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Abstract: This paper presents a robust trajectory tracking control for a Permanent Magnet Synchronous
Motor (PMSM) with consideration a fault, parametric uncertainties and external disturbances by
effectively integrating robust optimal linear quadratic control. One kind of fault is considered in
the machine, particularly the presence of fissure rotor. The dynamic model of the PMSM with the
presence of fissure presents highly non-linear behaviors, which means that tuning is quite complicated,
which the tuning was chosen through swarm intelligence optimization (Dragonfly Algorithm).
A sensitivity analysis is carried out, in order to limit the search range to minimize the evaluation time.
This methodology was used to diminish these defects during motor operation. Simulation results
show that the optimal linear quadratic control method has a robust fault-tolerant performance.

Keywords: modeling of the continuous system; parameter estimation; modeling uncertainty;
computational optimization method; inertia degradation; fissure mechanism; sensitivity

1. Introduction

The Permanent Magnet Synchronous Motors (PMSM), in addition to providing high performance
in applications where it is necessary to correct the power factor, provide high torque and constant
speed under variable loads, which makes them increasingly studied and used in applications that,
until a few years ago, were restricted to induction motors [1]. One of the failures that causes more
interest, especially in electric motors of considerable sizes, is due to vibratory problems, caused by
imbalance, which, in turn, are generated by degradation in the rotor shaft, that is, fatigue phenomena
which, finally, causes fracture in the rotor shaft [2]. The behavior of the propagation of fissures in solid
materials is a subject of great interest in the field of engineering, thereby helping to preserve the life of
mechanical devices [3]. A contribution to the fault-monitoring approach and input–output feedback
linearization control of the induction motor (IM) in the closed-loop drive is presented in [4]. Two kinds
of faults are considered in the machine, particularly the broken rotor bars and stator inter-turn short
circuit faults. Therefore, the neural network (NN) technique is applied in order to identify the faults
and distinguish them. However, the NN requires a relevant database to achieve satisfactory results.
Hence, the stator current analysis based on the HFFT combination of the Hilbert transform and fast
Fourier transform is applied to extract the amplitude of the harmonics and used them as an input
dataset for NN.

Rotor faults have drawn more attention from the Artificial Intelligent (AI) research community in
terms of utilizing fault-specific characteristics in its feature engineering. In [5], a review and definition
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of the role of AI in rotors fault diagnosis (RFD) is provided, and an all-encompassing review of rotor
faults is presented. That study is focused on (i) emphasizing the use of fault-specific characteristic
features with AI, (ii) fault-wise analysis rather than component-wise analysis with appropriate fault
categorization, and (iii) portraying the current research and analysis in accordance with different
phases of an AI-based RFD framework.

The Active Magnetic Bearing (AMB) system will lose magnetic force if the power fails, which may
cause fatal damage to the rotor and the back-up bearings. In order to improve the reliability of the
AMB system, a power failure compensation control (PFCC) method is proposed in [6]. The power
fails, the motor works as a generator and the back electromotive force (back EMF) is rectified by the
anti-parallel diodes of the inverter. Meanwhile, a buck converter is utilized to convert the voltage from
the DC-link of the inverter to the supply voltage for the AMB system. Similarly, in [7] a methodology for
the detection of electrical and mechanical failures is presented using wavelets and the support of vector
machines. Considering that some data are not available, for that methodology radial and tangential
vibrations are required, as well as three-phase stator currents for different types of faults. For fault
detection, they use identical speeds and loads with a number of mother wavelets; in the tests they
did, the best result was obtained with the Shannon wavelet diagnosis and, notably, they were robust
for all working conditions. Low cycle fatigue life for rotor systems driven by synchronous motors is
predicted using the complex modal reduction technique in [8]. The system torsional model is derived
using the lumping technique where, for accuracy, a large number of stations is considered. The effect
of bearing viscous damping is accounted for in the equations of motion. The procedure is applied to
an actual 19,000 hp synchronous motor driving a high-speed compressor. Simulation results showed
excellent agreement in predicting the transient stresses between the full model and the two-modes
reduced model with a vast reduction in computational time, i.e., around 90%. Moreover, the predicted
fatigue life in terms of number of startups shows excellent agreement, with a maximum error of about
4.2% in the predicted life.

The advantages of permanent magnet synchronous motors are listed in [9], however,
the un-modeled dynamics, the eventual mistakes and the strong nonlinearity diminish the motor
performance quality. Indeed, since its synthesis is based on heuristic knowledge, linguistic description
to perform a task and does not require a system model, the fuzzy logic control (FLC) idea is successfully
applied to motor systems. The authors mentioned that the occurrence of failure may dramatically
degrade the system performance and may even result in catastrophic system collapse. Therefore,
in order to overcome this, they have designed a new fault tolerant control (FTC)-structure-based FLC
to improve PMSM drive currents and speed controls during healthy and faulty conditions.

The dynamic model of electromechanical systems with the presence of degradation in the proposed
inertia presents highly non-linear behaviors, which means that tuning is relatively complicated for
the characteristic parameters, which are tuned using a population-based optimization algorithm,
Fuzzy Control, and spectral tools [7–10]. In [11], the parameters of the 3-DOF PID controller are
optimized by using the dragonfly algorithm (DA) for enhancing the system dynamics of a hybrid
energy distributed power system subject to load and wind power variations. The algorithm is inspired
from the static and dynamic swarming behavior of dragonflies, where the operation of DA is only
dependent on the population size and the maximum iteration count. In [12], the DA was used to
tune the controller parameters of the two-degrees-of-freedom PID for a multi-area power system.
The performance of DA was evaluated in terms of tie-line power of control areas in the power system
and the settling time of the deviations in frequency.

The main contribution of the paper is the design of a control scheme for a PMSM with the
presence of fissure in the rotor shaft, causing this and, according to the fracture dynamics, degradation
as well. In this work, a detailed analysis is provided of the modeling and tuning of this nonlinear
dynamic system, which contributes to a more accurate theory of the dynamic behavior of the PMSM.
The proposed algorithm combines a linear PID controller and an optimal quadratic controller to
regulate the velocity trajectory tracking. To define the convergence domain of the possible regulation
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gains in the dynamic model of the PMSM using the optimization dragonfly algorithm (DA) technique,
a sensitivity analysis of the same is carried out, in order to limit the definition domain, minimize the
evaluation time and help the convergence of the dynamic system. The control scheme of the PMSM is
simple and robust and can operate within a very wide speed range.

The rest of the document is organized as follows: Section 2 develops the dynamic model of PMSM
with the presence of a rotor fissure. In Section 3, a presentation of the control scheme of the dynamic
PMSM model is given. In Section 4, the control tuning procedure through the Dragonfly algorithm
is presented. Section 5 describes the procedure for conducting a sensitivity analysis. In Section 6,
the simulation of the dynamic system of the PMSM is carried out. Finally, Sections 7 and 8 present the
results of the implementation and a discussion of the results, respectively.

2. Dynamic PMSM Model with Presence of Rotor Fissure

Considering the voltage balance equations, the dynamic model of the PMSM in the reference
system dq is obtained in a similar way to the modeling of a synchronous machine with field winding.
To obtain the PMSM model, the flow links equations are eliminated and currents are defined as equal to
zero by damping windings. Replacing the field current with a constant parameter due to the permanent
magnet flow link, the model obtained is characterized by [13].

did
dt

=
Vd
Ld
−

rs

Ld
id +

Lq

Ld
ωriq (1)

diq
dt

=
Vq

Lq
−

rs

Lq
iq +

Ld
Lq
ωriq −

λm

Lq
ωr (2)

The dynamics of the PMSM rotor regarding angular velocity and angular position is defined by

dθ
dt

= ωr (3)

dωr

dt
=

P
2J
[Te − TL − βωr] (4)

where
Te =

P
2

[3
2

(
Ld − Lq

)
idiq +

3
2
λmiq

]
(5)

2.1. Fracture Dynamics in the Rotor Shaft

The fissure behavior of the rotor shaft is proposed as a result of the variation in the stress on it,
caused by the external load. The rotational effects of the rotor shaft generate a dynamic of opening
and closing the fissure, which will generate, through work cycles, fatigue fracture that has a behavior
similar to the fragile fracture. The fissure behavior takes the structure of the Paris equation, as in [14,15].

da
dt

= c f ∆kn (6)

The stress intensity factor is defined as

∆K = ∆τmax
√
πa (7)

From the expression defined by (7), the variation in torsional stress is proposed based on the
behavior of a hollow circular section, which will increase in size due to degradation dynamics, starting
from the concentration point of effort, where the presence of the fissure exists [16,17].

∆τmax =
16(Te − TL)D
π(D4 − d4)

(8)
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The smaller diameter of the rotor shaft d is proposed from the variation in the crack size, (d = ga),
where g takes the breathing behavior of the axis proposed by Mayes and Davis, and can be defined
as [18]

g =
l + cos(ωrt)

2
(9)

because of the presence of the fissure in the rotor shaft, the degradation in the rotational inertia of the
rotor shaft has an effect proposed as

Jt =
1
8

ms
(
D4
− d4

)
(10)

2.2. Dynamic Coupled Model

The dynamic study model with the presence of degradation in the rotational inertia of the rotor
shaft can be formulated as

did
dt

=
Vd
Ld
−

rs

Ld
id +

Lq

Ld
ωriq (11)

diq
dt

=
Vq

Lq
−

rs

Lq
iq +

Ld
Lq
ωriq −

λm

Lq
ωr (12)

dθ
dt

= ωr (13)

dωr

dt
=

4P

ms
{
D4 − [ga]4

} {Te − T1 − βωr
}

(14)

da
dt

= c f ∆kn (15)

3. Reference Model

The control scheme of the dynamic model of the PMSM with the characteristics defined by
Equations (1)–(5) is carried out based on its linearization, without the presence of fissures, at the single
point of global stable equilibrium of the dynamic system, defined as [19]

X0 =
[
id0 iq0 ωr0

]T
= [0 0 0]T (16)

The first-order linear differential equations for the PMSM under which the simulation will be
carried out, and, subsequently the development of the linear quadratic speed regulator, are

did
dt

= −
rs

Ld
id (17)

diq
dt

= −
rs

Ld
id −

λm

Lq
ωr (18)

dωr

dt
=

3P2λm

8J
iq (19)

3.1. Desired Behavior of the Error

The error behavior regarding the change in speed between the desired angular speed and the
rotor speed delivered by the PMSM is established as [20]

eωr = ωrd −ωr (20)
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It is thought that the angular velocity error decreases exponentially in a limited time, which implies
the relationship

eωr = exp(−cωrt) (21)

The behavior of the current iqd desired for the system based on the angular velocity error ωr takes
the form

iqd =
2J

1.5P2λm

[
cωreωr

∣∣∣ .
ωrd

∣∣∣PTl
2Jt

]
(22)

The load torque can be controlled directly by the current component of the axis q, therefore,
the angular speed of the rotor can be controlled by the change in the current of the axis q, whereby the
change in the current of the axis d is established at zero (idd = 0) to minimize current and resistance
losses [21].

3.2. Optimal Linear Quadratic Control for States ωr, iq

For the control of the PMSM, the feedback of the states ωr, iq from the defined linear reference
model is proposed, where the optimal gains are determined from the energy function EQ as in [22]

EQ =

∫
∞

0

(
X·QX·Uq·RUq

)
dt (23)

The positive Hermitian matrices Q, R are defined as

Q =

[
100 0
0 1

]
, R = [1] (24)

The vector X takes the form
X =

[
iq ωr

]T
(25)

The control function Uq takes the structure

Uq = −
[

k1 k2
][ iq
ωr

]
(26)

The linearized system, for the variables iq and ωr under the action of the control, takes the form

[
iq
ωr

]
=

 − rs
Lq

−
λm
Lq

3P2λm
8J 0

[ iq
ωr

]
+

 1
Lq

0

Uq (27)

3.3. PID Controller for id Current

The structure of the proposed PID controller takes the form [23]

Ud = kp

[
eid +

1
ki

∫
eiddt + kd

d
dt

eid

]
(28)

To regulate the current id, it is based on the form of the decoupled linear equation defined in (17);
when defining the control action, it is established as

did
dt

= Ud −
rs

Ld
id (29)

The block diagram for regulating the PMSM id is shown in Figure 1.
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Using the geometric place of the roots, the controller gains
(
ki, kp, kd

)
are calculated as

kp =
α1 + rs

Ld
(30)

ki =
Ldkp

α2
(31)

kd =
1− Ld
kpLd

(32)

4. Tuning of Controller Using the Dragonfly Algorithms

The inspiration for the DA [24] is taken from the social behavior of the dragonflies when hunting
their food (static swarm) and when they migrate (dynamic swarm). Considering these two behaviors,
there are five factors involved in determining the individual dragonfly position: (a) separation;
(b) alignment motion; (c) cohesion motion; (d) food Attraction; (e) predator distraction. There are two
ways of updating the individual dragonfly position depending on the neighborhood position. If there
is no dragonfly in the neighborhood radius, the individual position is updated considering the Levy
flight equation and given as follows

Xt+1 = Xt + lévy(dn)Xt (33)

where dn is the number of decision variables. The Lévy flight function is given by

lévy(dn)= 0.01
r1ρ

|r2|
1
β

(34)

where r1 and r2 are two random numbers in [0, 1]; β is a constant and ρ is computed as

ρ =

Γ(1 + β)sin
(πβ

2

)
Γ
( 1+β

2

)
β2

(
β−1

2 )


1
β

(35)

where Γ(x) = (x− 1)!. Otherwise, the new position is calculated as follows

Xt+1 = Xt + ∆Xt+1 (36)

where ∆Xt+1 is the step vector and can be obtained as

∆Xt+1 = (sSi + aAi + cCi + f Fi + eEi) + w∆Xt (37)

where s shows the separation weight; a is the alignment weight; c is the cohesion weight; f is
a food actor; e is the enemy factor; w is the inertia weight, Si indicates the separation of the i − th
individual, Ai is the alignment of i− th individual, Ci is the cohesion of the i− th individual, Fi is the
food source of the i − th individual, Ei is the position of enemy of the i − th individual and t is the
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iteration number. The optimization process of DA is further explained by the pseudo code below [25].
The optimization process of DA is further explained by the pseudo code below (Algorithm 1):

Algorithm 1 Dragonfly Algorithm

Define population size (M)
begin the iteration counter t = 1
Initialize the population by generating Xi for i = 1, 2, 3 . . . M
Calculate the objective function values of all dragonflies
Update the food and the predator’s location
while (the stop criterion is not satisfied) do

for i = 1 : M
Update neighborhood radius (or update w, s, a, c, f, and e)
if a dragonfly has at least one neighborhood dragonfly

Separation motion
Alignment motion
Cohesion motion
Food attraction motion
Predator distraction motion

else
Update position vector using the Lévy flight function

end if
end for i
Sort the population/dragonflies from best to and find the current best

end while

Therefore, in this work, the dragonfly algorithm is used to calculate the optimization of the speed
controller gains for the PMSM with the presence of degradation.

5. Sensitivity Analysis

The proposed tuning algorithm, using the dragonfly algorithm, searches for gains and the
subsequent simulation of them in a defined domain. In order to limit the search domain, a sensitivity
analysis is proposed for the PMSM speed control system. The sensitivity analysis will determine the
variations in each of the gains involved, defined as the kj parameters [26], where

k j =
[

k1 k2 ki kp kd
]

(38)

In addition, the study aims to ensure that this domain is optimal in terms of the consumption of
the runtime of the algorithm. An energy function is defined, which aims to analyze the sensitivity of
the PMSM model, defined as

ET = EC + EP (39)

where ET is the total energy, EC is the kinetic energy and EP potential energy. The previous two energy
functions can be defined as follows [1]

EC =

∫
Teωrdt (40)

EP =
1
2

 i2d
Ld

+
i2q
Lq

+
P
2J
ω2

r

 (41)

The total energy is calculated using (1) and (2)

ET =

∫
Teωrdt +

1
2

 i2d
Ld

+
i2q
Lq

+
P
2J
ω2

r

 (42)
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Equation (42) can be expressed as a differential equation as

dET

dt
= Teωrdt +

[
id
Ld

(
did
dt

)
+

iq
Lq

(
diq
dt

)
+

Pωr

2J

(
dωr

dt

)]
(43)

The energy cost function G, for the temporary evaluation period, can be defined as

G =

∫
ETdt (44)

The speed of change in the cost function in differential form, in the analysis time interval, can be
described as

dG
dt

= ET (45)

The set of differential equations that determines the behavior of the sensitivity of the parameters
of the PMSM system is determined by combining the mathematical model of the machine and the
energy cost function, and is expressed as

did
dt

=
Vd
Ld
−

rs

Ld
id +

Lq

Ld
ωriq (46)

diq
dt

=
Vq

Lq
−

rs

Lq
iq +

Ld
Lq
ωriq −

λm

Lq
ωr (47)

dωr

dt
=

P
2J
[Te − T1 − βωr] (48)

dET

dt
= Teωrdt +

[
id
Ld

(
did
dt

)
+

iq
Lq

(
diq
dt

)
+

Pωr

2J

(
dωr

dt

)]
(49)

dG
dt

=

∫
Teωrdt +

1
2

 i2d
Ld

+
i2q
Lq

+
P
2J
ω2

r

 (50)

From the system of Equations (46)–(50), the behavior of the cost function is obtained for the
defined simulation time interval. The sensitivity of the system S j, for each parameter of interest k j,
is as in

S j =
dG
dk j

(51)

6. Simulation

The cost function to evaluate the performance of the dragonfly algorithm of profit search,
considered as optimal, is that which minimizes the desired trajectories with those obtained in the
interactions of the proposed system, which is defined from the state of interest ωr as

c j = [ωrd −ωr]
2 (52)

To carry out the simulation of the dynamic PMSM system, the parameters and simulation
coefficients are defined, Table 1 illustrates the numerical values that are taken into consideration during
the model analysis.

The gains in the linear comparison system are determined from the linear analysis of speed
regulation and take the following values

kp

ki
kd
k1

k2


=


−376.329

5.0
9.0

9990.09
930.0


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Table 1. Simulation parameters for the PMSM model.

Parameters Numerical Value Units

Ld 6.73 Inductance [mH]
Lq 6.73 Inductance [mH]
rs 2.6 Resistance [Ω]
J 3.5 × 10−5 Rotational inertia [kgm2]

ms 0.1 Rotor mass [kg]
λm 0.319 Magnetic flux [Wb]
f 188.5/2π Frequency [Hz]
β 5 × 10−5

c 10 × 10−11 Proportional coefficient
n 3 Proportional exponent
D 0.137409 Root of rotor diameter [m1/2]
TL 5 Load torque
id0 0 Initial current d
iq0 0 Initial current q

ωr0 0 Initial angular velocity
[rad/s]

θ0 0 Initial angular position [rad]
a0 3 × 10−8 Initial fissure size [m]
Vs 90 Nominal Voltage [V]
cωr 1500.5

ωrd 188.5 Desired angular velocity
[rad/s]

α1 −1 Desired Root 1
α2 −1 Desired Root 2

The process of searching for the gains of the speed control scheme for the non-linear dynamic
system of PMSM is presented in the diagram shown in Figure 2. The step of searching and testing the
parameters of the controller is carried out by means of dragonfly algorithm.
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7. Results

Using the proposed model of the PMSM with the presence of fissure in Section 3 and the linear
comparison reference defined in Section 4, a convergence analysis is performed between both models
subjected to the disturbance defined by the system of equation [27] as

Vd = Vs
√

2sin(δ)
Vq = Vs

√
2cos(δ)

(53)

The variation in the displacement angle of the rotor δ is determined from

dδ
dt

= ωr − 2π f (54)

In Figure 3 it can be seen that, under the disturbance given to both models of the PMSM under
study, the simulation convergence time interval, for the id current, is less than 0.01 s; subsequently,
the id current diverges in the reference linear and the nonlinear proposal. For the states iq and ωr, it is
observed that the convergence is for the entire simulation time interval.
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From the comparison between the proposed model with the presence of degradation in rotational
inertia and the linear model of the PMSM, it is observed that they only converge under a small region
of time (0.01 s). This time interval is insufficient for a proper degradation analysis, where simulation
times will be greater than 2000 s, and where the controller must show its efficiency to overcome the
modeling limitations and ensure that the variables of interest converge to the desired reference values
(angular velocity and current consumption).

The delimitation of the search domain of each of gains involved in controller action will help
achieve this goal. Figures 4–8 show the behavior of the cost function proposed in the analysis of
sensitivity for each of the gains involved.
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It is observed that sensitivity of the dynamic system and the energy consumption are exponentially
increased, with gains of k1 less than 200. Similarly, the numerical instability of algorithm grows
exponentially, achieving the non-convergence of the solution of the mathematical model, therefore,
those values should be avoided. For the gain k2, a concave behavior is observed in the range of values
near to 120; where the minimum sensitivity point is located, energy consumption will be minor as
well as the time of algorithm computation, therefore, an interval close to that value of sensitivity must
be chosen.

It is observed that, within the most representative variations in energy consumption, there is the
gain kp, which is very sensitive to values greater than −185. Where the sensitivity is reflected in the
energy consumption, which increases exponentially, the time of computation will be similar, increasing
the numerical instability of the algorithm; therefore, these values should be avoided.

For the gains ki and kd the behavior of the sensitivity in the face of gain variation is indifferent,
therefore, any interval chosen as the search function will not affect the time spent on computing
resources. Using the previous sensitivity analysis, intervals of search for gains were chosen close to
trajectories that minimize the proposed energy consumption, which are defined as

k1 =
[

150, 2000
]
; k2 =

[
120, 500

]
; kp =

[
−900, −185

]
; ki =

[
−10, 10

]
; kd =

[
0.1, 20

]
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For the convergence test between answers to the control action of the linear test model and the
proposed model of nonlinear PMSM, the desirable behavior of angular velocity is proposed through a
defined step function where

ωrd =

{
188.5 rad

s i f t < 0.0005 s
100.0 rad

s i f t > 0.0005 s

The response of behavior of the angular velocity ωr and current consumption corresponding to
iq of linear comparison model of the PMSM in the desired angular velocity input ωrd are shown in
Figure 9. The parameters for proper convergence of search-tuning of the DA after numerical simulation
tests are shown in Table 2.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 19 
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Table 2. Dragonfly algorithm implementation details.

Parameters Numerical Value

Population size 40

Maximum of iteration 100

Random values r1 = r2 = [0; 1]

Separation weight 0.12

Alignment weight 0.12

Cohesion weight 0.75

Food factor 1

Enemy factor 1

Inertia weight 0.9–0.2

β 1.5

In Figure 10, the behavior of the DA regarding the pursuit of gains for tune the PMSM model is
illustrated, with the presence of degradation in rotational inertia, under search conditions defined by
the sensitivity analysis and the desired model of behavior of linear PMSM, as well as angular speed’s
desired behavior under a first search iteration. Figures 10 and 11 show, in different colors, the dynamic
response of the closed-loop system (controller-PMSM), with all gains calculated in the first iteration
and in the tenth search evolution, respectively.
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Figure 11. Behavior of the DA for the dynamic system PMSM with crack presence, better control gains
in the tenth search evolution.

In Figure 11, the behavior of the collection of gains generated by the DA is illustrated, and applied
to a proposed model of the PMSM with the presence of degradation in rotational inertia. In the tenth
search evolution, the convergence of the behaviors of all these gains obtained by the DA is obtained for
the desired model of linear reference to the PMSM. In Figure 12, the best response obtained in theωr

angular velocity tuning process is illustrated. The consumption of current iq by the controller action
defined by the dragonfly algorithm, in the case of the analysis, is

k1 = 1521.6; k2 = 223.1; kp = −799.4; ki = −4.4; kd = 12.4
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It is observed that the obtained trajectory has a performance with behavior close to the desired
angular velocity, ωrd, therefore, the gains obtained are considered optimal. The behavior of the
proposed nonlinear model and linear model PMSM reference for times greater than 0.001 s is achieved
with these gains, so the robustness of the tuning algorithm is checked under the presence of the initial
fissure given. Figure 13 illustrates the ωr angular velocity behavior and consumption of current iq
under the action of the gains obtained through the simulation done for an evaluation time of 0.03 s,
which shows that the system keeps responding to the action of control.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 19 
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Figure 13. Comparison, best gains found, nonlinear system, linear system for times greater than the
attractor of the equilibrium point.

In Figure 14, the speed behavior angular ωr and current consumption iq of the nonlinear model of
the PMSM, proposed with degradation in rotational inertia for a simulation time of 450 s, are illustrated.
The time of evaluation is large so that the effects of steady state be seen, and it is observed that the
behavior of the desired angular velocity ωrd is maintained under the action of control. For the given
simulation, an angular velocity given by a Bézier polynomial ¥ is desired to provide a sufficiently
smooth transfer between the actual and desired speed reference values, within a specific time interval.
Then, the reference trajectory profile is as follows

ω∗r =



ω1 f or t ≤ T1

ω1¥(t, T1, T2) f or T1 < t ≤ T2

ω1 f or T2 < t ≤ T3

ω2 − (ω2 −ω1)¥(t, T3, T2) f or T3 < t ≤ T4

ω2 f or T4 < t ≤ T5

ω3 + (ω3 −ω2)¥(t, T5, T6) f or T5 < t ≤ T6

ω3 f or T6 < t ≤ T7

ω4 + (ω4 −ω3)¥(t, T7, T8) f or T7 < t ≤ T8

(55)

whereω1 = 0 rpm, ω2 = 800 rpm, ω3 = 1600 rpm, ω4 = 600 rpm, T1 = 0 s, T2 = 18 s, T3 = 135 s, T4 = 150 s,
T5 = 290 s, T6 = 305 s, T7 = 420 s, T8 = 450 s, and Y = is the Bézier interpolation polynomial

¥ = K5
[
r1 − r2K + r3K2

− r4K3 + . . .− r6K5
]

(56)

K =
t + T1

T2 − T1
, (57)

with r1 = 252, r2 = −1050, r3 = 1800, r4 = −1575, r5 = 700 and r6 = −126.
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time interval. Then, the reference trajectory profile is as follows 

𝜔𝑟
∗ =

{
 
 
 
 

 
 
 
 

𝜔1 𝑓𝑜𝑟 𝑡 ≤ 𝑇1

𝜔1¥(𝑡, 𝑇1, 𝑇2) 𝑓𝑜𝑟 𝑇1 < 𝑡 ≤ 𝑇2

𝜔1 𝑓𝑜𝑟 𝑇2 < 𝑡 ≤ 𝑇3

𝜔2 − (𝜔2 − 𝜔1)¥(𝑡, 𝑇3, 𝑇2) 𝑓𝑜𝑟 𝑇3 < 𝑡 ≤ 𝑇4

𝜔2 𝑓𝑜𝑟 𝑇4 < 𝑡 ≤ 𝑇5

𝜔3 + (𝜔3 − 𝜔2)¥(𝑡, 𝑇5, 𝑇6) 𝑓𝑜𝑟 𝑇5 < 𝑡 ≤ 𝑇6

𝜔3 𝑓𝑜𝑟 𝑇6 < 𝑡 ≤ 𝑇7

𝜔4 + (𝜔4 − 𝜔3)¥(𝑡, 𝑇7, 𝑇8) 𝑓𝑜𝑟 𝑇7 < 𝑡 ≤ 𝑇8

 (55) 

where ω1 = 0 rpm, ω2 = 800 rpm, ω3 = 1600 rpm, ω4 = 600 rpm, T1 = 0 s, T2 = 18 s, T3 = 135 s, T4 = 150 s, T5 

= 290 s, T6 = 305 s, T7 = 420 s, T8 = 450 s, and ¥ is the Bézier interpolation polynomial 

¥ = 𝐾5[𝑟1 − 𝑟2𝐾 + 𝑟3𝐾
2 − 𝑟4𝐾

3 + ⋯− 𝑟6𝐾
5] (56) 

𝐾 =
𝑡 + 𝑇1

𝑇2 − 𝑇1
, 

(57) 

with r1 = 252, r2 = −1050, r3 = 1800, r4 = −1575, r5 = 700 and r6 = −126. 

 

Figure 14. Behavior of the angular velocity of reference for the evaluation time t = 450 s. Figure 14. Behavior of the angular velocity of reference for the evaluation time t = 450 s.

The behavior of the fissure inside the PMSM is shown in Figure 15. It is observed that the fissure
grows suddenly with the PMSM startup and, because of inertial effects, as the working time of the
PMSM continues, the growth of the fissure is gradual and in an exponential form, which will exhibit a
progressive degradation in the rotational inertia of the rotor shaft, thereby validating the proposed
dynamic behavior. The tracking error for optimal linear state feedback controller is shown in Figure 16.
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8. Conclusions

This paper presents an application of one metaheuristic (dragonfly algorithm) for tuning a PID,
and optimal linear quadratic controllers for a PMSM with the presence of rotor fissure. The optimization
procedure was employed considering simulation with the non-linear system model. This strategy
contains the speed and current control loops. In order to define the search range for DA, a sensitivity
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analysis of gains of the PMSM controller was carried out. The sensitivity analysis of gains of the PMSM
controller with the presence of degradation in rotational inertia can find search intervals that help to
minimize the tuning time of the DA. The dragonfly algorithms confirm the feasibility and effectiveness
of the parameter optimization for the optimal linear quadratic and PID controller. The results of the
simulation show that the controller has a good performance and fast tracking speed under presence
of fissure in the rotor shaft and external perturbation. The controller aims to ensure speed tracking
tasks while significantly reducing the speed overshoot. Note that there was no need to retune the
controllers for different kinds of operations; therefore, the designed controller is convenient to be
realized. This shows the advantages of advanced controller tuning. Since the controller exhibits an
excellent performance, it is ideal for application in process industries.

The PMSM model with the rotational inertia degradation coupling in the shaft allows for
applications in the field of preventive maintenance, failure control or determination of failure intervals
of rotating machines, to name a few fields of application. It is observed that, under the given working
conditions, the dynamic model of the PMSM with the presence of degradation in the rotational inertia
of the rotor axis is adequately tuned to the requested references by means of the DA used for any
analysis time. The proposed PMSM model with the presence of rotational inertia degradation is
considered congruent with the expected degradation behavior typical of rotating machines: the size of
the internal fissure continues to grow in an exponential form and gradual manner until the fracture
finally occurs.
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Nomenclature

The variables involved in the modeling of the PMSM with the presence of degradation in rotational inertia
are defined in Table 1.

Definition of the variables involved in the PMSM model.
Parameters Definition
id, iq Stator currents in the rotating dq reference frame
θ Angular position of the rotor shaft
ωr Angular speed of the rotor
a Fissure size
Vd, Vq Stator voltages in the rotating dq reference frame
Ld, Lq Stator inductances on the dq reference axes
rs Stator phase resistance
P Number of pole pairs
J Polar moment of inertia
ms Rotor mass
Jt Rotational inertia dependent on fissure size
λm Permanent magnetic flow
f Fundamental rotor frequency
β Viscous damping coefficient
c Proportional coefficient (material dependent)
n Proportional exponent (material dependent)
D Root of rotor shaft diameter
TL External load torque
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Te Electric torque (generated by the motor)
g Mayes and Davis fissure respite function

d
Diameter of the hole in the rotor shaft due to the
fissure

∆k Variation of the stress concentrator
∆τmax Torsional stress variation in the rotor shaft
id0, iq0, ωr0, θ0, a0 Initial model conditions
Vs Nominal value of the voltage applied in phases dq
δ Electric angular displacement
eωr , eid System Status Errors
cωr Desired error coefficient
iqd, idd, ωrd Desired values of system states
Q, R Hermetic Matrices of optimal control
X Vector of linear quadratic optimal control states
Uq, Ud System control inputs
k1, k2 Linear Quadratic Optimal Control Gains

kp, ki, kd
Gains from Proportional Integral and Derivative
Control (PID)

α1, α2 PID Controller Profit Locating Roots
EQ Linear Quadratic Optimum Controller Power
ET Total energy of the PMSM dynamic system
EC PMSM kinetic energy
EP PMSM potential energy
G Energy cost of the PMSM dynamic system
Si PMSM dynamic system sensitivity
c j Cost localization function of optimal earnings
k j Optimal earnings vector
ωrj Value obtained from the jth search for speed gain
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