝑁଼, 𝑁ଶ, 𝑁ଵ). It should be noted that the new routes provide simultaneous customer 

Figure 6. A dynamic rerouting and rescheduling algorithm.

6. Computational Experiments

Considering the graph model of the transportation network from Figure 2, in which three MSTs
U = {U1, U2, U3} periodically (with the period T = 2000 [u.t].) review the serviced stands owned,
by using the customers located at nodes N2–N11, MSTs offer the following sets of qualifications:
Φ1 = {A, B}; Φ2 = {C, A}; Φ3 = {B, C}. The assumed service deadlines ∆, required qualifications Ψ and
fuzzy traveling times between the nodes d̂λ,β are collected in Tables 1 and 2, Figure 3, respectively.
Routes π1 = (N1, N9, N10, N4, N1), π2 = (N1, N3, N11, N1), π3 = (N1, N5, N6, N7, N8, N2, N1) determine
the fuzzy schedule Ŷ of the service mission being carried out as shown in Figure 4. It is easy to
see (Figure 4) that in the second cycle of the fuzzy schedule (in the state M = ((N9, N3, N5), 2500)),
an information about suddenly reported changes in the service deadline ∆∗6 = [450; 750] (instead
∆6 = [650; 950]) on node N6 is announced. Given this, an answer to the following question is sought:

Does there exist a set of routes ∗Π operated by MSTs U1, U2 and U3 for which the fuzzy cyclic schedule
∗̂Y will guarantee that all customers are serviced on time when disturbance IS = (S, ∆∗) occurs?
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In order to find the answer to this question, the algorithm shown in Figure 6 has been employed.
The problem F̂CS (23) was then implemented in IBM ILOG CPLEX (Windows 10, Intel Core Duo2 3.00
GHz, 4 GB RAM).

The solution time for the problems of this size does not exceed 60 s—see Figure 7c. The following
routes were obtained: ∗π1 = (N1, N9, N6, N10, N4, N1), ∗π2 = (N1, N3, N6, N7, N1), ∗π3 = (N1, N5,
N11, N6, N8, N2, N1). It should be noted that the new routes provide simultaneous customer service N6 by
two MSTs: U1, U2 (whose qualifications meet the required service needs: ψ6 ⊂ Φ1 ∪ Φ2).Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 21 
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Figure 7. Cyclic fuzzy schedule (a); no disturbances (b); occurrence of the disturbance (c); and no
disturbances (d).
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In fuzzy schedule ∗Ŷ (Figure 7a), the operations are represented as ribbon-like “arterial roads”,
whose increasing width shows the time of vehicle movement resulting from the growing uncertainty.
It is worth noting that the uncertainty is reduced at the end of each time window as a result of the
operation of vehicles waiting at node N1.The increasing uncertainty is not transferred to the subsequent
cycles of the system. Uncertainty is reduced as a result of the implementation of OFN formalism.

The MST waiting time at node N1 has a negative orientation (laytimes ∗ŵ1
1 , ∗ŵ2

1 and ∗ŵ3
1 ). An example

illustrating the use of standard fuzzy numbers for modeling the behavior of cyclic systems belonging
to milk-run systems can be found in [44]. Taking the above into account, the proposed method of the
dynamic planning of MSTs in cyclic maintenance delivery systems is unique, due to the possibility of
taking into account the reduction in uncertainty in subsequent work cycles of the considered system.

Moreover, the routes ∗π1, ∗π2, ∗π3 remain unchanged (see routes ∗π1, ∗π2, ∗π3 in Figure 7a) until a
disturbance occurs, and then they are rerouted, rescheduled and finally synchronized again so that all
customers are serviced on time. This means that the model developed in this study allows to adjust
the adopted delivery plans to disturbances changing the pre-established services timetable.

In addition to the above experiments, the effectiveness of the proposed approach was evaluated
for the distribution networks of different sizes (different numbers of nodes and MSTs). The results are
collected in Table 3.

Table 3. Resultsof thecomputationalexperimentscarriedout for theselected instancesofdistributionnetworks.

Number of Nodes n Number of MSTs K Calculation Time (s)

5 1 <1
5 2 <1
5 3 <1
5 4 <1

7 1 <1
7 2 <1
7 3 1
7 4 5

9 1 3
9 2 8
9 3 11
9 4 15

11 1 10
11 2 25

11 * 3 31
11 4 67

13 1 22
13 2 61
13 3 108
13 4 124

15 1 46
15 2 115
15 3 215
15 4 380

17 1 250
17 2 554
17 3 >900
17 4 >900

20 1 >900
20 2 >900
20 3 >900
20 4 >900

*—the solution from Figure 7.
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To summarize, the experiments were carried out for networks containing 5–20 nodes in which
services were made by sets consisting of 1–4 MSTs (the sizes of the instances considered correspond to
the sizes of the networks encountered in practice [45]). The aim of the experiments was to estimate
the time necessary to designate the routes to guarantee timely services in the case of disturbances IS
occurrence. In all instances considered, the synthesis of routes required considerable time expenditure.
This means that the problems considered can be solved online mode when the size of the service
distribution network does not exceed 15 nodes. In the case of larger networks, the effect of combinatorial
explosion becomes of significant importance and limits the practical use of this method to the offline
prototyping of possible variants of service mission scenarios.

7. Conclusions

The novelty of this study is that it proposed ordered fuzzy numbers algebra framework aimed
at the solution of the DMRP, which was stated in terms of the fuzzy constraint satisfaction problem.
The specificity of the process involved in the course of the maintenance delivery schedule planning
results in the need to determine the sequentially cumulative uncertainty in the performance of the
operations involved in it. In other words, the accumulation of uncertainties of previously performed
operations result in the increasing uncertainty of the timely execution of subsequent operations.
The question that arises in this context concerns the method for preventing additional uncertainty
introduced by the combinations of summing up uncertainties of successively summed uncertain
deadlines for the implementation of operations. In this context, in contrast to standard fuzzy numbers,
the support of a fuzzy number obtained by algebraic operations performed on the ordered fuzzy
numbers domain does not expand. In turn, however, the possibility of carrying out algebraic operations
is limited to select domains of the computability of these supports. For this reason, sufficient conditions
implying the calculability of arithmetic operations guarantee interpretability of the results obtained
are proposed. Their use confirms the competitiveness of the analytical approach in relation to the
time-consuming computer-simulation-based calculations of MST schedules.

The proposed framework enhanced by modern IT technology, e.g., Internet-of-Things, enables
the digital integration of a vehicle fleet providing maintenance services to geographically dispersed
customers, and provides feasible solutions forced by ad hoc emerging disturbances, i.e., delivering
near-optimal schedules prioritizing the just-in-time performance of maintenance services and the
execution of a maximum of the many orders among those reported during the mission. The results
of the conducted tests demonstrate that the proposed analytical approach enables to cope with the
problems of dynamic routing and scheduling of mobile teams servicing customer requests while
taking into account the uncertainty of the travel time and provided maintenance times. In this sense,
the paper presents the method enabling to generate alternative MST routing scenarios to customer
request change. Its implementation in DSS will support decision-making activities undertaken by
service MSTs dispatcher.

The results of the conducted experiments indicate the implementation of the relevant methods in
systems supporting the reactive scheduling of MSTs following the milk-run driven manner. In this
context, the use of available environments, such as IBM ILOG CPLEX, ECLiPSe, Gurobi, etc., which
make it possible to tackle the practical-scale problems, can be viewed as an attractive solution for
problem-oriented DSS. It is also worth noting that the research conducted, being in line with the
concept of Maintenance 4.0 which stresses the need to seek solutions that allow information systems to
create a virtual copy of the physical world, and provides a programming framework for context-aware
information model design.

In future work, some additional factors including the impatient customer concept [46], refilling
stops, and synchronization of works carried out for a given user by various service teams, will be
recorded and streamlined into the proposed approach. Furthermore, the currently studied problem
will be extended to the dynamic planning of multi-period outbound MST-driven services, delivery
aimed at scheduling being implemented in a rolling horizon approach [47].
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