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Abstract: The modeling of the minimum fluidization velocity (U0mf) and the incipient fluidization
pressure drop (∆Pmf) is a valuable research topic in the fluidization field. In this paper, first, a series
of experiments are carried out by changing the particle size and material mass to explore their effects
on U0mf and ∆Pmf. Then, an Ergun equation modifying method and the dimensional analysis method
are used to obtain the modeling correlations of U0mf and ∆Pmf by fitting the experimental data,
and the advantages and disadvantages of the two methods are discussed. The experimental results
show that U0mf increases significantly with increasing particle size but has little relationship with the
material mass; ∆Pmf increases significantly with increasing material mass but has little relationship
with the particle size. Experiments with small particles show a significant increase at large superficial
gas velocity; we propose a conjecture that the particles’ collision with the fluidization chamber’s
top surface causes this phenomenon. The fitting accuracy of the modified Ergun equation is lower
than that of the dimensionless model. When using the Ergun equation modifying method, it is
deduced that the gas drag force is approximately 0.8995 times the material total weight at the incipient
fluidized state.

Keywords: conical fluidized bed; minimum fluidization velocity; pressure drop; Ergun equation;
dimensional analysis

1. Introduction

In the pharmaceutical industry, conical fluidized beds are more widely used than cylindrical
fluidized beds because the former have certain advantages [1–3]. First, the particle size distribution
can be broad in a granulation/coating process in the pharmaceutical industry. Due to the axial velocity
gradient of a conical cylinder, larger particles can be fluidized at the lower layer, while smaller particles
can stay at the upper layer without being carried out. Second, the fluidized state of a conical fluidized
bed is smoother than that of a cylindrical fluidized bed because the upper layer of the conical cylinder
is more extensive and can hold more gas to avoid the slug phenomenon [4]. Except for the unusual
shape of the fluidization chamber, most pharmaceutical fluidized beds are negative pressure fluidized
beds since the gas-driven equipment (usually a high-pressure fan) is placed at the outlet of the gas
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path, which is different from the fluidized beds used in other fields. The reason for this design is that if
there is leakage, a negative pressure vessel is safer than a positive pressure vessel, and the material
does not scatter everywhere, which would cause contamination.

The gas pressure is one of the essential monitored parameters in a fluidized bed [5]. Through
analysis of the gas pressure signal, workers can know whether the fluidized bed is in a normal working
state. The gas pressure drop (∆P) between the surface and the bottom of the material is always used
to determine the flow regimes. When the superficial gas velocity (U0) is low (the subscript “0” in
this paper refers to the bottom section of the conical cylinder), the bed is in a static state, and ∆P
increases with an increase in U0; when U0 reaches a certain velocity, ∆P stops increasing and maintains
a relatively stable value. This stable value is called the incipient fluidization pressure drop (∆Pmf) [6],
and the corresponding U0 at this point is called the minimum fluidization velocity (U0mf). U0mf and
∆Pmf are of great importance in fluidized bed operation, and many factors affect these two values,
among which particle size and material mass are fundamental and essential factors.

Because the experimental methods to obtain U0mf and ∆Pmf under specified operating conditions
are time-consuming and laborious, many scholars have tried to obtain modeling correlations suitable
for general or specific working conditions [7]. In recent years, the proposed modeling correlations
can be divided into two categories [8]: one is based on modifying the Ergun equation, and the other
is based on dimensional analysis. The Ergun equation was proposed by Sabri Ergun in 1952 [9] to
calculate the pressure drop when a gas flows through a packed material [10], and the specific equation
is as follows:

dP
dh

= C1
(1 − ε)2

ε3

µUh

(φdP)
2 + C2

(1 − ε)
ε3

ρgU2
h

φdP
(1)

The Ergun equation has high accuracy due to the introduction of parameters such as particle size,
particle sphericity, and voidage, so it has been widely accepted and verified. In this equation, C1 is the
coefficient of the viscosity term, and C2 is the coefficient of the inertial term. For the original Ergun
equation, C1 = 150 and C2 = 1.75. Both C1 and C2 are empirical values, and many factors, such as
equipment size/shape, the friction coefficient, and particle size distribution, may lead to inaccurate
prediction results [11]. In 1966, Wen and Yu [12] proposed an empirical model based on the Ergun
equation and fitting the experimental data, the specific correlation of which was:

Remf =
√

33.72 + 0.0408Ar− 33.7 (2)

In 1982, Grace J.R. [13] argued that replacing the number 33.7 with 27.2 in Equation (2) is most
suitable for the gas-solid system. Gibson I.A. [14] et al. also did an in-depth discussion of Wen and
Yu’s equation.

For a conical fluidized bed, the original Ergun equation cannot be directly used because of the gas
velocity gradient in the axial direction, which makes the pressure drop rate vary in the axial direction.
To solve this problem, Peng and Fan [15] developed a model to calculate ∆P of a conical liquid–solid
fluidized bed by integrating the pressure drop rates of different layers. Jing et al. [16,17] proposed
a correlation based on the Ergun equation to calculate U0mf and ∆Pmf of a conical fluidized bed
using a mathematical processing method similar to Peng and Fan’s model. Rachadaporn Kaewklum
et al. [18] used Peng and Fan’s model to predict U0mf and ∆Pmf for air–sand conical beds, and the
effects of the sand particle size, cone angle, and static bed height on the flow behavior were discussed.
Andrei Koekemoer et al. [19] put forward a method of modifying the coefficients C1/C2 in Equation (1)
to increase the prediction accuracy, which is adopted and improved in this paper. In this study, we use
regression analysis to try to obtain a better combination of C1 and C2 that is more suitable for the
working conditions of this study.

Dimensional analysis is a widely used modeling method that only pays attention to the
mathematical relationships between independent variables and dependent variables while ignoring the
physical laws between physical parameters. A dimensionless model has a unified and straightforward
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equation form that is composed of a series of dimensionless groups. The general equation form is as
follows:

π0 = π
p1
1 ·π

p2
2 ·π

p3
3 · · ·π

pn
n (3)

where π0, π1, . . . , πn are all dimensionless groups and P1, P2, . . . , Pn are the exponents of these
dimensionless groups. Since the dimension of a dimensionless group is 1, no matter what the exponents
are, the equation can satisfy the principle of dimensional harmony. The main difficulty of this method
is determining the dimensionless groups, which requires knowing which factors affect the dependent
variables. The value of each component can be determined by linear regression or nonlinear regression
of the experimental data. Based on selecting appropriate dimensionless groups, a dimensionless model
generally achieves higher accuracy under specific working conditions.

Sau et al. [20–22] used the dimensional analysis method to develop modeling correlations for U0mf,
∆Pmf, and the bed expansion ratio of conical beds for different kinds of fluidization materials. Khani [23]
proposed a dimensionless model using the term cos(α) instead of sin(α) compared with Sau’s model [20],
considering that sin(α) approaches zero for mini-tapered beds, which may lead to an incorrect prediction
result. Mojtaba Rasteh et al. [24] thoroughly considered the effect of PSD (particle size distribution)
on U0mf and proposed different correlations for different PSDs (Gaussian/flat/binary). Because the
dimensional analysis method has strong applicability, it has been used by many scholars to derive
modeling correlations in the field of fluidized bed [25–31]. Some of the correlations proposed by other
scholars are listed in Table 1.

Table 1. Correlations proposed by other scholars for predicting U0mf and ∆Pmf.

Scholars Correlations

Sau, D.C. et al. [20]
Fr = 0.2714(Ar)0.3197 (sinα)0.6092

(
ε0
φ

)−0.6108

∆Pmf = 7.457
(

D1
D0

)0.038
(

dp

D0

)0.222(
H0
D0

)0.642
(
ρs
ρg

)0.723

Khani, M.H. [23]

Remf = 7.16(Ar)0.393
(

dp

D0

)0.987(
ε0
φ

)−0.833
(cosα)−275.486, 0 ≤ α ≤ 4.5◦

Remf = 10.396(Ar)0.367
(

dp

D0

)0.889(
ε0
φ

)−0.731
(cosα)−10.437,α > 4.5◦

∆Pmf
ρs gHs

= 106.729( ρs
ρg

)−0.522( dp

D0

)0.309(
H0
D0

)−0.379
(cosα)−10.858, 0 ≤ α ≤ 4.5◦

∆Pmf
ρs gHs

= 163.419( ρs
ρg

)−0.524( dp

D0

)0.269(
H0
D0

)−0.976
(cosα)−3.277,α > 4.5◦

Rasteh Mojtaba et al. [24] Remf = 0.254(Ar)0.585
(
ε0
φ

)3.12(
H0
D0

)0.264
(

dp

D0

)0.0016
(cosα)−13.2

However, in the literature related to the modeling of U0mf and ∆Pmf, most of the research
equipment that was used was positive pressure cylindrical fluidized beds. Due to the differences in
the gas path structure and the fluidization chamber shape, the previous research results cannot be
directly applied to negative pressure conical fluidized beds. In addition, both the method based on
modifying the Ergun equation and the method based on dimensional modeling have characteristics,
advantages, and disadvantages, while few studies have compared these two methods. Based on these
problems, we have carried out this study. The innovations of this study lie in the following: (a) the flow
behaviors of the negative pressure conical fluidized bed are studied, (b) the Ergun equation modifying
method and the dimensional analysis method are both used and compared, and (c) this study proposes
the inference that the total gas drag force is 0.8995 times the particles’ gravity in the initial stage of
fluidization. In this study, first, a series of experiments are carried out, and U0mf and ∆Pmf are obtained
as experimental empirical data; the effects of material mass and particle size on U0mf and ∆Pmf are
discussed. Second, we separately use the above two methods to fit the empirical data and derive models
of U0mf and ∆Pmf; by using these modeling correlations, workers can quickly determine U0mf and
∆Pmf based on some variables, and then determine the production parameters. Finally, the prediction
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ability of the proposed correlations and the characteristics of the two modeling methods are discussed,
which can be used as a reference for selecting an appropriate method in practical application.

2. Experimental Section

2.1. Experimental Equipment

As shown in Figure 1, in this study, a pharmaceutical granulation/drying fluidized bed (FBL-10,
Xiaolun Pharmaceutical Machinery, Wenzhou, China) was used, which was a negative pressure conical
fluidized bed. The conical cylinder was detachable with a bottom diameter of 180 mm and a top
diameter of 300 mm, and the cross-sectional area was round; the conical angle α = 8.88◦. There was
a distribution plate made of stainless steel with a thickness of 3 mm for supporting materials and
ventilation. The holes on the distribution plate were arranged in a square array mode, the diameter
of each hole was 1.6 mm, and the total number of holes was 1617, so the overall opening ratio was
12.78%. A double-layer fine screen covered the distribution plate to prevent fine materials from
falling through the holes and to force the airflow to be uniformly distributed. A high-pressure fan
(2RB-730N-7AH26, Gzling Mechanical & Electrical Equipment, Wuxi, China) was placed at the outlet
of the gas path, so the pressure in the fluidization chamber was negative with respect to the ambient
pressure. The high-pressure fan had a rated power of 3 kW and could generate a maximum negative
pressure of −22 kPa. The power of the fan was controlled by a frequency converter (ATV310HU30N4,
Schneider Electric SA, Paris, France); thus, the gas velocity could be changed. The control range of
the fan power was 1–100%, and the minimum control interval was 1%. The ambient pressure was
standard atmospheric pressure, the air humidity was controlled by a humidity controller (MDH-40Y,
Senjing Motor Manufacturing, Hangzhou, China) to 50–60%, and the ambient temperature was
controlled via air conditioning to 25 ◦C ± 1 ◦C.

A vortex flowmeter (DN100, Meikong Automation Technology, Hangzhou, China) was connected
in series at the exhaust pipe to measure the flowrate with an accuracy of 1%. Two air pressure
measurement ports were set in the center of the plenum and the front of the filter bag, named P1 and
P2, respectively. Two identical high-precision air pressure sensors were connected to the measurement
ports, and the measurement range was −10 kPa–10 kPa with an accuracy of 0.5%. The pressure sensors’
signals were sampled by a high-speed data acquisition card (USB-6009, National Instruments, Austin,
TX, USA) with a sampling frequency of 40 Hz. The pressure transfer hose (not shown in Figure 1) had
a length of 100 mm and an inner diameter of 4 mm, so the transmission time delay of the pressure
fluctuations in the hose could be ignored [32].

Micro glass beads were used as fluidized materials in this study, which are nonporous particles.
The true density of these particles was 2409 ± 8.8 kg/m3, measured by the drainage method.
Using different screen combinations, we screened out a total of 5 kinds of materials with different
particle sizes, which were numbered #1, #2, #3, #4, and #5. The average diameter (randomly measuring
the diameters of 50 particles and taking the average) and sphericity (replaced by the circularity of
the projection photo) of each kind of particle were determined by a digital microscope (GP-660V,
Gaopin Precision Instruments, Shanghai, China), and the natural bulk voidage of each kind of particle
was measured by a bulk density meter (XF-16913, LICHEN-BX Instrument Technology, Shanghai,
China), as shown in Table 2. Since the screen size range of each kind of particles was relatively
narrow, the particle distributions of all kinds of particles were considered a typical narrow distribution.
The microscopic photograph of the experimental particles is shown in Figure 2, and the bright spots on
the particles in the photograph are caused by the microscope’s illumination light.
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Table 2. Physical properties of materials and Geldart particle type.

Material Number #1 #2 #3 #4 #5

Screen size range (mm) 0.653–0.855 0.527–0.653 0.377–0.527 0.177–0.265 0.140–0.177
Particle diameter (mm) 0.744 ± 0.061 0.632 ± 0.046 0.454 ± 0.046 0.235 ± 0.025 0.164 ± 0.015
Bulk density (kg/m3) 1579 ± 2.1 1498 ± 2.7 1500 ± 2.3 1420 ± 0.5 1471 ± 3.3
Static voidage (-) 0.344 ± 1.7 × 10−3 0.378 ± 2.0 × 10−3 0.377 ± 1.9 × 10−3 0.410 ± 1.6 × 10−3 0.389 ± 2.2 × 10−3

Sphericity (-) 0.979 ± 0.031 0.966 ± 0.055 0.970 ± 0.058 0.903 ± 0.162 0.992 ± 0.037
Angle of repose (◦) 24.1 ± 0.23 23.3 ± 0.15 26.2 ± 0.11 24.3 ± 0.30 23.8 ± 0.12
Hausner ratio (-) 1.011 ± 0.8 × 10−3 1.039 ± 1.1 × 10−3 1.035 ± 0.3 × 10−3 1.077 ± 0.8 × 10−3 1.058 ± 0.3 × 10−3

Material mass (kg) 2/2.5/3/3.5/4 2/2.5/3/3.5/4 2/2.5/3/3.5/4 2/2.5/3/3.5/4 2/2.5/3/3.5/4
Geldart particle type (-) D B B B B
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According to the Geldart classification method [33], #1 was class D particles, and #2–#5 were
class B particles, where #2 was very close to the BD boundary. According to common knowledge in
the field of fluidization, the main characteristic of class B and D particles is that there is no obvious
expansion before the fluidization occurs. Additionally, the minimum bubbling velocity and the
minimum fluidization velocity are the same; in other words, there is almost no particulate fluidization
process in the fluidized bed.

2.2. Experimental Design and Procedure

Since port P1 is below the distribution plate, the pressure difference between ports P1 and P2
includes the pressure drop caused by the distribution plate. However, ∆P refers to the pressure drop
between the top and bottom sections of the material, so it is necessary to obtain the pressure drop
caused by the distributor first. For this reason, we first carried out a separate experiment in which
there was no material in the fluidized bed, and the number of this experiment was 00.

In this study, a total of 5 kinds of material masses were set to 2/2.5/3/3.5/4 kg. The five kinds
of material masses were cross-combined with the five kinds of particle sizes, and therefore, a total
of 25 experiments were developed. The experimental numbers are given in Table 3. For example,
in experiment 14, #3 particles with a mass of 3.5 kg were used as the experimental material.

Table 3. Experimental number correspondence table.

Material Number
Experimental Number

Material Mass
2 kg

Material Mass
2.5 kg

Material Mass
3 kg

Material Mass
3.5 kg

Material Mass
4 kg

#1 01 02 03 04 05
#2 06 07 08 09 10
#3 11 12 13 14 15
#4 16 17 18 19 20
#5 21 22 23 24 25

The experimental steps of experiments 01–25 were as follows: starting from a fan power opening
(called fan opening hereafter) of 70%, decrease the fan opening by 1% each time. After the fluidized
state is stable, record the signals (xP1, xP2, xf) for 30 s. Repeat the above operations until the fan power
reaches 11%. Each experiment was repeated three times, and the most credible set of data was selected
as the final data during data screening. To ensure that all experiments were carried out under the same
conditions, before each experiment, the distribution plate, double-layer screen, and filter bag were
cleaned, and the equipment was prefluidized at 50% fan power for 15 min to keep the material in a dry
and loose state. For experiment 00, the fan power stopped at 0%; the rest of the procedure was the
same as that in experiments 01–25.

3. Signal Processing Methods

This paper ignores the influence of gas compression and considers the gas flow rate at any cross
section of the conical cylinder to be the same. The superficial gas velocity at any section is calculated
using the following equations:

Uh = xf/Sh (4)

U0 = xf/S0 (5)

where xf is the average value of the flow rate time-series signal (xf) and Sh is the sectional area of the
conical cylinder at the height of h.

The number of the empty bed experiment is 00, and the relationships among the fan opening, U0,
and ∆Pp are shown in Figure 3. As shown in Figure 3, with an increase in the fan opening, U0 and ∆Pp

continue to increase.
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As shown in Equation (6), by subtracting the average values of xP1 and xP2 in the empty bed
experiment (material mass W = 0), the pressure drop generated by the gas distribution plate (∆Pp)
can be calculated. For each fan opening, ∆Pp and U0 were recorded so that the mapping relationship
between a series of ∆Pp and a series of U0 can be established. Therefore, for a given U0, the value of
∆Pp can be determined by this mapping relationship. As shown in Equation (7), for experiments 01–25,
by subtracting the average values of xP1 and xP2 and then subtracting ∆Pp (under the current U0),
∆P can be obtained.

∆PP = (xP1 − xP2)|W=0 (empty bed experiment, number 00) (6)

∆P =xP1 − xP2 − ∆Pp
∣∣∣U0 (experiment 01–25) (7)

The intersection method is used to determine U0mf and ∆Pmf. The specific determination process
is as follows. first determine an inflection point, and from the second point before the inflection point,
take as many points as possible near a straight line to fit the first straight line; then, from the second
point after the inflection point, take 4–6 continuous points, then plot a horizontal straight line as the
second line, whose height is the average of the taken points’ ordinate values; the intersection point of
the two straight lines is considered to be the point (U0mf, ∆Pmf). Take experiment 06 shown in Figure 4
as an example. The two black lines in Figure 4 are the two straight lines, and U0mf and ∆Pmf are the
abscissa and ordinate of the intersection point, respectively.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 19 
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In this paper, the root mean square error (RMSE) and R2 are used to describe the fitting accuracy
quantitatively. RMSE means the root mean square error; the smaller the value, the closer the fitting
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value is to the actual value. R2 is the determination coefficient, and its value is between 0 and 1.
The higher the value is, the higher the fitting accuracy.

RMSE =

√√√
1
N

N∑
i=1

(xi − x̂i)
2 (8)

R2 = 1−

∑
i=1

(xi − x̂i)
2

∑
i=1

(xi − x)2 (9)

4. Results and Discussion

4.1. Effects of Material Mass and Particle Size on Flow Behavior

As shown in Figure 5, the 2nd row and 2nd column of the data in Table 3 are taken to display the
effect of the material mass and the particle size on the flow behavior, and the experimental numbers
are 06/07/08/09/10 and 02/07/12/17/22, respectively. A series of vertical dotted lines on the left side of
Figure 5 represent U0mf of each experiment, and their colors and markers are the same as those of the
curves of the corresponding experiments.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 19 
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Figure 5. ∆P at different U0 values of (a) the 2nd row and (b) the 2nd column of experiments in Table 3.

As shown in Figure 5a, when U0 < U0mf, with an increase in U0, ∆P continues to increase linearly;
when U0 > U0mf, ∆P stops growing and enters a stable stage. In addition, the higher the material mass,
the greater ∆Pmf is. The material mass has little effect on U0mf; with an increase in the material mass,
U0mf increases slightly. As shown in Figure 5b, when U0 < U0mf, the particles with a larger particle
size have a lower growth rate. When U0 > U0mf, the experiments have similar ∆Pmf values. When U0

reaches a certain velocity, experiments 17/22 show significant ∆P growth, while the other experiments
show little or no increase. We suppose the possible reason is as follows. When the gas velocity is high
enough, the fine particles move to the upper part of the fluidized chamber and collide with the top
surface. Assuming that all the particles are a whole body, this whole body is now subjected to the
downward gravity force and the downward support force exerted by the top surface, so the pressure
drop continues to increase because the required gas flow drag force becomes larger. For experiments
with larger particle sizes (experiment 02/07/12), the particles cannot be brought high enough to collide
with the top surface. Particle size has a significant influence on U0mf; as the particle size increases,
U0mf increases significantly.

U0mf and ∆Pmf obtained in all experiments are shown in Table 4. 3D views of the particle size and
material mass versus U0mf and ∆Pmf are plotted to facilitate the observation of the variation regularity
in Figure 6.
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Table 4. U0mf and ∆Pmf of each experiment.

Material Number

U0mf (m/s)
∆Pmf (kPa)

Material Mass
2 kg

Material Mass
2.5 kg

Material Mass
3 kg

Material Mass
3.5 kg

Material Mass
4 kg

#1 0.403
0.650

0.408
0.810

0.413
0.964

0.419
1.064

0.433
1.213

#2 0.302
0.640

0.328
0.793

0.344
0.933

0.361
1.093

0.375
1.213

#3 0.232
0.615

0.245
0.756

0.249
0.903

0.255
1.043

0.258
1.170

#4 0.106
0.643

0.125
0.771

0.136
0.899

0.149
1.020

0.157
1.116

#5 0.113
0.665

0.116
0.829

0.125
0.966

0.134
1.117

0.143
1.189
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Table 4 and Figure 6 show that for U0mf, the main influencing factor is the particle size; the larger
the particle size, the larger U0mf is. The influence of the material mass is small, and U0mf increases
slightly with an increase in the material mass. For ∆Pmf, the main influencing factor is the material
mass, and ∆Pmf is approximately proportional to the material mass. The influence of the particle size
is small and complex; for the same material mass, ∆Pmf of #1–#4 particles is almost the same, and ∆Pmf

of #5 particles is 2–13% larger than the former.

4.2. Mathematical Modeling

4.2.1. Ergun Equation Modifying Method

The fluidized state could be observed through the glass window embedded in the sidewall of the
conical cylinder, and the expansion of the bed surface could be clearly observed with the help of a thin
film ruler that was pasted on the inner wall of the conical cylinder. When U0 < U0mf, the bed was in a
fixed state. When U0 approached U0mf, slight expansion could be observed in the bed, and the bed
height expansion ratio was approximately 2%. After U0 reached U0mf, bubbling was observed in the
central part of the bed surface. As U0 continued to increase, significant bubbling occurred throughout
the entire cross section, and the fluidization height also increased as more particles were brought into
the freeboard.

To simplify the model, the following assumptions are made for the point at which U0 = U0mf:
the material expands uniformly, the bed height expansion ratio in the height direction is 2%, and the
surface of the bed is flat.
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From Equations (4) and (5), it can be further deduced that Uh is the function value of rh, and the
deduced equation is as follows:

Uh = U0
S0

Sh
= U0

r2
0

r2
h

(10)

As Figure 7 shows, according to the trigonometric function equation:

rh = r0+htan(α) (11)

r1 = r0 + H0tan(α) (12)
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To obtain a precise H0 value for each experiment in Table 3, the following equation is drawn based
on the relationship of volume times density is equal to mass:

1
3

H0π(r2
0 + r0r1 + r2

1)(1− ε0)ρs= W (13)

By solving the combined equations of Equations (12) and (13), the H0 value can be obtained.
In this study, an exhaustive method is used, and the programming and calculation are conducted
in MATLAB. The specific method is to assign all the values of every 0.0001 in 0–0.1 to H0 (unit: m)
and substitute H0 into Equations (12) and (13); then, calculate the equation error of Equation (13);
finally, the best-matched H0 value can be obtained by finding the minimum absolute equation error.
The calculated H0 values of all experiments are listed in Appendix A.

Since the bed expansion ratio is 2%, Hmf, rmf, and εmf can be determined by the following equations:

Hmf = 1.02H0 (14)

rmf = r0 + Hmftan(α) (15)

εmf = 1−
W

ρsπHmf

(
r2

0 + r0rmf + r2
mf

)
/3

(16)

Under the condition of U0 = U0mf, the original Ergun equation is as follows:

dP
dh

= 150
(1 − εmf)

2

ε3
mf

µUh

(φdP)
2 + 1.75

(1 − εmf)

ε3
mf

ρgU2
h

φdP
(17)
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Set A =150 (1−εmf)
2

ε3
mf

µ

(φdP)
2 and B =1.75 (1−εmf)

ε3
mf

ρg
φdP

so that Equation (17) can be simplified to:

dP
dh

= AUh+BU2
h (18)

The drag force of the gas on the particles is:

dF = dP · Sh (19)

Integrate the left and right sides of Equation (19) to h at the same time with an integral interval of
0-Hmf, and simplify it as follows:

Fmf =
∫ Hmf

0

(
AU0mf

r2
0

(r0+h tanα)2 +BU2
0mf

r4
0

(r0+h tanα)4

)
π(r0+h tanα)2dh

= πr2
0Hmf

(
AU0mf+BU2

0mf
r0

rmf

) (20)

Since the inner wall of the conical cylinder is relatively smooth, the friction force of the wall
against the particles can be ignored. According to previous studies [15,16], when U0 = U0mf, the drag
force exerted on the particles is equal to the gravity force of the particles; that is:

Fmf= G (21)

Substitute Equation (20) into Equation (21); that is:

πr2
0Hmf(AU0mf+BU2

0mf
r0

rmf
)= Wg (22)

By solving Equation (22), the calculated U0mf can be obtained. (Hmf, rmf, and εmf can be obtained
in advance by Equations (14)–(16), respectively)

Integrate the left and right sides of Equation (18) to h at the same time with an integral interval of
0-Hmf, and simplify it as follows:

∆Pmf =
∫ Hmf

0

(
AU0mf

r2
0

(r0+h tanα)2 +BU2
0mf

r4
0

(r0+h tanα)4

)
dh

= AU0mfHmf
r0

rmf
+BU2

0mfHmf
r0(r2

0+r0rmf+r2
mf)

3r3
mf

(23)

The calculated ∆Pmf can be obtained by substituting the calculated U0mf into Equation (23).
For every experiment in Table 3, conduct the above calculation steps to obtain the calculated U0mf

and calculated ∆Pmf values. To facilitate observation, the experimentally measured values of U0mf and
∆Pmf are taken as the abscissa and the calculated values as the ordinate, as Figure 8 shows.

Figure 8 shows that the prediction accuracy of U0mf is relatively high (absolute error < 20%) for
the data of experiments 06–10 and very poor for experiments 16–25 in which small particles were used,
and all the prediction values are smaller than the experimental values. For the prediction of ∆Pmf,
the prediction accuracy is high, with similar errors between 0–+20%. Substituting all prediction and
experimental values into Equations (8) and (9), the overall RMSE and R2 can be obtained, as shown in
Table 5. There are many possible reasons for the low prediction accuracy: (a) The measured values
of some variables, especially the sphericity, are difficult to accurately determine. (b) There may be
differences in some environmental parameters compared with the experiments for deducing the
Ergun equation, such as gas humidity, which greatly affects the gas viscosity and the drag force.
(c) The conical wall may have an upward support force for the material in the initial fluidization stage.
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Figure 8. Comparison of the calculated and experimental values of (a) U0mf and (b) ∆Pmf for the
original Ergun equation.

Table 5. Coefficients and prediction accuracies of the original and modified Ergun equations.

C1 C2 C3

U0mf ∆Pmf

RMSE
(m/s) R2 (-)

RMSE
(kPa) R2 (-)

Original 150 1.75 1 0.0872 0.4209 0.1076 0.6908
Modified 46.61 3.25 0.8995 0.0402 0.8771 0.0291 0.9774

To increase the prediction accuracy of U0mf and ∆Pmf, the original coefficients at two sites are
changed. The coefficients C1/C2 in Equation (1) are changed at the first site, whose original values are
150/1.75, respectively. At the second site, considering that the conical wall may support the material,
a multiplicative correction coefficient C3 is added to Equation (21) as follows:

Fmf = C3 ·G (24)

Therefore, Equation (22) is modified as follows:

πr2
0Hmf(AU0mf+BU2

0mf
r0

rmf
) = C3 ·Wg (25)

where A =C1
(1−εmf)

2

ε3
mf

µ

(φdP)
2 and B =C2

(1−εmf)

ε3
mf

ρg
φdP

. Equation (25) is the equation used in the following

fitting operations.
All the calculations are performed by MATLAB software, a method of exhaustive optimization is

used, and the optimization goal is to minimize the sum of the RMSE values of U0mf and ∆Pmf (RMSEsum).
The specific calculation processes are shown in Figure 9. First, a preset value of 0.8 is given

for C3, then C1/C2 are obtained by fitting the experimental data using a linear regression method
(“regress” function in MATLAB). Then, this C1/C2/C3 combination is used to calculate the value of
RMSEsum, and the C1/C2/C3 combination and RMSEsum are recorded. Then, add 0.0001 to the previous
C3 preset value, and perform the same calculation and recording for each C3 preset value. When the
C3 preset value reaches 1.2, the exhaustive optimization calculation is ended. Finally, the C1/C2/C3

combination corresponding to the minimum value of RMSEsum is found. The final results are C1 = 46.61,
C2 = 3.25, and C3 = 0.8995. The coefficients and modeling accuracies of the original and modified
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Ergun equations are listed in Table 5, and the modeling results of the modified Ergun equation are
shown in Figure 10.
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Substitute C3 = 0.8995 into Equation (24), i.e.,

Fmf = 0.8995 ·G (26)

We speculate that the reason for Equation (26) is that when fluidization occurs, the conical wall
still has support for the particles, which can decompose into an upward component force; therefore,
when the drag force of the gas is less than the gravity force of particles (0.8995 < 1), the particles
can still be fluidized, and the coefficient C3 should be related to the cone angle. Some literature has
proposed separation models of conical fluidized beds, which may help analyze this problem [34,35].
In future research, we will try to measure the possible supporting force and study the value trend of
the coefficient C3.
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To sum up, the specific calculation process of the Ergun equation modifying method is that U0mf

can be calculated by solving the following equation:

πr2
0Hmf(AU0mf+BU2

0mf
r0

rmf
) =0.8995 ·Wg (27)

where A =46.6 (1−εmf)
2

ε3
mf

µ

(φdP)
2 and B =3.25 (1−εmf)

ε3
mf

ρg
φdP

(Hmf, rmf, and εmf can be obtained by

Equations (14)–(16), respectively). After U0mf is calculated, ∆Pmf can be calculated by substituting the
calculated U0mf into Equation (23).

4.2.2. Dimensional Analysis

To obtain a dimensionless correlation, we first determine the factors that influence the
hydrodynamic behavior of the fluidized bed, which are the particle size (dp), initial bed height (H0),
bottom diameter (D0), initial bed voidage (ε0), particle sphericity (ϕ), particle true density (ρs),
gas density (ρg), gas viscosity (µ), angle of repose (θ), Hausner ratio (R). These factors are recast into

several dimensionless groups containing the Reynolds number (Remf =
ρgU0mfdp

µ ), Archimedes number

(Ar =
gd3

pρg(ρs−ρg)
µ2 ), ∆Pmf

ρs gH0
, ε0
φ , H0

D0
,

dp
D0

, θR , and the correlations among these above dimensionless groups
with undetermined coefficients are as follows:

Remf = a1 · (Ar)b1 ·

(
ε0

φ

)c1

·

(
H0

D0

)d1

·

(
dp

D0

)e1

·

(
θ
R

) f1
(28)

∆Pmf

ρsgH0
= a2 · (Ar)b2 ·

(
ε0

φ

)c2

·

(
H0

D0

)d2

·

(
dp

D0

)e2

·

(
θ
R

) f2
(29)

To obtain the undetermined coefficients of Equations (28) and (29), both linear regression and
nonlinear regression methods can be used. For the linear regression method, first, take the logarithm
of both sides of Equation (28) as follows:

lg(Remf) = lg(a1) + b1 · lg(Ar) + c1 · lg
(
ε0

φ

)
+ d1 · lg

(
H0

D0

)
+ e1 · lg

(
dp

D0

)
+ f1 · lg

(
θ
R

)
(30)

Then, the “regress” function in MATLAB can be used to fit the undetermined coefficients, i.e., a1,
b1, c1, d1, e1, and f 1

For the nonlinear regression method, the “nlinfit” function in MATLAB is used to fit the
undetermined coefficients of Equations (28) and (29) directly, and the results of the linear regression
are set as the initial values of iteration. The results of the linear and nonlinear regression methods are
shown in Tables 6 and 7 and Figure 11. Based on the values of R2 and RMSE, there is little difference
between the fitting accuracy of the linear and nonlinear regression methods, especially for ∆Pmf,
where the models are almost the same.

Table 6. Results of the linear and nonlinear regression methods of U0mf for the dimensionless model.

a1 b1 c1 d1 e1 f 1
RMSE
(m/s) R2 (-)

Linear regression 1 0.504 −1.355 0.326 0.236 −0.635 0.011 0.991
Nonlinear regression 1.033 0.509 −1.142 0.186 0.232 −0.645 0.009 0.994
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Table 7. Results of the linear and nonlinear regression methods of ∆Pmf for the dimensionless model.

a2 b2 c2 d2 e2 f 2
RMSE
(kPa) R2 (-)

Linear regression 1 −0.003 −0.642 0.020 0.010 −0.354 0.015 0.994
Nonlinear regression 0.997 −0.003 −0.648 0.017 0.010 −0.352 0.015 0.994
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Since the linear regression has better convergence ability than the nonlinear regression and does
not need to assign initial values, it is more practical. Therefore, we choose the results of the linear
regression method, and the final dimensionless correlation to predict U0mf and ∆Pmf is as follows:

U0mf = (Ar)0.504
·

(
ε0

φ

)−1.355

·

(
H0

D0

)0.326

·

(
dp

D0

)0.236

·

(
θ
R

)−0.635
·
µ

dpρg
(31)

∆Pmf = (Ar)−0.003
·

(
ε0

φ

)−0.642

·

(
H0

D0

)0.020

·

(
dp

D0

)0.010

·

(
θ
R

)−0.354
· ρsgH0 (32)

4.2.3. Discussion of the Two Modeling Methods

Based on the values of R2 and RMSE of the two modeling methods (Tables 5–7), the dimensional
analysis method is better than the Ergun equation modifying method. This result mainly occurs
because the dimensionless correlation contains six undetermined coefficients, which is more than the
three undetermined coefficients in the modified Ergun equation. More undetermined coefficients can
effectively improve the fitting accuracy but also increase the complexity of the fitting calculation.

The physical laws between physical quantities are considered in the Ergun equation modifying
method, so its correlation has relatively strong logicality. When using this method, by analyzing and
deducing the formulas, the current fluidized state can be analyzed more deeply, and even some other
inferences or conclusions can be obtained. For example, the inference of Fmf = 0.8995G is obtained in this
study, which offers some new information on analyzing the fluidized state. The dimensional analysis
only fits the relationship between physical quantities from the numerical point of view. Under the
condition of the same equipment and operation parameters, it has high fitting accuracy. However,
the adaptability of this method is inadequate. For example, Equations (30) and (31) have higher
prediction accuracy for the negative pressure conical fluidized bed with a glass bead material, but they
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may not be able to predict accurately for other types of fluidized beds or materials. These two methods
have their advantages and disadvantages, and the appropriate method can be chosen according to the
needs of actual production.

5. Conclusions

The research equipment in this paper is a pharmaceutical conical fluidized bed with negative
pressure. First, the relationship between particle size/material mass and U0mf/∆Pmf is explored. Then,
an Ergun equation modifying method and the dimensional analysis method are used to establish
prediction models for U0mf/∆Pmf, and linear and nonlinear regression analysis methods are both used
to determine the coefficients in the models. Finally, the advantages and disadvantages and applicable
scope of the two modeling methods are compared and evaluated.

The conclusions of this study can be summarized as follows:
For U0mf, the main influencing factor is the particle size, and the larger the particle size, the larger

the U0mf is; the influence of the material mass is small. For ∆Pmf, the main influencing factor is the
material mass, and ∆Pmf is approximately proportional to the material mass; the influence of the
particle size is relatively small. Experiments with small particles show a significant increase at large
superficial gas velocity; we propose a conjecture that the particles’ collision with the fluidization
chamber’s top surface causes this phenomenon.

The Ergun equation modifying method takes into account the physical laws between physical
quantities. The original Ergun equation has low prediction accuracy for U0mf and ∆Pmf for this
study. Modifying the coefficients of the Ergun equation can significantly increase the prediction
accuracy. By analyzing the data, we draw the inference of Fmf = 0.8995G, which may be due to the
upward supporting effect of the conical cylinder wall on the material and needs to be further explored
and verified.

The dimensional analysis method considers only the mathematical relationships between
independent variables and dependent variables. Compared with the Ergun equation modifying
method, the dimensional analysis method has a higher fitting accuracy. There is little difference in the
fitting accuracy between the linear regression method and the nonlinear regression method.
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Nomenclature

A, B alphabetic symbols used to simplify equations, (-)
Ar Archimedes number (= gd3

pρg
(
ρs − ρg

)
/µ2), (-)

C1 coefficient of the viscosity term in the Ergun equation, (-)
C2 coefficient of the inertial term in the Ergun equation, (-)
C3 multiplicative correction coefficient in Equation (24), (-)
dp particle size, (m)
Fmf drag force of the incipient fluidized state, (N)
Fr Froude number (= U0mf/

√
gdp), (-)

G gravity force of particles, (N)
g acceleration of gravity, (9.8 m/s2)
h height of the specified section of the conical cylinder, (m)
H total height of particles, (m)
N total number of points in a time-series signal, (-)
P pressure drop, (kPa)
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Pn exponents of the dimensionless groups, (-)
r0 radius of the bottom of the conical cylinder, (m)
rh sectional radius of the conical cylinder at the height of h, (m)
r1 sectional radius of the conical cylinder at the height of H, (m)
R Hausner ratio, (-)
Remf Reynolds number when U0 = U0mf, (= ρgU0mfdp/µ), (-)
RMSEsum sum of the RMSE values of U0mf and ∆Pmf, (-)
S0 sectional area of the conical cylinder at the bottom, (m2)
Sh sectional area of the conical cylinder at the height of h, (m2)
Uh superficial gas velocity at the h height section of the conical cylinder, (m/s)
U0 superficial gas velocity at the bottom section of the conical cylinder, (m/s)
U0mf minimum fluidization velocity at the bottom section of the conical cylinder, (m/s)
W material mass, (kg)
x discrete time-series signal, (-)
xi the ith value of x, (-)
x average value of x, (-)
x̂i the ith calculated value of x, (-)
xP1, xP2 pressure time-series signal at ports P1 and P2, (Pa)
xP1, xP2 average value of xP1 and xP2 (Pa)
xf flow rate time-series signal, (L/min)
xf average value of xf, (L/min)
Greek letters
α conical angle of the conical cylinder, (◦)
ϕ particle sphericity, (-)
θ angle of repose, (◦)
ε voidage of particles, (-)
ε0 static voidage of particles, (-)
εmf voidage of the incipient fluidized state, (-)
µ gas viscosity, (Pa·s)
ρg density of gas, (kg/m3)
ρs true density of particles, (kg/m3)
πn dimensionless groups, (-)
∆P pressure drop between the top and bottom sections of the material, (Pa)
∆Pmf ∆P of the incipient fluidized state, (Pa)
∆Pp pressure drop at the gas distribution plate, (Pa)

Appendix A

Table A1. Calculated H0 values of all experiments.

Material
Number

H0 (m)

Material Mass
2 kg

Material Mass
2.5 kg

Material Mass
3 kg

Material Mass
3.5 kg

Material Mass
4 kg

#1 0.0460 0.0565 0.0667 0.0765 0.0861
#2 0.0483 0.0593 0.0699 0.0802 0.0902
#3 0.0483 0.0592 0.0698 0.0801 0.0900
#4 0.0507 0.0622 0.0733 0.0840 0.0944
#5 0.0491 0.0603 0.0710 0.0815 0.0916
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