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Abstract: Inspired by the structure of human arms, a modular cable-driven human-like robotic arm
(CHRA) is developed for safe human–robot interaction. Due to the unilateral driving properties of
the cables, the CHRA is redundantly actuated and its stiffness can be adjusted by regulating the cable
tensions. Since the trajectory of the 3-DOF joint module (3DJM) of the CHRA is a curve on Lie group
SO(3), an enhanced stiffness model of the 3DJM is established by the covariant derivative of the load
to the displacement on SO(3). In this paper, we focus on analyzing the how cable tension distribution
problem oriented the enhanced stiffness of the 3DJM of the CHRA for stiffness adjustment. Due to the
complexity of the enhanced stiffness model, it is difficult to solve the cable tensions from the desired
stiffness analytically. The problem of stiffness-oriented cable tension distribution (SCTD) is formulated
as a nonlinear optimization model. The optimization model is simplified using the symmetry of
the enhanced stiffness model, the rank of the Jacobian matrix and the equilibrium equation of the
3DJM. Since the objective function is too complicated to compute the gradient, a method based on
the genetic algorithm is proposed for solving this optimization problem, which only utilizes the
objective function values. A comprehensive simulation is carried out to validate the effectiveness of
the proposed method.

Keywords: cable-driven robots; human-like robotic arms; human–robot interactions; stiffness
adjustment; cable tension analysis

1. Introduction

Unlike conventional robots that work in structured environments, safe human–robot interactions
have been a key element for the robots that work in unstructured and unpredictable environments.
Inspired by the structure of human arms, a modular cable-driven human-like robotic arm (CHRA) is
developed for safe human–robot interaction, which employs cables to mimic the functionality of
the human muscles. As shown in Figure 1, the CHRA consists of a shoulder joint, an elbow joint
and a wrist joint in series, where the shoulder joint and the wrist joint have three degrees of freedom
(3-DOF) and the elbow joint has one degree of freedom (1-DOF). The CHRA employs lightweight cables
to drive the rigid links and the cables can be wound into winches mounted onto the base of the CHRA.
A variable-stiffness device (VSD) is designed and placed along with each driving cable to increase the
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flexibility of the cables. With these arrangements, the CHRA has flexibility advantages [1], low moving
mass [2], large workspace [3] and high payload-to-weight ratio [4]. Due to these advantages, the CHRA
is intrinsically safe for human–robot interactions. The proposed CHRA and its joint modules are
one kind of cable-driven mechanisms (CDMs). In the last decades, various CDMs have been designed
for various applications, such as medical robots [5–7], rehabilitation robots [8–12], inspection and
repair [13–15], and moving payloads [16–19].
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Figure 1. Concept design of the modular cable-driven human-like robotic arm: (a) structure of a human
arm, (b) structure of the cable-driven human-like robotic arm (CHRA).

Unlike rigid links, the cables have the unilateral driving property (i.e., they can only pull, but can
not push). Hence, the CHRA and its joint modules are redundantly actuated. For a given pose, a lot
of cable tension solutions are feasible for the CHRA. Furthermore, the stiffness of the CHRA can be
adjusted by regulating the cable tensions. The characteristic of variable stiffness increases the flexibility
and safety of the CHRA.

The problem of stiffness-oriented cable tension distribution (SCTD) of a CDM aims at finding the
optimal cable tensions to achieve a desired stiffness. However, in the last decades, most studies
on cable tension distribution have been carried out to minimize the cable tensions to reduce the
energy consumption [20–27]. In [28], the SCTD problem of a CDM was studied by formulating it
as an optimization model, and a gradient-projection-based algorithm was presented to solve the
optimization problem. However, it utilized the determinant of the stiffness matrix as the objective
function. With this method, the desired stiffness cannot be achieved accurately. In [29], the SCTD
problem of a 3-DOF cable-driven spherical mechanism was studied and it established the optimization
model with all entries of the stiffness matrix, not only the determinant of the stiffness matrix. However,
it employed the conventional stiffness model of the CDM, which was derived by the conventional
differential formula of the load to the displacement. Since the trajectory of the 3-DOF cable-driven
spherical mechanism is a curve on Lie group SO(3) and SO(3) is nonlinear, the stiffness model based on
the conventional differential formula is not exactly accurate on SO(3). Its stiffness should be evaluated
by the variation of its load against its displacement on SO(3).

In order to study the SCTD problem of the proposed CHRA, the SCTD problems of the 1-DOF and
3-DOF joint modules should be studied first. Due to the simple structure of the 1-DOF joint module,
its SCTD problem can be solved easily. For the 3-DOF joint module (3DJM) of the CHRA, its trajectory is
a curve on SO(3). We derive the stiffness model of the 3DJM by the covariant derivative of the load to
the displacement on SO(3), and call it the enhanced stiffness model of the 3DJM. In this paper, we focus
on investigating how the cable tension distribution problem oriented the enhanced stiffness of the
3DJM. Due the complexity of the enhanced stiffness model, it is difficult to solve the cable tensions
from the desired stiffness of the 3DJM analytically. We formulate the SCTD problem of the 3DJM as a
nonlinear constrained optimization problem. Due to the symmetry of the enhanced stiffness model
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of the 3DJM, the desired stiffness matrix can be transformed to a diagonal matrix by an orthogonal
transformation. Based on the analysis of the rank of the Jacobian matrix of the 3DJM, the six cables can
be divided into two groups: one group with three cables for position adjustment by regulating the cable
lengths, and another group with the remaining three cables for stiffness adjustment by regulating the
cable tensions. In this manner, the position and stiffness of the 3DJM can be adjusted simultaneously.
Furthermore, three cable tensions for position adjustment can be expressed by another three cable
tensions for stiffness adjustment using the equilibrium equation of the 3DJM. That means the six
decision variables of the optimization model can be reduced to three. Since the objective function of the
optimization model is too complicated to compute the gradient, a direct optimization method based
on the genetic algorithm is proposed for solving the optimization problem, which only utilizes the
objective function values. A comprehensive simulation is carried out to validate the effectiveness of the
proposed method. The results show that the proposed method provides an accurate and efficient way
to adjust the stiffness of the 3DJM by regulating the cable tensions. In summary, the main contribution
of this paper is solving the cable tension distribution problem with the enhanced stiffness model of the
3DJM using a method based on the genetic algorithm.

2. Enhanced Stiffness Model of the 3DJM

As shown in Figure 2, the 3-DOF joint module (3DJM) of the CHRA was made up with a base,
a moving-platform and a passive spherical joint connecting them. Six cables were employed to
drive the moving-platform and a variable-stiffness device (VSD) was placed along with each driving
cable. For routing the cables, six small holes were drilled in the moving-platform and the base,
denoted by Ai and Bi (i = 1, 2, . . . , 6), respectively. In this design, A2 A3 = A4 A5 = A6 A1 = lA,
B1B2 = B3B4 = B5B6 = lB, A1 A2 = A3 A4 = A5 A6 = eA, B2B3 = B4B5 = B6B1 = eB, where eA ≈ 0
and eB ≈ 0. The distance between the moving-platform and the spherical joint is denoted as hA ∈ R,
and the distance between the base and the spherical joint is denoted as hB ∈ R. Each cable was
actuated by a cable driving unit.

To describe the pose of the 3DJM, two frames were attached to the moving-platform (named
moving frame {A}) and the base (named base frame {B}), which were both located at the center of the
joint O. With the two frames, the pose of the 3DJM can be represented by a rotation matrix R ∈ SO(3).
Thus, the motion trajectory of the 3DJM was a parameterized curve R(t) on SO(3). The enhanced
stiffness model of the 3DJM was established by using the covariant derivative of the load to the
displacement on SO(3) [30].
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Figure 2. Concept design of the 3-DOF joint module (3DJM).
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2.1. Displacement and Load of the 3DJM on SO(3)

According to the exponential formula [31], the trajectory curve of the 3DJM R(t) yields

R(t) = eζ̂(t), (1)

where ζ̂ ∈ so(3) is an element of Lie algebra so(3) and satisfies

ζ =

 ζ1

ζ2

ζ3

→ ζ̂ =

 0 −ζ3 ζ2

ζ3 0 −ζ1

−ζ2 ζ1 0

 . (2)

Here, ζ ∈ R3 is called the coordinates of ζ̂ ∈ so(3). The derivative of R(t) to time t, i.e., Ṙ(t),
is an element of the tangent space of SO(3) at the point R(t), denoted as TR(t)SO(3). According to (1),
Ṙ(t) satisfies the following equation

Ṙ(t) = R(t) ˆ̇ζ(t) = R(t)ω̂(t), (3)

where ω(t) = ζ̇(t) ∈ so(3) is the angular velocity of the 3DJM. Given êj (j = 1, 2, 3) as the basis of
so(3), where e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and e3 = (0, 0, 1)T , then Ṙ(t) can be expressed as

Ṙ(t) = R(t)ω̂(t) = R(t)
3

∑
j=1

ω j êj =
3

∑
j=1

ω jR(t)êj =
3

∑
j=1

ω jLj|R(t), (4)

where Lj|R(t) = R(t)êj (j = 1, 2, 3) are taken as the basis of TR(t)SO(3) and Lj|R(t) are always written
as Lj for short. From (4), it can be concluded that TR(t)SO(3) is isomorphic to so(3).

Since Ṙ(t) describes the velocity of the 3DJM, the instantaneous displacement of the 3DJM can be
represented by δR, yielding

δR(t) = Ṙ(t)δt. (5)

That means the instantaneous displacement of the 3DJM can be described on the tangent space of
SO(3). Similarly, since the moment load τ̂ is an element of so∗(3), the dual space of so(3), by analogy
with ω̂ ∈ so(3) and Ṙ(t) ∈ TR(t)SO(3), we define F(t) = R(t)τ̂(t) as an element of the dual space of
the tangent space TR(t)SO(3) at R(t), called cotangent space and denoted as T∗R(t)SO(3). The element of

the cotangent space is named as the cotangent vector. Given λ̂k (k = 1, 2, 3) as the basis of so∗(3) and
Λk|R(t) = R(t)λ̂k (k = 1, 2, 3) as the basis of T∗R(t)SO(3), then F(t) ∈ T∗R(t)SO(3) satisfies

F(t) = R(t)τ̂(t) =
3

∑
k=1

τkR(t)λ̂k =
3

∑
k=1

τkΛk|R(t). (6)

It shows that T∗R(t)SO(3) is isomorphic to so∗(3). Thus, F(t) can be employed to represent the
load applied on the 3DJM. That means the load applied on the 3DJM can be described on the cotangent
space of SO(3).

2.2. Enhanced Stiffness Model of the 3DJM on SO(3)

According to the definition, the stiffness of the 3DJM is evaluated by the variation of its load
against its displacement. However, the loads and displacements for different poses of the 3DJM are
in different cotangent spaces and tangent spaces of SO(3). Considering the property of the motion
of the 3DJM, an affine connection called Levi-Civita connection is introduced into SO(3) to connect
different tangent spaces on SO(3) [32]. Given a curve R(t) and a vector field V(t) on SO(3), the affine
connection specifies how a vector V(t0) in the tangent space at point R(t0) can be mapped to another
vector V t0(t1) of the tangent space at some other point R(t1). The vector V t0(t1) is called the parallel
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transport of V(t0) along the curve R(t) [33]. Then, a differentiation operation can be defined on SO(3)
as below

∇ṘV
∣∣
R(t0)

= lim
t1→t0

V t0(t1)− V(t0)

t1 − t0
, (7)

where ∇ṘV
∣∣
R(t0)

is called the covariant derivative of V(t) along the curve R(t). For two vectors, V1 and
V2, in the tangent spaces of SO(3), ∇V2 V1 is employed to represent the covariant derivative of V1 in the
direction V2. For a real-valued function f on SO(3), the covariant derivative ∇V f is usually written as
V ◦ f . According to the property of covariant derivative, the covariant derivative of the load F(t) to
the instantaneous displacement δR(t) can be written as

∇δR(t)F = ∇Ṙ(t)δtF = δt∇∑3
j=1 ω j Lj

F = δt
3

∑
j=1

ω j∇Lj F = δtKω = Kδζ, (8)

and K = (∇L1 F,∇L2 F,∇L3 F) ∈ R3×3 is employed as the stiffness of the 3DJM. The components of
the stiffness matrix K, i.e., Kjk (j, k = 1, 2, 3), yield

Kjk = 〈∇Lk F, Lj〉. (9)

According to the property of the Levi–Civita connection [30], we have

Kjk = Lk ◦ 〈F, Lj〉 − 〈F,∇Lk Lj〉 = Lk ◦ τj −
1
2

3

∑
r=1

τrγr
kj, (10)

where the coefficients γr
kj (j, k, r = 1, 2, 3) ∈ R are zero except

γ3
12 = γ2

31 = γ1
23 = 2, γ3

21 = γ2
13 = γ1

32 = −2. (11)

Furthermore, since the 3DJM is a conservative mechanical system, its stiffness matrix K can be
proved to be symmetric at every pose, even if there is an external load applied on it [30].

2.3. Parametric Stiffness Formulation of the 3DJM

In Figure 2, ai =
−−→
OAi, bi =

−→
OBi ∈ R3 (i = 1, 2, . . . , 6) are the position vectors of points Ai and Bi,

respectively. The vector from Ai to Bi along the ith cable, denoted as ci =
−−→
AiBi, yields

ci = bi − ai = ciui ∈ R3, (12)

where ci = ‖ci‖ ∈ R is the length of the cable from Ai to Bi and ui = ci/ci ∈ R3 is the unitary vector
of ci.

Let ti = tiui ∈ R3 (i = 1, 2, . . . , 6) be the cable tension vector of the ith cable, where ti = ‖ti‖ ∈ R3

is the value of the cable tension. According to the equilibrium equation, the moment load τ applied on
the moving platform with respect to the point O satisfies

τ +
6

∑
i=1

ai × ti = 0. (13)

Denoting T = (t1, t2, . . . , t6)
T ∈ R6 as the vector of six cable tension values, the moment load τ

can be written as

τ = −
6

∑
i=1

ai × ti = −
6

∑
i=1

(ai × ui)ti = JTT , (14)
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where J ∈ R6×3 is called the Jacobian matrix of the 3DJM and yields

J = −(a1 × u1, a2 × u2, · · · , a6 × u6)
T . (15)

Denoting S = JT ∈ R3×6 and Sji (j = 1, 2, 3; i = 1, 2, . . . , 6) as the components of S,
the components of τ yield

τj =
6

∑
i=1

Sjiti. (16)

Then, the expression Lk ◦ τj in (10) can be written as

Lk ◦ τj = lim
∆t→0

τj
∣∣
R(t+∆t) − τj

∣∣
R(t)

ωk∆t
=

∂τj

∂ζk

∣∣∣
R(t)

=
6

∑
i=1

(
∂Sji

∂ζk ti + Sji
∂ti

∂ζk

)
. (17)

where τj
∣∣
R(t) (j = 1, 2, 3) are the components of τ when the 3DJM stays at the pose R(t).

Writing the six cable lengths as a vector c = (c1, c2, . . . , c6)
T ∈ R6, then we have the following

equation according to the principle of virtual work, i.e.,

TTδc = τTδζ. (18)

Substituting (14) into (18), we have
δc = Jδζ. (19)

It shows that ∂ci
∂ζk = Jik (i = 1, 2, . . . , 6; k = 1, 2, 3), where Jik ∈ R is the component of J ∈ R6×3.

Writing ki =
∂ti
∂ci

as the stiffness of the ith cable, the expression ∂ti
∂ζk in (17) satisfies

∂ti

∂ζk =
∂ti
∂ci

∂ci

∂ζk = ki Jik. (20)

Substituting (16), (17) and (20) into the stiffness model (10), Kjk can be written as

Kjk =
6

∑
i=1

(
∂Sji

∂ζk ti + kiSji Jik

)
− 1

2

3

∑
r=1

6

∑
i=1

γr
kjSriti. (21)

Since S = JT , the parametric formulation of the enhanced stiffness model (10) is given below

K = D + SKdiagST − ŜT . (22)

where D =
(

∂S
∂ζ1 T , ∂S

∂ζ2 T , ∂S
∂ζ3 T

)
and Kdiag = diag{k1, k2, · · · , k6}.

3. Modeling of the Cable Tension Distribution Problem Oriented the Enhanced Stiffness of
the 3DJM

For a given pose, the Jacobian matrix of the 3DJM is constant. The stiffness of the 3DJM only
depends on the cable tensions according to (22). That means the stiffness of the 3DJM can be adjusted
by regulating the cable tensions. Given a desired feasible stiffness matrix Kdes ∈ R3×3 for the
3DJM at a given pose R with a load τ, the corresponding cable tensions should be solved from
the following equation

D + SKdiagST − ŜT = Kdes. (23)

Due to the complexity of the stiffness formulation of the 3DJM, it is difficult to solve the cable
tensions T ∈ R6 from (23) analytically.
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As the stiffness Kdes is a 3× 3 real symmetric matrix in the frame {A}, there exists a real orthogonal
matrix Q ∈ R3×3 to transfer the stiffness matrix from the frame {A} to another frame {E}, in which the
symmetric stiffness matrix can be represented by a diagonal matrix [34], i.e.,

QTKdesQ = EKdes = diag{Kd1, Kd2, Kd3}, (24)

where the orthogonal matrix Q ∈ SO(3) satisfies

QTQ = QQT = I3×3. (25)

and EKdes represents the desired stiffness in the frame {E}. Here, Kdi (i = 1, 2, 3) is the diagonal
component of the diagonal matrix EKdes.

Since the desired stiffness is a diagonal matrix in the frame {E}, we can discuss the SCTD problem
in the frame {E} to make it simple. On the other hand, as the actual stiffness matrix Kact may not be
exactly symmetric, a symmetric stiffness matrix Kact can be obtained as below

Kact =
1
2
(Kact + KT

act). (26)

In the frame {E}, the symmetric actual stiffness Kact is represented by EKact, which yields

EKact = QTKactQ = QT(D + SKdiagST − ŜT)Q. (27)

Denote Kai (i = 1, 2, 3) as the diagonal elements of EKact, the SCTD problem can be formulated as
an optimization model

Minimize g(T) =

√√√√ 3

∑
i=1

(Kai(T)− Kdi)2,

Subject to ST = τ,

Tmin � T � Tmax,

(28)

where Tmin ∈ R6 represents the minimum of the tension vector T to avoid the cable be slack and
Tmax ∈ R6 represents the maximum of the tension vector T to avoid the cable tensions exceeding the
capability of the cable driving units. Here, X � Y (X, Y ∈ Rn) represents that each element of X is no
more than the corresponding element of Y .

According to analysis of the rank of the Jacobian matrix of the 3DJM in the Appendix A, we have
rank(S) = 3. Then, the column vectors of S ∈ R3×6 can be divided into two parts, Sp, Ss ∈ R3×3.
Here Sp yields rank(Sp) = 3 and it is called a basis of matrix S. Correspondingly, the cable tension
vector T ∈ R6 can be divided into two parts, Tp, Ts ∈ R3. That means the six driving cables can be
divided into two groups: one group with three cables for position adjustment by regulating the cable
lengths, and another group with the remaining three cables for stiffness adjustment by regulating
the cable tensions. In this manner, the position and stiffness of 3DJM can be adjusted simultaneously.
According to equilibrium Equation (14), the tensions for the position adjustment cables, i.e., Tp, can be
represented by the tensions for the stiffness adjustment cables, i.e., Ts, as follows

Tp = S−1
p τ − S−1

p SsTs. (29)

Substituting Tp into the optimization model (28), the objective function g(T) is simplified to
h(Ts), i.e.,

g(T) = g(Tp, Ts) = h(Ts), (30)
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and the linear inequality constraints are written as

ΦTs � w, (31)

where

Φ =


I3×3

−I3×3

−S−1
p Ss

S−1
p Ss

 , (32)

and

w =


Ts−max

−Ts−min
−S−1

p τ + Tp−max

S−1
p τ − Tp−min

 . (33)

Here, Tp−min, Ts−min ∈ R3 represent the minimum of the tension vector Tp, Ts, respectively,
and Tp−max, Ts−max ∈ R3 represent the maximum of the tension vector Tp, Ts, respectively. Then,
the optimization model (28) is simplified to an equivalent model, where six decision variables are
reduced to three and the linear equality constraint are eliminated, i.e.,

Minimize h(Ts) =

√√√√ 3

∑
i=1

(Kai(Ts)− Kdi)2,

Subject to ΦTs −w � 0.

(34)

4. Cable Tension Solution Based on the Genetic Algorithm for the 3DJM

Since the objective function of the optimization model (34) is complicated and the stiffness of
the VSD relative to the cable tension does not need to be different at each point, the widely used
gradient-based algorithms for nonlinear optimization problems are not suitable for this optimization
model. The direct optimization methods, which do not need the gradient of the objective function,
can be employed for this optimization model, such as Complex method, Nelder–Mead algorithm [35]
and genetic algorithm. In this paper, a generic method based on the genetic algorithm is proposed to
solve the nonlinear constrained optimization model.

A genetic algorithm is inspired by biological evolutionary theory. It is an iterative procedure
which usually operates on a population of constant size [36]. In order to apply the genetic algorithm,
we revise the optimization model (34) as follows

Maximize f (Ts) =
1

h(Ts)
,

Subject to ΦTs −w � 0.
(35)

where Ts is taken as an individual (also called a chromosomes), and f (Ts) is taken as the fitness function
of the individual Ts.

The genetic algorithm is a stochastic iterative algorithm, where each iteration step is also called a
generation. Since the genetic algorithm cannot guarantee convergence [36], the termination condition
of the proposed method is commonly triggered by finding an acceptable solution for the problem or
by reaching a maximum number of generations. Here, we define a parameter η ∈ R to evaluate the
closeness of two matrices K1, K2 ∈ R3×3,

η(K1, K2) =
ν1 · ν2

‖ν1‖‖ν2‖
× 100%, (36)
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where νi (i = 1, 2) is the vector form of Ki and ‖νi‖ is the norm of νi. The iterative procedure of the
proposed method is shown below, and it terminates when the following condition achieves

1− η(Kact, Kdes) ≤ 0.0005. (37)

Step 1: Generate an initial population

Generate an initial population of individuals randomly or heuristically. Each individual can
be represented by a binary string.

Step 2: Evaluate all individuals

Compute Tp via (29), and evaluate the fitness function f (Ts) for the individuals of the current
population. If Tp does not satisfy Tp−min � Tp � Tp−max, set the fitness value as zero.

Step3: Check termination condition

Check if the current population satisfies the termination condition. Stop the iterative procedure
if it satisfies, and generate a new population if not.

Step 4: Selective reproduction

Select the individuals of the current population (usually with a probability proportional to
their relative fitness values) and produce offspring candidates.

Step 5: Crossover and mutation

Perform two operators, named crossover and mutation, on the above offspring candidates for
producing a new population. Execute Step 3 for the new population.

• Crossover is the primary genetic operator, which swaps the substrings of two individuals,
called parents, before and after a randomly selected crossover point to produce two new
individuals, called offsprings.

• Mutation is essentially an arbitrary modification, which flips bits randomly in a string
with a certain probability called the mutation rate.

The diagram of the proposed method is shown in Figure 3.

Start

Generate initial

population

Evaluate all

individuals

Stop?
Selective

reproduction

Crossover

Mutation

Best

individuals

End

Yes

No

Figure 3. Diagram of the proposed method for the stiffness-oriented cable tension distribution problem
of the 3DJM.
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5. Simulation Examples

In order to validate the proposed method, a simulation was carried out on a certain 3DJM.
As shown in Figure 4, the dimensions of the 3DJM are given by lA = 0.10 [m], lB = 0.13 [m],
eA = eB = 0.002 [m] and hA = hB = 0.08 [m].
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B3

B1

B4B5

Spherical 

joint

Connecting to 

cable driving unit

O

τ

B2

B6

O

O
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BY
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X
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Z
A

VSD

A5
A6

Moving-platform

Base

Cable

Figure 4. CAD model of the 3DJM.

The VSDs were designed to fix onto the moving platform of the 3DJM to extend the range of
stiffness variation of each cable. The CAD model of the VSD is shown in Figure 5a. According to the
diagram of the VSD, as shown in Figure 5b, the length of the cable in the VSD yields

l =
√

h2 + d2 − 2hd cos φ, (38)

and the cable tension tc applied on the VSD yields

tc =
lks(φ0 − φ)

hd sin φ
, (39)

where h ∈ R is the height of the revolute joint, d ∈ R is the length of the rigid-link, ks ∈ R is the
stiffness of the spring, φ ∈ R is the angle of the rigid-link, and φ0 ∈ R is the initial value of φ. Then the
stiffness of the VSD, denoted as kVSD ∈ R, can be described by

kVSD =
dtc

dl
=

dtc

dφ

/
dl
dφ

. (40)

Given the parameters of the designed VSD, i.e., ks = 1.20 Nm/rad, d = 0.018 m, h = 0.03 m,
and φ0 = 0.53 rad, the stiffness of the VSD can be approximated by a polynomial expression

kVSD ≈ 8.005t2
c − 239.4tc + 5415. (41)

The corresponding stiffness–tension curve is shown in Figure 5c. For this 3DJM, the lower limits
of the cable tensions are given by

Tmin = (10, 10, 10, 10, 10, 10)T [N],
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and the upper limits of the cable tensions are given by

Tmax = (400, 400, 400, 400, 400, 400)T [N].

(a) (b)

Torsion spring

Rigid-link

Revolute joint

Hole for 

fixing a cable

0 100 200 300 400

10
5

0

2

4

6

8

10

12

(c)

Figure 5. variable-stiffness device (VSD) for simulation: (a) CAD model of the VSD, (b) diagram of the
VSD, (c) stiffness–tension curve of the VSD.

The simulation examples are implemented for two different desired poses Rdes1 and Rdes2 with
different loads, where

Rdes1 =

 0.992 −0.060 −0.111
0.090 0.952 0.292
0.088 −0.300 0.950

 , Rdes2 =

 0.950 0.088 −0.300
−0.111 0.992 −0.060
0.292 0.090 0.952

 . (42)

For each desired pose, three desired stiffness matrices are given. Thus, the simulation examples
can be divided into six sub-cases, as listed in Table 1.

Table 1. Six sub-cases of the simulation with different desired poses, applied loads and desired
stiffness matrices.

Case Pose Rdes Load τ [Nm] Desired Stiffness Kdes [Nm/rad]

Case 1a Rdes1 τ1a =

11.62
8.09
4.05

 Kdes1a =

1806.79 323.63 765.79
323.63 443.92 −49.61
765.79 −49.61 634.78


Case 1b Rdes1 τ1b =

 9.26
11.39
4.55

 Kdes1b =

1131.24 160.46 62.27
160.46 1918.78 −134.28
62.27 −134.28 588.78


Case 1c Rdes1 τ1c =

7.24
6.60
2.72

 Kdes1c =

 1600.13 −353.41 320.28
−353.41 1687.70 244.90
320.28 244.90 477.74


Case 2a Rdes2 τ2a =

2.95
8.05
2.08

 Kdes2a =

 1302.42 −140.27 518.72
−140.27 617.78 147.18
518.72 147.18 503.89


Case 2b Rdes2 τ2b =

−7.64
9.56
−5.90

 Kdes2b =

1670.44 180.42 499.26
180.42 1226.99 −350.38
499.26 −350.38 676.84


Case 2c Rdes2 τ2c =

 3.70
14.72
−2.58

 Kdes2c =

1563.55 298.57 15.13
298.57 2395.40 −280.72
15.13 −280.72 687.41


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Here, we take Case 1a as an example to perform the proposed method. The other five sub-cases
are similar to Case 1a. In Case 1a, the rotation matrix Q is computed according to (24),

Q =

 0.159 −0.432 0.888
−0.727 0.557 0.401
0.668 0.710 0.225

 , (43)

which transforms Kdes1a to a diagonal matrix EKdes1a = diag{−975,−2937,−2756} [Nm/rad].
According to (15), the transpose of the Jacobian matrix J1 of the 3DJM at the given pose Rdes1
is computed

S1 = JT
1 =

 0.05 −0.02 −0.04 −0.01 0.03 0.06
−0.04 −0.04 0 0.05 0.05 0.01
−0.01 0.02 −0.02 0.01 −0.03 0.03

 . (44)

The matrix S1 is divided into two parts as below

Sp1 =

 0.05 −0.04 0.03
−0.04 0 0.05
−0.01 −0.02 −0.03

 , Ss1 =

 −0.02 −0.01 0.06
−0.04 0.05 0.01
0.02 0.01 0.03

 . (45)

The proposed method is implemented to solve the optimization model (34) to find out the cable
tension distribution for the desired stiffness Kdes1a. The iteration curve of the proposed method for
Case 1a is shown in Figure 6a, which shows that the optimization process achieves the termination
condition within 7 generations and the optimal cable tension distribution for the desired stiffness
Kdes1a is

Topt1a = (20.84, 72.86, 139.73, 83.88, 123.42, 248.62)T [N].

The corresponding actual stiffness Kact1a and Kact1a are computed as below

Kact1a =

 1842.37 339.16 787.59
324.04 388.59 −29.52
810.48 −61.30 640.20

 , (46)

Kact1a =

 1842.37 331.60 799.03
331.60 388.59 −45.41
799.03 −45.41 640.20

 . (47)

According to (36), in Case 1a, η(Kact1a, Kdes1a) = 99.9554%. It shows that, when the cable tensions
achieve Topt1a, the actual stiffness approaches the desired stiffness Kdes1a.

The results of the simulation for all the six sub-cases are summarized in Table 2 and the
corresponding iteration curves of the proposed method are given in Figure 6. The results show
that the proposed method can achieve the desired stiffness accurately and efficiently. It is effective for
the SCTD problem of the 3DJM.
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Figure 6. Iteration curves of the proposed method for the six sub-cases: (a) Case 1a, (b) Case 1b,
(c) Case 1c, (d) Case 2a, (e) Case 2b, (f) Case 2c.
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Table 2. Results of the simulation for the six sub-cases.

Case Desired Stiffness Kdes Actual Stiffness Kact [Nm/rad] η(Kact, Kdes)

Case 1a Kdes1a Kact1a =

1842.37 339.16 787.59
324.04 388.59 −29.52
810.48 −61.30 640.20

 99.9554%

Case 1b Kdes1b Kact1b =

1115.72 171.67 42.79
155.02 1900.10 −124.34
75.13 −148.55 583.72

 99.9991%

Case 1c Kdes1c Kact1a =

1593.57 −345.80 335.65
335.65 −357.47 1610.93
264.71 353.79 466.67

 99.9584%

Case 2a Kdes2a Kact2a =

 1316.56 −106.95 503.13
−109.93 636.37 137.96
524.24 128.03 504.65

 99.9500%

Case 2b Kdes2b Kact2b =

1679.74 187.54 464.93
208.97 1276.25 −366.06
489.22 −343.72 676.79

 99.9697%

Case 2c Kdes2c Kact2c =

1627.92 283.30 33.88
295.86 2390.02 −270.50
73.42 −282.15 710.07

 99.9629%

6. Conclusions

Inspired by the structure of human arms, a modular cable-driven human-like robotic arm (CHRA)
was developed for safe human–robot interaction, since it has advantage of flexibility, low moving mass
and intrinsic safety. Due to the unilateral driving properties of the cables, the CHRA is redundantly
actuated and its stiffness can be adjusted by regulating the cable tensions. The cable tension distribution
problem becomes a key element for the stiffness adjustment of the CHRA. Since the trajectory of the
3-DOF joint module (3DJM) of the CHRA is a curve on Lie group SO(3), the stiffness of the 3DJM was
evaluated by the covariant derivative of the load to the displacement on SO(3), called an enhanced
stiffness model of the 3DJM. In this paper, we focus on analyzing how the cable tension distribution
problem oriented the enhanced stiffness of the 3DJM. Since the enhanced stiffness model of the 3DJM
is too complicated for solving the cable tensions from the desired stiffness analytically, the SCTD
problem was formulated as a nonlinear optimization problem. By analyzing the rank of the Jacobian
matrix and the equilibrium equation of the 3DJM, a variable elimination technique was employed to
simplify the optimization model. A method based on the genetic algorithm was proposed to solve the
optimization model, which only utilized the objective function values. The results of a comprehensive
simulation show that the proposed method can solve the cable tension distribution from the desired
stiffness accurately and efficiently.
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Appendix A. Analysis of the Rank of the Jacobian Matrix of the 3DJM

The transpose of the Jacobian matrix J ∈ R6×3 is denoted as S ∈ R3×6, which is represented
as below

S = JT = −(a1 × u1, a2 × u2, · · · , a6 × u6)
T . (A1)

Assuming the column rank of S satisfies

rank(S) < 3, (A2)

the mixed product of any three column vectors of the matrix S yields

Si · (Sj × Sk) =

∣∣∣∣∣∣∣
si1 sj1 sk1
si2 sj2 sk2
si3 sj3 sk3

∣∣∣∣∣∣∣ ≡ 0, (A3)

where i, j, k = 1, 2, . . . , 6.
For the 3DJM of the CHRA, the mixed product of any three column vectors of the matrix S can be

written as
Si · (Sj × Sk)

=(ai × ui) · [(aj × uj)× (ak × uk)]

=
[ai × (bi − ai)] · {[aj × (bj − aj)]× [ak × (bk − ak)]}

cicjck

=
(ai × bi) · [(aj × bj)× (ak × bk)]

cicjck

≡0 (i, j, k = 1, 2, · · · , 6).

(A4)

In the design of the 3DJM, eA ≈ 0 and eB ≈ 0, we have a1 ≈ a2, a3 ≈ a4, a5 ≈ a6, and b1 ≈
b6, b2 ≈ b3, b4 ≈ b5. Then, the following mixed product can be represented as

(a1 × b1) · [(a2 × b2)× (a3 × b3)]

≈(a1 × b1) · [(a1 × b3)× (a3 × b3)]

=(a1 × b1) · (µb3)

≡0,

(A5)

(a4 × b4) · [(a2 × b2)× (a3 × b3)]

≈(a3 × b5) · [(a1 × b3)× (a3 × b3)]

=(a3 × b5) · (µb3)

≡0,

(A6)

(a5 × b5) · [(a2 × b2)× (a3 × b3)]

≈(a5 × b5) · [(a1 × b3)× (a3 × b3)]

=(a5 × b5) · (µb3)

≡0,

(A7)

where µ ∈ R and µ 6= 0.
Equation (A5) shows that vectors b3, a1 and b1 are in the same plane, (A6) shows that vectors b3,

a3 and b5 are in the same plane, and (A7) shows that vectors b3, a5 and b5 are in the same plane.
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In summary, we have that vectors a1, a3, a5, b1, b3 and b5 are in the same plane, which is
impossible for the 3DJM. The assumption (A2) does not hold, hence

rank(S) = 3, (A8)

i.e.,
rank(J) = 3. (A9)
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