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Abstract: Salient-object detection is a fundamental and the most challenging problem in computer
vision. This paper focuses on the detection of salient objects, especially in low-contrast images.
To this end, a hybrid deep-learning architecture is proposed where features are extracted on both the
local and global level. These features are then integrated to extract the exact boundary of the object of
interest in an image. Experimentation was performed on five standard datasets, and results were
compared with state-of-the-art approaches. Both qualitative and quantitative analyses showed the
robustness of the proposed architecture.

Keywords: deep-learning models; salient-object detection; hybrid architecture; boundary-aware
refinements

1. Introduction

Human beings very easily and quickly make vision-based decisions by extracting all important
information from any real scene. All important objects in a scene are extracted, as well as relevant
useful characteristic information such an object’s color, size, relative distance, and nearness. That is
why salient-object detection (SOD) is extremely important and fundamental in many vision-related
applications like computer vision, graphics, and robotics [1]. Due to its importance, much work is
conducted in various research areas such as image captioning, target detection, scene classification,
and semantic segmentation by utilising image-level annotations and image-quality evaluation [2–7].

Recently, deep learning has had remarkable success in salient-object detection because it provides
a rich and discriminate representation of images. Convolutional neural networks (CNNs) are a very
effective tool in machine learning, it working efficiently in salient-object detection because of the ability
to extract both high- and low-level features. Early deep saliency models utilise multilayer perceptron
(MLP) for detection. In these methods, the input image is split into small regions, and a CNN is then
used to extract features that are passed to MLP to compute the saliency of the region. However, these
models fail to extract high-level semantic information; thus, this semantic information is unavailable
to further pass into fully connected layers. Therefore, this results in loss of information that is needed
to obtain complete characteristic information of a salient object [1].

As an alternative, fully convolutional networks (FCNs) are often used [8]. In spite of the fact that
FCNs produce good results, these models underperform for the images with low contrast, especially
near boundaries of objects, because (1) saliency is heavily affected by the intense noise of low-contrast
images; (2) in frequent pooling operations in deep-learning methods, loss of object structure and
semantic information is unavoidable, which causes the poor detection of objects; and (3) since saliency
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is determined by the global contrast of image instead of local features, it becomes hard for the model
to examine detailed boundary knowledge of the object.

To overcome these problems, we propose a boundary-aware fully convolutional network for the
detection of salient objects that captures both the local and global context with a built-in refinement
module to achieve segmentation with fine boundaries. Integration of both local and global features
helps our model to accurately locate salient region. Features produced from multiple convolutional
layers are merged into an integrated feature map to obtain the global context.To capture the local
context and enhance local contrast features, multiresolution feature maps resulting from convolutional
layers, contrast features, and upsampled feature maps produced from deconvolution layers are merged
to form the local feature map. The predicted saliency map is produced by the fusion of global and
local features. The predicted map is then passed to the refinement module, which is built as a residual
block that purifies the input saliency map (see Figure 1).

Figure 1. Overview of proposed model (SODL), which consists of prediction module and refinement
module. Image is passed to prediction module that learns deep features and produces a predicted
saliency map, which is refined by the refinement module. This refined saliency map is taken as the
final map.

The contributions of this work are summarised as follows:

1. Generation of local and global deep feature maps to extract detailed structure of objects.
2. Enhanced detection of objects in low-contrast images by integrating contrast features, and a global

convolutional modules to introduce dense connections between features and classifiers.
3. Boundary-refinement module to preserve boundary information present in initial layers.
4. A residual refinement module is embedded that processes the predicted saliency map to refine

boundaries by learning residuals.

The rest of this paper is organised as follows: Section 2 details the literature review, Section 3
explains the architecture of the proposed approach, Section 4 presents the experimental results, and
Section 5 draws the conclusions.

2. Related Work

In general, methods for the detection of salient objects can broadly be classified into two groups:
traditional and deep-learning-based approaches.
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2.1. Traditional Approaches

These approaches use low-level features (e.g., color, contrast) to differentiate salient objects [9,10].
These features are useful in simple scenarios, but they have limited capability to caapture objects in
complex scenarios. A comprehensive survey is provided by Borji et al. in [1].

2.2. Deep-Learning-Based Techniques

In deep learning, a model learns directly from image to perform classification. Wang et al. [11]
developed a technique that makes use of prior saliency-detection techniques. Repetitive architecture
allows for this method to refine the saliency map by rectifying previous errors, which results in fine
predictions. They introduced a pretraining strategy using segmentation data for network training,
which helps in segmentation or successful training and allows for the network to grasp objects for
saliency detection. They trained an FCN to estimate the nonlinear mapping of saliency values from
raw pixels and neglect saliency priors; then, these saliency priors were combined with deeply learned
features, which are passed for iterative refinement. In this module the whole network is propagated
forward, which causes an increase in computational cost and memory usage. Vivek et al. [12] used
many saliency-detection methods to improve the quality of saliency map. First, they generated initial
saliency maps by selecting saliency models. Then, they integrated these maps to form a binary map
after that final saliency map had been generated using integration logic. The combined binary map
defines pixels in finer way than a single binary map does. By using these labels, the final saliency
map is produced by using logic in which maximal and minimal saliency values are assigned to
pixels. The efficiency of this method relies on the saliency-detection model being selected. Therefore,
the method of selecting existing techniques plays a key role. This method performs well when selected
methods can detect images, and fails when those methods cannot. Feng et al. [13] introduced a model
to enhance segmentation results near boundaries. An attentive feedback module was proposed to
produce fine boundaries. Features from encoder blocks are passed to decoders where the feedback
module is applied for segmentation. This module learns the structure and performs segmentation.
Further, they proposed boundary-enhancement loss to assist the feedback module. VGG 16 was
used as a base model by modifying it into an encoder network, followed by perception module that
uses a fully connected layer that leads to the decoder module. Every decoder layer had a 3 × 3
convolutional layer. Multiscale features are collected via the encoder block; then, global saliency
prediction is calculated, which is passed to the decoder for finer saliency predictions. For boundary
correction, attentive feedback is applied.

Wang et al. [14] proposed a deep model that uses boundary knowledge to accurately locate salient
objects. In boundary-guided networks, two subnetworks are defined: one for the mask and the other
for boundaries; features are shared between these two networks. They also proposed focal loss to
learn the loss of hard pixels near boundaries. Both subnetworks follow encoder decoder networks,
features are extracted in the encoder, and the decoder gives the output. Decoders of both subnetworks
are connected. The features extracted by the encoder have different resolutions, and bidirectional
flow of information is enabled in encoders. Feature maps from two subnetworks are combined and
passed to a convolutional layer. The decoders of mask and boundary subnetworks are connected.
The mask decoder refines the mask prediction and uses focal loss, which focuses on boundary pixels.
Girshick et al. [15] developed a robust and versatile detection technique that enhances the mean
average precision by over 50% compared to prior techniques. This approach incorporates two concepts:
(i) applying high CNNs to localise objects from bottom–up regions; and (ii) supervision pertaining
to when abundant data are available, followed by fine tuning to increase performance. The whole
technique comprises three modules. First, the module originates the regions. The second module
consists of convolutional layers to collect features from regions. The final module is linear SVMs.
The authors used selective search to select the technique for the region proposals. To extract features,
regions are first converted into a form that is compatible with CNN; after features are extracted,
optimisation is applied. Eitel et al. [16], proposed an RGB-D strategy for object detection. The network
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consisted of two different CNNs for each modality paired with a late fusion network. They set up a
multistage training approach for effective training, and a data-augmentation framework for learning
with images by manipulating them with noise patterns. The two convolutional models utilise color
and depth information to examine RGB and depth data, which is integrated into a fusion technique.
ImageNet is used for data pretraining; then, multimodal CNN is trained. Parameters are tuned for
data classification, followed by the combined training of the parameters and fusion network. Images
are resized before passing them to CNNs. The authors proposed an effective method for encoding
depth images that normalises depth values that fall between 0 to 255. Then, the color amp is applied
on images, which transforms them into three channel images. Table 1 highlights some of the other
related state-of-the-art approaches available in the literature.

Table 1. Summary of related-work review.

Ref Methods Strengths Limitations

[10] Frequency-tuned model for Efficiency in computation Alignment issues and poor
large salient objects Fine detection in large objects performance for low contrast

[11] FCN-based saliency map Good saliency refinement Computational iterative process

[12] Hybrid saliency detection improved accuracy Poor performance for low-contrast images

[16] Multistage training Good noise filter Computationally complex

[17] Mean shift Robust against low noise Low results for highly noisy images

[18] Intensity- and contrast-based Fine saliency map Not efficient for large images

[19] Image signature Scalability Poor performance for small objects

[20] Background construction for saliency Better accuracy High computational cost

[21] Graph-based manifold ranking Combination of multiple methods High dimensionality and computational cost

[22] Wavelets effective saliency detection Loss of spatial information

[23] Unsupervised technique for saliency Joint and iterative optimisation Computational cost is high

[24] Bootstrap Time reduction Limited results shown

[25] Contextual info Good results Perform low for complex backgrounds

[26] Hierarchical and SVM Lower computational cost Perform poor for complex images

[27] Uses scene knowledge Good precision Poor results for low-resolution images

[28] Blockwise scene scanning Improved accuracy Computational cost

[29] Regions based features Efficient approach Perform poor for low contrast images

[30] Low- and high-level features Improved accuracy Bad segmentation for low-contrast images

Both traditional and deep-learning-based models perform well for images having good contrast;
however, their performance substantially degrades when contrast is low, and objects of interest
have blurred boundaries. This work detects salient objects in low-contrast images using hybrid
deep-learning models.

3. Proposed Approach

3.1. Architecture Overview

The proposed method consists of two main modules: (a) prediction of saliency maps and
(b) refinement of the predicted saliency module. The prediction module consists of fully convolutional
network that captures both local and global features. It also contains global-convolution and
boundary-refinement blocks that focus on the refinement of features and the better extraction of
boundary features. To further emphasise low-contrast images and enhance contours, a contrast
module is also embedded in the model. Details are provided in subsequent sections.
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3.2. Prediction Module

In this work, the prediction module was based on fully convolutional layers. To this end, the entire
model network was based on a convolution operation and a deconvolution layer with varying output
dimensions. This enabled our model to capture global and local features from different resolutions, as
shown in Figure 1.

An input image is passed to five convolutional blocks to produce five feature maps F1, F2, F3, F4,
and F5. Every convolutional block has kernel size of 3 × 3, followed by a max-pooling operation with
stride 2 in order to reduce spatial resolution to 13 × 13 from 208 × 208. Pooling decreases the number
of parameters and computations. Max pooling is obtained by using a max filter that captures the
maximum of the selected region and produces a new one. After that, five global convolutional blocks
are added into the network that allow for dense connection in the features and convolutional layers,
which enables features to acquire diverse neural information and be immune to local disruptions.
We also added boundary-refinement blocks (BRBs) for the feature maps to keep boundary information.
These BRBs are based on a residual structure in which input to this block is directly added to the
output of the deeper layer, which helps to maintain information present in the initial layers, and this
information is needed by the upsampling layers. This structure also helps in avoiding information loss
due to a multilayer network architecture.

To generate local feature maps FL , five more convolutional blocks were added to the network,
which processes the output of first five convolutional blocks as shown in Figure 2. These convolutional
layers also have a kernel of 3 × 3 with 128 channels. The resulting diverse-scale local feature maps
were F6 , F7, F8, F9, F10. To further capture contrast feature Fc

i (i = 6, ..., 10) for each feature map, which
is essential, especially for low-contrast images, we calculated the difference between feature map Fi
and its local average F∗i . In order to calculate the value of F∗i . We employed average pooling with a
kernel size of 3 × 3. The contrast feature was thus calculated as

Fc
i = Fi − Fi

∗ (1)

Since pooling operations were performed after convolutional layers, the spatial size of the image
was decreased (to reduce computational cost). However, in the deconvolutional layer, we employed
upsampling in order to attain the original image size. The final feature map was generated by the
concatenation of contrast feature Fc

i , local feature Fi, and upsampled feature map Fu
i+1 using the

equation below:
Fi

u = λ[Γ(Fi, Fi
c, Fi+1

u)], (2)

where Γ is the concatenation function and λ is the upsampling function. To calculate final local map
FL , local contrast feature Fc

6 , local feature F6, and upsampled feature map Fu
7 are concatenated and

passed to convolution layer Ξ with kernel size set to 1 × 1.

FL = Ξ(Γ(F6, Fc
6 , Fu

7 )). (3)

For the computation of global feature map FG, global features were extracted before allocating the
saliency information of small regions. For this purpose, three convolutional layers with kernel size
3 × 3 and dilation with scale factor 2 is applied. Dilated convolutions reduces the loss of resolution.
Figure 3 shows the structure of global convolutional block. Each convolutional layer was accompanied
by an RELU activation function and a boundary-refinement block. Figure 4b,c shows the local and
global feature maps of an input image. To produce the predicted saliency map, global FG and local
feature maps FL were combined, and the resulting saliency map SP was passed as input to the
refinement module. Figure 4d shows the predicted saliency map produced by the combination of local
and global feature maps.
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Figure 2. Extraction of local features. Local feature map produced by integration of contrast features,
feature maps produced from convolutional layers, and upsampled feature maps.

Figure 3. Extraction of global features. Feature map from fifth convolutional layer was used, passed
through dilated convolutions. For maintaining spatial information, boundary-refinement blocks (BRBs)
were also used.
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Figure 4. Output of various components of proposed approach: (a) input image, (b) local feature map,
(c) global feature map, (d) predicted saliency map, and (e) refined saliency map.

3.3. Global Convolutional Block

Enhancement in classification was achieved by using a global convolutional block (GCB). This
helps to efficiently exploit accessible visual information in low-contrast images. The GCB seeks to
extend the receptive region of feature maps. It also introduces dense connections between features
and classifiers, which helps the model to identify the salient region with very little additional
computational cost.

As mentioned before, the GCB enhances the classification efficiency of proposed model by
considering the dense connections between classifiers and feature maps, which enables the network
to handle different types of transitions. GCB’s large kernel is also useful in encoding more spatial
information from feature maps, which increases precision in salient-object detection.

The GCB has two subdivisions that consist of two convolutional blocks. The left block has 7 ×
1 convolutional layer, after which comes another convolutional layer of 1 × 7. The right block has 1
× 7 convolution followed by 7 × 1 convolution. These two subdivisions are combined to allow for
dense connections, which enhances the receptive field’s validity. GCB’s computational cost is fairly
low, which makes it more practicable.

3.4. Boundary-Refinement Block

The second module of the proposed network is the boundary-refinement block (BRB). It is
a residual framework implanted after first five convolutional layers to maintain the boundary
information of objects. This block is added for the refinement of feature maps and to enhance the
accuracy of an object’s spatial location. The BRB was included to improve localisation near boundaries,
which can significantly improve object detection in low-contrast images.

3.5. Refinement Module

The refinement module refines the overall saliency map. This module is different from BRB
because the latter is used to refine the feature maps and preserve the rich spatial information present
in initial layers, while the refinement module refines the predicted saliency map to enhance model
accuracy. Predicted saliency map SP is input for this refinement module. Typically, a refinement
module is built as a residual block that purifies the input saliency map through learning residuals
between saliency map and its ground truth.

A refinement module is embedded to improve both regional and boundary limitations in coarse
saliency maps. Coarse saliency maps refer to boundary blurriness and the uneven prediction of
probabilities in regions. The refinement module consists of an input layer followed by an encoder,
a decoder, a link stage between encoder and decoder networks, and an output layer. Both encoder
and decoder networks comprise four stages. Every stage consists of one convolutional layer with
64 filters of 3 x 3 size. After each convolutional layer, batch normalisation and RELU function are

Figure 4. Output of various components of proposed approach: (a) input image, (b) local feature map,
(c) global feature map, (d) predicted saliency map, and (e) refined saliency map.

3.3. Global Convolutional Block

Enhancement in classification was achieved by using a global convolutional block (GCB).
This helps to efficiently exploit accessible visual information in low-contrast images. The GCB
seeks to extend the receptive region of feature maps. It also introduces dense connections between
features and classifiers, which helps the model to identify the salient region with very little additional
computational cost.

As mentioned before, the GCB enhances the classification efficiency of proposed model by
considering the dense connections between classifiers and feature maps, which enables the network
to handle different types of transitions. GCB’s large kernel is also useful in encoding more spatial
information from feature maps, which increases precision in salient-object detection.

The GCB has two subdivisions that consist of two convolutional blocks. The left block has 7 × 1
convolutional layer, after which comes another convolutional layer of 1 × 7. The right block has 1 × 7
convolution followed by 7 × 1 convolution. These two subdivisions are combined to allow for dense
connections, which enhances the receptive field’s validity. GCB’s computational cost is fairly low,
which makes it more practicable.

3.4. Boundary-Refinement Block

The second module of the proposed network is the boundary-refinement block (BRB). It is
a residual framework implanted after first five convolutional layers to maintain the boundary
information of objects. This block is added for the refinement of feature maps and to enhance the
accuracy of an object’s spatial location. The BRB was included to improve localisation near boundaries,
which can significantly improve object detection in low-contrast images.

3.5. Refinement Module

The refinement module refines the overall saliency map. This module is different from BRB
because the latter is used to refine the feature maps and preserve the rich spatial information present
in initial layers, while the refinement module refines the predicted saliency map to enhance model
accuracy. Predicted saliency map SP is input for this refinement module. Typically, a refinement
module is built as a residual block that purifies the input saliency map through learning residuals
between saliency map and its ground truth.

A refinement module is embedded to improve both regional and boundary limitations in coarse
saliency maps. Coarse saliency maps refer to boundary blurriness and the uneven prediction of
probabilities in regions. The refinement module consists of an input layer followed by an encoder,
a decoder, a link stage between encoder and decoder networks, and an output layer. Both encoder
and decoder networks comprise four stages. Every stage consists of one convolutional layer with
64 filters of 3 × 3 size. After each convolutional layer, batch normalisation and RELU function are
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performed. The link stage also contains a convolutional layer with the same filter and size, after which
normalisation and RELU are performed.

To downsample in an encoder, max pooling is used; for upsampling, bilinear interpolation is used
in the decoder. The resulting map is final saliency map SM. Final saliency map SM is produced by the
refinement of the predicted saliency map. The soft-max function computes the probability that a pixel
p in a feature map belongs to a salient object:

SM(p) = P(GT(p) = l) =
ewL

l FL(p)+vL
l +wG

l FG+vG
l

∑l′ε(0,1) ewL
l′ F

L(p)+vL
l′+wG

l′ F
G+vG

l′
(4)

where ( WL , vL ) and ( WG , VG ) are linear operators, and GT is the ground truth. The loss
function is the combination of cross-entropy loss and boundary loss. Figure 4e shows a refined saliency
map. The results of the proposed approach on low-contrast images are compiled in Figure 5. The steps
involved in encoding and decoding are shown in Figure 6.

Figure 5. Salient-object detection results of proposed approach on low-contrast images: (Column 1)
input; (Column 2) ground truth; (Column 3) proposed-approach results.
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Figure 6. Encoder/decoder flow to extract refined saliency map.

4. Experimental Results

4.1. Datasets for Evaluation

Testing of the proposed approach was performed on five benchmark datasets:

• MSRA-B [31] comprises 5000 images and contains a single object mostly around the center
position along with the bounding-box label.

• DUT-OMRON [32] includes 5168 images with complex backgrounds and a variety of content.
Pixelwise ground-truth annotations are also available.

• The PASCAL-S [33] dataset contains 850 complex images. Eye-fixation records, and nonbinary
and pixelwise annotations are also available.

• HKU-IS [34] comprises 4447 multiple distant objects. In these, a minimum of one object is present
at the image boundary. Less difference between background and foreground makes these images
more complex.

• DUTS [35] is very large Sod dataset containing 5019 test images and 10,553 training images.
Many models use this dataset for training.

4.2. Evaluation Metrics

The following evaluation measures were used to measure the efficiency of the proposed model
with other models:

• Precision–recall (PR) curve: Calculated by the conversion of the predicted saliency map into a
binarised map and ground truth. Thresholding of 0–255 is applied to produce the binary map.
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For all saliency maps present in a dataset, every binarising threshold comes in a set of average
precision and recall. An order of precision–recall pair is generated when the threshold varies
from 0 to 1, which is used to plot the PR curve.

• F-measure curve: To provide comprehensive analysis, Fβ is calculated on both precision and
recall as:

Fβ =
(1 + β2)Precision× Recall

β2Precision + Recall
(5)

The β value is set as 0.3 to highlight precision more because the rate of recall is not as significant
as that of precision. The value of the average F-measure is also presented in this research.
The F-measure curve is generated with a comparison of the binary map with the ground truth
that is obtained by changing threshold to decide if a pixel is owned by a salient object.

• Mean absolute error (MAE) is used to correctly measure false-negative pixels. It calculates the
pixelwise error between saliency map and ground truth:

MAE = mean(|SM − GT |) (6)

If the MAE value is less, it indicates that ground truth GT and predicted saliency map SM are
highly similar.

4.3. Implementation and Experiment Setup

The MSRA-B [31] dataset was used to train the model, and the training set contained 2500 images
and 500 images for validation. To avoid overfitting, the horizontal flipping of images was used.

Pretrained VGG16 [36] was used for feature extraction. When passed to the proposed approach,
the image was resized to 416× 416. An Adam optimiser was utilised for training, and parameters
were set to the default values.

Publicly available framework TensorFlow was used to implement this model. An Nvidia GeForce
GTX 1080 (8119 MiB) GPU with 62 GB RAM and a Linux operating system was used to train the model,
while model testing on the different datasets was performed on a Core i5 CPU with 8 GB RAM and a
Windows operating system.

4.4. Comparison with the State of the Art

The proposed model was compared with four state-of-the-art saliency-detection models on five
datasets. The deep saliency models included nonlocal features (NLDF) [29], contour to saliency
(C2S) [11], visual saliency detection based on multiscale deep CNN features (MDF) [37], deep saliency
with encoded low-level distance map and high-level features (ELD) [30], salient-object detection in
low-contrast images via global convolution and boundary refinement (GCBR) [38], and aggregating
multilevel convolutional features for salient-object detection (Amulet) [39].

4.4.1. Quantitative Comparison

To determine the accuracy of the objects that the proposed model segmented, the proposed model
and four others were tested on five highly used datasets. To show the results, we plotted precision,
recall, and F-measure curves on each dataset (see Figure 7). Additionally, results of the proposed
model and the four others in terms of mean absolute error (MAE) and weighted F-measure (WF) are
presented (see Table 2).
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Figure 7. Cont.



Appl. Sci. 2020, 10, 8754 12 of 15

Figure 7. (left) Precision–recall (PR) and (right) F-measure curves of proposed model (SODL) and
state-of-the-art (SOA) models.

Table 2. Comparison of proposed method with SOA methods on five datasets in terms of F-measure
(larger is better) and MAE (smaller is better). Note: NLDF, nonlocal features; C2S, contour to saliency;
MDF, multiscale deep CNN features; ELD, deep saliency with encoded low-level distance map and
high-level features; GCBR, salient-object detection in low-contrast images via global convolution
and boundary refinement; Amulet, aggregating multilevel convolutional features for salient-object
detection.

Dataset Criteria Proposed NLDF C2S MDF ELD GCBR Amulet

MSRA-B
MAE

Fβ

0.0345
0.935

0.0477
0.910

0.0662
0.8309

0.104
0.885

-
-

0.0373
0.8904

-
-

DUTS
MAE

Fβ

0.0653
0.816

0.066
0.812

0.0663
0.790

0.094
0.730

0.093
0.738

0.0695
0.801

0.075
0.773

DUT-OMRON
MAE

Fβ

0.0753
0.764

0.0795
0.753

0.0790
0.733

0.0915
0.694

0.0909
0.719

0.0763
0.7010

0.0830
0.7370

PASCAL-S
MAE

Fβ

0.106
0.829

0.113
0.807

0.0991
0.827

0.143
0.771

0.133
0.768

0.0356
0.801

0.092
0.826

HKU-IS
MAE

Fβ

0.0432
0.918

0.0485
0.914

0.0527
0.897

0.135
0.867

0.074
0.839

0.0432
0.8988

0.052
0.889

Figure 7 shows the PR and F-measure curves of the proposed model with four other state-of-the-art
models, which show that the proposed model outperformed all other methods. The other quantitative
comparison in terms of weighted F-measure and mean absolute error in Table 2 showed that the
proposed model was first among all other models, and the F-measure was improved by 10%, 8%, 7%,
6.1%, and 7.9% for the MSRA-B, DUTS, DUT-OMRON, PASCAL-S, and HKU-IS datasets, respectively.

4.4.2. Qualitative Comparison

To further highlight the performance of the proposed model and quality of tge saliency map,
qualitative analysis of the proposed model on five datasets was also performed. Figure 8 shows the
quality of the maps and segmented salient objects from five widely used datasets.
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Figure 8. Visual saliency maps generated by our method and four other methods. Ours achieved the
best results, especially in recovering spatial details of salient objects.

Qualitative comparison of the proposed model on the five datasets showed that the proposed
model could accurately segment objects in different challenging scenarios, containing images that had
much less color difference from their background, and objects that were large and touching image
boundaries. Most strategies can produce good results for images with simple scenarios, while the
proposed model could achieve better results even in complex scenarios. Many deep-learning models
cannot segment and locate objects in complex backgrounds, but the proposed technique was successful
in capturing most salient regions.

5. Conclusions

This paper presented a deep convolutional network with the integration of local and global
features with boundary refinement. The combination of these features helps in the accurate detection
and segmentation of salient objects. The embedded global convolutional and boundary-refinement
blocks help in better feature extraction and preserve spatial location present in initial layers,
which are later refined by the refinement module, resulting in more distinct features and accurate
detection. Moreover, we examined the capabilities of the proposed model on five large and widely
used datasets. Experiment results indicated that the proposed method outperformed state-of-the-art
methods and has high capability for many computer-vision tasks.
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