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Abstract: This study proposed a calligraphy brush trajectory model for the behavior of brush
movements and provided the three-dimensional handle coordinates for a robotic arm to write
calligraphy. This study dealt with basic footprints and bent lines of calligraphy and proceeded as
follows. The shape of brush footprints on paper was measured, which provided the positions of the
brush relative to its handle. These brush footprints were scanned and corrected for skew using the
Direct Linear Transformation. The outer frame of each basic footprint was characterized using Bézier
curves. Bent lines were drawn to derive the brush trajectory model, and it was used to derive the
relationship between the trajectories of the brush and handle. By characterizing the changes in the
footprints with handle displacement, we obtained the relationship between the handle coordinates
and the position and shape of the brush footprints. The written characters were evaluated based on
their size, position, and stroke balance, with a maximum score of 100 in each category. The average
score of the “Yong” character written using our brush trajectory model was approximately 94 points;
when the handle coordinates were fixed to the center of each footprint, the average score was only
88 points.

Keywords: calligraphy brush trajectory model; robotic arm; direct linear transformation;
Bézier curves

1. Introduction

Chinese calligraphy is generally taught and learned by the lintie or motie approaches. In the lintie
approach, a copybook is placed on the side, and the learner imitates the characters in the copybook.
In the motie approach, the copybook is placed under a sheet of paper, and the learner learns how
to write by “filling” the shape of the word on said sheet of paper. In this work, we will employ
a motie-like approach. First, the character models are digitalized and binarized, and the brush’s
trajectory are then manually drawn up according to these models. We then converted the coordinates
of this trajectory into handle coordinates according to the footprints’ sizes, which are then transferred
to the robotic arm. The aim of this study is to imitate copybook models and allow the users of this
system to write arbitrary Chinese characters using a robotic arm. This system can be used to aid
teaching of calligraphy.

When writing calligraphy, the brush tip will first be moved to a position where it first makes
contact with the paper, and then the handle of the brush pen will be moved. Finally, the handle will
be raised so that the tip leaves the paper, thus completing a stroke. Chinese characters are formed
either by one stroke or a combination of strokes. To facilitate the subsequent discussions in this paper,
we have defined six terms based on information about the processes of calligraphy writing:
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• Anbi: The pen is moved straight down so that the tip just touches the paper.
• Dunbi: The pen is pressed downwards and then made to move horizontally.
• Tibi: The pen is moved upwards and then made to move horizontally.
• Xingbi: The pen is made to move horizontally while being fixed at a certain height.
• Shoubi: The pen is moved vertically upwards so that the tip leaves the paper.
• Yunbi: The process in which a stroke is written (Anbi→ (dunbi, xingbi, tibi)→ Shoubi).

The characteristics of every brush are different. For example, brushes with different cross-sectional
diameters and lengths will produce different footprint widths, even with the same handle height.
The elasticity coefficient of a brush also depends on the material it is made from, and this will cause
the curvature of the brush’s spine to vary from one brush to another. Consequently, the position of the
footprints produced by each brush will differ. Furthermore, if the maximum ink content of the brush is
different, the “dryness” and “wetness” of each stroke will also differ. There are then eight variables
that must be defined for each brush: the brush’s length, maximum diameter, elasticity coefficient,
ink content, and friction against paper [1–4], as well as the handle’s slope [2,5], speed of motion [2,4],
and turning angle [2,4]. Although some of these variables can be measured (like the diameter and
length of the brush) or estimated via indirect methods (e.g., the elasticity coefficient of the brush),
troublingly, there are a few variables that must be assumed (e.g., maximum ink content).

In the past, studies about the computerization of Chinese calligraphy generally employed one of
two approaches: the characters were either displayed on a digital display, or written by a robotic arm.
Some of the studies that employed the first approach are described below. Miura et al. [6] used a haptic
interface to control a brush in a motion-reproduction system. Then a robot reproduced the taught
motion to write calligraphy. Baxter et al. [1] also used a haptic interface to control a virtual brush,
which models the bristles of the brush with a spring-mass particle system skeleton and a subdivision
surface, thus allowing the brush to deform upon contact with the paper. The virtual brush could
then be controlled in an intuitive manner, which makes it easy for an artist to paint or write on a
digital display.

In [7], the brush’s spine was modeled as a connected sequence of line segments to simulate the
brush’s deformations, and the cross-section of the brush was approximated by an ellipse. Furthermore,
the brush’s deformations were modeled by constrained energy minimization, with the cross-sectional
area of the brush being an invariant. Their 3D brush model also mimics the spread of ink. In this
way, they were able to produce 3D calligraphy that strongly resembles real calligraphy. In [2],
the brush’s pressure on paper was used to estimate the relative motions of the brush’s handle and
tip. The parameters that affect brush pressure were also given in this work, and they include the
curvature of the brush’s spine, the brush’s velocity, the angle between brush direction and curvature,
brush elasticity, and the paper’s roughness. However, other than the speed of the brush, all of these
parameters are difficult to measure.

In [8], each Chinese character was systematically decomposed into six layers (layers 0–5), which
makes it easier to analyze and segment Chinese characters; this is especially useful for writing in regular
script. In this method, constructive ellipses were used to construct the zeroth layer. The trajectory taken
by the brush’s tip varies with that of its handle, and the movements taken by the tip will gradually
become the same as those of the handle. In [9], the angle of the next brush tip position was obtained by
averaging the angles between the movement of the brush’s handle and current position of the brush’s
tip, and the rotational center of the brush footprint’s tip was always kept inside the brush footprint.
In [3], the deformations of the brush’s spine were modeled by a computer, and the authors used the
“equilibrium bend energy” to calculate the relative positions of the brush’s tip and handle when the
brush pen was moving.

Some researchers have also proposed methods where the shape or trajectory of the brush
footprints are measured directly instead of being simulated by computational means. For example,
Okabe et al. [10] constructed an apparatus to directly capture brush footprints using a camera; the
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features of the brush footprints were then extracted to train a Hidden Markov Model (HMM). In [5],
each basic brush footprint was represented by eight sampling points, and their shape was approximated
by a droplet-like shape. The outer frame of each footprint (which includes the footprint’s width) was
described by the inclination and height of the handle, and basic strokes were formed by searching for
a suitable set of continuous basic footprints based on stroke width.

Numerous studies have also been performed on robotic calligraphy. For example, Mueller et al. [11]
made a robotic arm write calligraphy by sending the 3D coordinates of continuous basic footprints
to the robotic arm. A camera was then used to photograph the drawing area and the saved images
were then compared to a reference image to determine the corrections required by the brush footprints;
the coordinates of the brush footprints were thus iteratively corrected until the strokes drawn by the
robotic arm resembled those of the model character. In [4], the Learning from Demonstration (LfD)
method was used to transfer human calligraphy skills to a robotic arm. Each stroke was represented
by five parameters, and these parameters were used as inputs for their learning algorithm, whose
outputs are the coordinates and orientations of the end-effector (brush tip). In this method, the stroke
parameters are supplied to the system, and a likelihood function is used to search for the most probable
outputs; after the trajectories of every joint have been solved via inverse kinematics, the robotic arm is
then able to write new strokes. Ma and Su [12] extracted calligraphic features like the position, width,
length, inclination, and center of gravity of each stroke, and then passed these parameters to a robotic
arm to make it write calligraphy. A camera was then used to photograph the resulting brush strokes,
which were fed back to an aesthetics evaluation mechanism to adjust the robotic arm’s parameters.
This mechanism used coordination, balance, and distribution indices to evaluate the aesthetics of
each stroke. In [13], it was observed that the positions of a brush’s handle and footprint are different.
To measure the relationship between these variables, a robotic arm was used to draw lines and arcs
using a hairy brush. The authors then measured brush lag and the relationship between Z-axis depth
and footprint width.

The novelty of this work lies in our use of basic brush footprint measurements, like in [5,10,13],
and a droplet-like shape to approximate the outer frame of brush footprints, to perform robotic
calligraphy. A robotic arm was used to precisely draw basic footprints, which are then scanned.
The scanned images were corrected for skew using the direct linear transformation (DLT), and the
outer frame of the basic footprints was represented by Bézier curves. The footprints produced by
making the handle move in a bent trajectory were then used to measure the relative positions of the
handle and brush tip. Based on these procedures, we were able to obtain the footprints that correspond
to the handle’s movements. This approach forgoes the need for additional equipment to measure
the brush pen’s position and footprints (like in [7,10]), and it also sidesteps the need to consider the
variations in the brush’s spine (like in [3]). The quality of the characters written by the robotic arm was
evaluated using the scoring algorithm provided by [14], and these characters were also compared to
model characters in terms of their size, position, and stroke balance. Finally, the similarity between the
written and model characters was calculated.

The contents of each section are as follows. Section 2 describes the problem addressed by this
study and the architecture of our system, while Section 3 describes the methods proposed in this paper,
including the method for extracting the parameters of the brush footprints and the brush trajectory
model. Section 4 describes the experimental results of this work, and Section 5 provides a discussion
on these results and the conclusion of this paper.

2. Problem Description and System Architecture

2.1. Problem Description

During the writing of each stroke, the brush tip will touch or leave the paper, and the brush’s
spine will also tilt to a side, which results in a gap between the handle and brush, as shown in Figure 1a.
This is the so-called “footprint lag”, which is defined in Figure 1b. Figure 1b also shows that the
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footprint left by the brush on the paper resembles a water droplet in shape. Figure 1a has a 3D
coordinate system, and the brush is assumed to move along the X-axis, whereas Figure 1b has a 2D
coordinate system that exists on a horizontal plane (the paper). The mapping between the location
terms in Figure 1a,b is shown in Table 1.

(a)

(b)

Figure 1. Relationship between handle position, the brush’s curvature and the brush footprint.
(a) The curvature of the spin causes the projection of the handle’s base to be different from the
brush footprint. (b) The footprint left by the brush on the paper.

Table 1. Mapping between the location terms for the handle/brush and footprint.

Location Terms for the Handle and Brush Location Terms for the Footprint

Projection of the handle Handle

Front-most end of the footprint Front of the footprint

Distance between the projection of the handle Footprint lag
and the front-most end of the footprint

Brush tip Tip of the footprint

As calligraphy strokes are assumed to consist of trajectories traversed by droplet-shaped footprints,
each trajectory can be decomposed into a series of droplet-shaped footprints, as shown in Figure 2a.
The greyed areas of this figure are the model character. For purposes of clarity, only a few representative
droplet-shaped footprints are shown in Figure 2b. In Figure 1b, it is shown that there is a lag between
the footprints and handle base, like in the shu (vertical) stroke shown in Figure 2b. Figure 3 shows the
handle positions of each footprint, which are represented by small circles in this figure.
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(a) (b)

Figure 2. Calligraphy strokes represented by droplet-shaped footprints. (a) Calligraphy strokes
represented by a series of droplet-shaped footprints. (b) Calligraphy strokes represented by a few
representative droplet-shaped footprints.

Figure 3. Droplet-shaped footprints and their corresponding handle positions.

As the robotic arm only has direct control over the handle and not the position of the brush
on the paper (i.e., the footprints), the footprint’s size, lag, and angle (φi) will vary with the handle’s
coordinates (Figure 4). In this paper, we used the footprint’s size, lag, and angle (φi) as the factors of the
brush trajectory model and studied whether the brush’s handle had a relationship with these factors.
If there existed the relationship, we were able to use the brush’s handle to control the brush trajectory.
Since this work was an experimental study to show whether the brush’s handle position was possible
to control the brush trajectory, we did not further explore the control principles in different brush pens.
To obtain the relationship between the positions of the brush’s handle and footprints, the robotic arm
was made to draw a few basic footprints by sending known handle coordinates to the robotic arm.
A set of images where the footprints’ outer frames and positions may be measured was thus produced.
By analyzing these images, we obtained a mechanism that allows the robotic arm to write calligraphy
by receiving handle coordinates, i.e., the “brush trajectory model” (Figure 5a). Figure 5b illustrates the
process by which the brush trajectory model was used to guide users in finding a suitable set of handle
coordinates to write a complete character using the robotic arm.
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Figure 4. Positional relationship between a brush’s base and its footprint.

(a)

(b)

Figure 5. Brush trajectory model. (a) Obtaining the brush trajectory model from experimental
measurements. (b) Using the brush trajectory model to obtain the outer frames and positions of
the brush footprints.

The outer frame, lag, and φi of the footprints are the three factors that make up the brush trajectory
model. The aim of this study is to analyze these factors (with the guidance of a model character) to find
a set of handle coordinates that will allow the footprints’ trajectory to resemble the model character.
The robotic arm will then write calligraphy using these coordinates.

We are only able to control the trajectory of the handle, but the strokes are produced by the brush’s
trajectory rather than that of the handle. Furthermore, the handle and brush trajectories cannot overlap
with each other, unless the brush tip is made to stay in contact with the paper at all times. However,
this would eliminate all variations in stroke fineness, which are crucial for aesthetic quality. Therefore,
we have divided this problem into two sub-problems: the first problem pertains to the shape of the
brush area that is in contact with the paper when the handle is pressed downwards, and the second
problem is about the movement of the brush when the handle is moved. The outer frames of the basic
footprints will be obtained by measuring the footprints, and the footprints and handle coordinates are
then selected to produce the appropriate stroke width. These 3D coordinates are then transferred to
the robotic arm to make it write the desired Chinese character.

2.2. System Architecture

The process flow diagram by which our system writes calligraphy using a brush pen is shown
in Figure 6. As the robotic arm can only control the position of handle’s base, we have decomposed
the brush trajectories into line segments, to simplify the problem of brush deformations. The brush
is assumed to be a “time invariant” device, and the handle is always perpendicular to the paper
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during the writing process. We then estimated the outer frames and trajectories of the footprints by
using measurements of the footprints’ outer frames in conjunction with the brush trajectory model.
The process for producing the 3D handle coordinates is as follows:

Figure 6. Process flow for writing calligraphy using our system.

3. The Proposed Method

3.1. Extracting the Parameters of Basic Footprints

3.1.1. Direct Linear Transformation (DLT)

In robotic calligraphy, the handle’s movements and changes in height will alter the shape of the
footprint. Therefore, the brush footprints were scanned into images. The images were corrected for
skew using the Direct Linear Transformation (DLT), which also ensures that all of the model character
images and calligraphy scans are the same size (2000 × 2000 pixels). The derivation of the DLT is
shown below:

Let (u, v) and (x, y) be the raw and corrected image coordinates, respectively. These coordinates
are related by

u =
h1x + h2y + h3

h7x + h8y + 1
(1)

v =
h4x + h5y + h6

h7x + h8y + 1

By using four reference points, (u1, v1), (u2, v2), (u3, v3), and (u4, v4) and their corresponding
(x1, y1), (x2, y2), (x3, y3), and (x4, y4) coordinates, the eight unknowns in Equation (1), h1–h8, may then
be solved, which gives the relationship between (u, v) and (x, y).

DLT was used to correct the skew in the scanned images. To perform the DLT, there must be
four corresponding reference points in the raw image coordinates and corrected image coordinates.
The raw image coordinates are (u1, v1), (u2, v2), (u3, v3) and (u4, v4), which correspond to (x1, y1), (x2,
y2), (x3, y3) and (x4, y4) in the corrected image. As these image coordinates must be selected manually,
the corrected image will be distorted in various ways if mistakes were made during the selection of
these coordinates.
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3.1.2. Describing the Basic Footprints’ Outer Frames Using Bézier Curves

As Bézier curves can be used to link discrete points by a smooth line, this approach can be used to
describe the outer frame of each basic footprint. If the Bézier curve lies on an XY-plane, the parametric
equation for the Bézier curves may be formulated as

B(t)|t=[0,1] =
n

∑
i=0

(
n
k

)
ti(1− t)n−i

[
xi
yi

]
(2)

where
[

xi yi

]T
are the control points.

The outer frame of each basic footprint was divided into four Bézier curves. The four sampling
points (see Figure 7) are the tip of the footprint (Pt = (0, 0)), front-most end of the footprint (Pf = (xmax,
yb)), highest point of the footprint (Pmax = (xb, ymax)), and lowest point of the footprint (Pmin = (xc,
ymin)). To allow a smooth curve to pass through these four points, Pt to Pmax and Pt to Pmin were linked
by two quadratic Bézier curves, whereas Pmax to Pt and Pmin to Pf were linked by two cubic Bézier
curves. In addition, a few more control points (P1–P6) were added to smoothen the Bézier curves,
as shown in Figure 7. The control points for the outer frame of a basic footprint are then Pt, P1, Pmax,
Pmax, P2, P3, Pf , Pf , P4, P5, Pmin, and Pmin, P6, Pt. The computation of the Bézier curves is described
below, and we have used the Pt-to-Pmax and Pmax-to-Pf curves shown in Figure 8 as examples to
illustrate this process.

Figure 7. Additional control points.

Figure 8. Control points of the Bézier curve.

When n = 2 in Equation (2), the quadratic Bézier curve for Pt-to-Pmax may be expanded as follows

B(t)|t=[0,1] = (1− t)2Pt + 2t(1− t)P1 + t2Pmax

dB
dt

= (2t− 2)Pt + (2− 4t)P1 + 2tPmax (3)
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When n = 3 in Equation (2), the quadratic Bézier curve for Pmax-to-Pf may be expanded as follows

B(t)|t=[0,1] = (1− t)3Pmax + 3t(1− t)2P2

+3t2(1− t)P3 + t3Pf

dB
dt

= (−3 + 6t− 3t2)Pmax + (3− 12t + 9t2)P2 (4)

+(6t− 9t2)P3 + 3t2Pf

If t = 0 and t = 1 are the endpoints of these curves, the gradients of the quadratic Bézier curve
between these endpoints are

dB
dt
|t=0 = (−2)Pt + 2P1

dB
dt
|t=1 = (−2)P1 + 2Pmax

dB
dx
|t=0 =

y1 − yt

x1 − xt
dB
dx
|t=1 =

ymax − y1

xmax − x1
(5)

Likewise, the gradients of the cubic Bézier curve between these endpoints are

dB
dt
|t=0 = (−3)Pmax + 3P2

dB
dt
|t=1 = (−3)P3 + 3Pf

dB
dx
|t=0 =

y2 − ymax

x2 − xmax
dB
dx
|t=1 =

y f − y3

x f − x3
(6)

Given that the quadratic and cubic Bézier curves share an endpoint (Pmax, as shown in Figure 8),
the gradient of Curves 1 and 2 at Pmax are

dy
dx
|t=1 =

ymax − y1

xmax − x1
dy
dx
|t=0 =

y2 − ymax

x2 − xmax
(7)

If Curves 1 and 2 are to be connected to each other at Pmax, the curve at Pmax can only be
differentiable if

ymax − y1

xmax − x1
=

y2 − ymax

x2 − xmax
. (8)

Therefore, P1, Pmax, and P2 must lie on the same line.

3.2. Brush Trajectory Model

The shape and position of the brush’s footprint on the paper will vary with the handle’s
coordinates. In this section, we will describe the changes in the brush’s position with handle position
in further detail. Baxter et al. [3] computationally modeled the changes in the brush spine during
writing processes. Based on this idea, we will calculate the changes in the angle between the horizontal
projections of the handle and tip. As the distance between the horizontal projections of the handle
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and tip, r, will change with the height of the handle, z, we have replaced r with the effective radius, rz,
and assumed that the handle, front of the footprint, and tip of the footprint lie on the same line.

Figure 9 shows the effects of L (the movement distance of the handle’s projection) on the angle
between the trajectories of the handle and brush. Let rz0 and rz1 be the effective distances between the
horizontal projections of the handle and tip, and φ0 and φ1 the angles between the trajectories of the
tip and handle. O0Pf and O1Pb are parallel to each other. Assuming k = p f + η(pb − p f ), η < 1 where
η is a function of z; if z is fixed, φ1 will decrease as the displacement of the handle, L, increases.

Figure 9. Changes in the angle between the handle and tip of the brush.

η is obtained from measurements. As rz is directly related to z, and it is much easier to control
z than to measure r, we simply measured the correlation between zi and ηi. To simplify the model’s
parameters, ηi was only measured for zi values of 1, 2, and 3 mm. Figure 10 gives the relationship
between the displacement of the handle and its angle to the front of the footprint, with η being fixed
to 0.2.

A
ngle betw

een the trajectories of the handle 
and front of the footprint (unit: degree)

Handle displacement 
(unit: mm)

mm) :(unit handle  theofnt displaceme  Downwards:Z
0.2

i



Figure 10. Relationship between handle displacement and the angle between the trajectories of the
handle and front of the footprint.

Each Chinese character can be decomposed into one or multiple strokes, and the writing of each
stroke involves the anbi, dunbi, xingbi, tibi, and shoubi processes. Suppose that each stroke requires N
of these actions; the pseudocode for the brush trajectory model is Algorithm 1:
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Algorithm 1 Brush trajectory model.

Input: The initial coordinates of the handle are P0 = (x0, y0, z0), where z0 = 0. The coordinates of the
tip are tip0= (x0, y0), which are the same as those of the handle. φ0 = 0.

Output: The trajectory of the handle coordinate Pi.

1: for i← 1→ N do

2: di =
√
((xi − xi−1)2 + (yi − yi−1)2

3: Search for the basic footprint, Inki from the database, based on di and zi.

4: Calculate the corresponding ηi values based on zi.

5: Draw a geometric diagram based on zi−1, zi, di, φi−1, and ηi to obtain φi.

6: Rotate Inki by φi and translate it to (xi, yi), and sketch the outer frame of the footprint.

7: end for

8: return

4. Experimental Results

4.1. Configuration of the Experimental System

The configuration of our experimental system is shown in Figure 11, and the specifications of
this system are as follows: (1) Personal computer: Calculates the coordinates of the handle and passes
these coordinates to the robotic arm. (2) Robotic arm: DOBOT ARM 2.0, which has a repeatability of
0.2 mm. The robotic arm was controlled using Python 3.X code. (3) Brush pen: Two refillable brush
pens with the same brush-spine length (8.5 mm) but different brush diameters (Figure 12). The brush
pen on the top is Brush Pen #1, while the brush on the bottom is Brush Pen #2. (4) A4 paper: Ordinary
printing paper. (5) Scanner: A 600 DPI scanner was used to scan the written characters, and the scans
were then stored on a PC for analysis.

Figure 11. Hardware architecture of the experimental system.
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Figure 12. Refillable brush pens.

4.2. Experimental Procedures

The planning, writing, scanning, and measurement processes require a few known coordinates
as reference points for measurement. In this work, the corners of a 20 × 20 mm2 square were used
as reference points. On each A4 sheet, 6 × 3 of these squares were drawn to indicate the working
area for the robotic arm. Therefore, each piece of paper only needed to be moved or replaced after 18
operations. The process flow of this experiment is shown in Figure 13. This flow can be divided into
two parts: “building the brush trajectory model” and “calligraphy writing”. This experiment involves
a total of 14 steps, as shown below.

Figure 13. Process flow of the experiment.

4.2.1. Building the Brush Trajectory Model

The image measurement process can be divided into two parts: (1) Measuring the basic footprints
that correspond to changes in the outer frame of the brush footprints and (2) measuring the footprint
trajectories that correspond to different angles between the trajectories of the brush and handle. These
measurements have been described below.

(I) Basic footprints:

The marks made by a brush will change with the motions and z-axis height of the handle.
Figure 14 is a DLT-corrected image of brush footprints, and there are seven basic footprints on the
left side of this figure. In these footprints, the handle was pressed downwards from z = 0 mm to
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z = 1 mm and horizontally displaced by 1 to 7 mm. The left end of each footprint is the position of the
brush tip at z = 0, and the + symbol represents the (x, y) coordinates of the handle when z = 1 mm.
The seven little dots at the top left of this figure are reference points for determining the coordinates of
the handle, and the smooth curve around the boundaries of each footprint were formed by drawing
four Bézier curves through the footprint’s feature points. The seven basic footprints on the right side of
Figure 14 are the same as those on the left, except that the handle was pressed from z = 0 to z = 2 mm
instead of z = 1 mm.

Figure 14. Measurement of basic footprints (Brush Pen #1).

Figure 15a represents the Pt, Pmax, Pf , and Pmin coordinates of 18 footprints that were produced by
displacing the handle by 1 mm downwards (to z = 1 mm) and 3 mm horizontally. Likewise, Figure 15b
also shows the Pt, Pmax, Pf and Pmin coordinates of 18 footprints, but with the handle being horizontally
displaced by 4 mm instead of 3 mm.

(a) (b)

Footprint on the x axis (unit: 0.01mm) Footprint on the x axis (unit: 0.01mm)

Footprint on the y axis (unit: 0.01m
m

)

Footprint on the y axis (unit: 0.01m
m

)

Figure 15. Parameters of the basic footprints. (a) Horizontal handle displacement of 3 mm. (b) Horizontal
handle displacement of 4 mm.

Two phenomena may be observed in Figure 14. First, given a constant z-value, the width of the
footprint will narrow as the handle’s horizontal displacement increases, until a certain distance is
reached. Secondly, an increase in handle displacement also increases the distance between Pf and the
handle until a certain distance is reached. During the writing of a stroke, each new brush tip position
will be covered by the front of the previous footprint. To measure the outer frame of the brush, one may
employ a platform like that in [10]. In this work, we used diagrams like Figure 14 to chart out the
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variations in the basic footprint, and the data provided by these diagrams were organized to illustrate
how the parameters of the brush footprints vary with the horizontal and vertical displacements of the
handle, as shown in Figure 16. Here, it is shown that the outer frame of the footprint stabilizes after
horizontal displacements of 3, 5, and 6 mm when z = 1, 2, and 3 mm. Therefore, the footprint database
contains 3 + 5 + 6 = 14 basic footprints.

(a) (b)

(c) (d)

Footprint w
idth (unit: 0.01m

m
)

Footprint w
idth (unit: 0.01m

m
)

Footprint w
idth (unit: 0.01m

m
)

Footprint w
idth (unit: 0.01m

m
)

Horizontal displacement of the handle  
(unit: 0.01mm)

Horizontal displacement of the handle  
(unit: 0.01mm)
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Figure 16. Relationship between the horizontal handle displacement and footprint width/lag. (a) Width
for Brush Pen #1. (b) Lag for Brush Pen #1. (c) Width for Brush Pen #2. (d) Lag for Brush Pen #2.

(II) Footprint trajectories:

A bent line was drawn by the system (Figure 17) so that information about the relationship
between the horizontal projection of the handle and the brush could be obtained. The sequence of
coordinates for the handle is as follows:

(m0x, m0y, z0)→ (m1x, m3y, z1)→ (m1x, m5y, z1)→

(m9x, m7y, z2)→ (
m1x + m9x

2
,

m5y + m7y

2
, z0)

In this sequence, z0 = 0 was configured so that the tip of the brush just touches the paper, and z0

was used as the reference point for height. The projection of the handle’s trajectory on the horizontal
plane is indicated by the blue arrows in Figure 17a. Figure 17b is the DLT-corrected version of this
image. Some blank space was reserved outside of the 2000 × 2000 square to allow the parameters
to be recorded on the sheet. As each image is produced via the adjustment of various parameters,
the experimental parameters of each image were written in a two-out-of-five code on the sheet itself to
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facilitate manual perusal. These data were also stored as ASCII codes in the blank parts of the image
to facilitate batch extraction by a computer program.

In this experiment, the parameters were z1 = z2∈ {100, 200, 300}, θ ∈ {60◦, 90◦}, and
L2 ∈ {100, 200, 400, 700}. Therefore, there were a total of 3 × 2 × 4 = 24 combinations of parameters,
and 18 samples were obtained for each combination. L1 is a random value. The length parameters are
in units of 0.01 mm, and θ is the angle between the handle’s trajectory and the x-axis. It is positive
(negative) in the counterclockwise (clockwise) direction from the handle’s trajectory. θ is 90◦ during
most of this stroke, and 60◦ during the last part of the stroke. In Figure 17, m0 to m10 show the positions
where the brush pen was moved, turned and raised for θ = 60◦, and the two-out-of-five code for L1,
L2, and θ is 7-4-2-1-0.

(a) (b)

Figure 17. Measurement of footprints for a bent line where m represents the coordinate of the projection
of the handle. (a) Raw image (580 × 587). (b) Corrected image (2100 × 2500).

In Figure 17b, z1 = z2 = 3 mm, and the intersection between m7m8 and m9m10 is the center of a
circle, C, while the intersection between m1m2 and m5m6 is the turning point of the handle trajectory,
P. The footprint that is closest to C is F (the front of the footprint), and α = 6 PCF. Figure 18 illustrates
the change in α with L. Suppose that a straight line can be drawn through the handle, front end of
the footprint, and brush tip. It is then possible to (a) obtain the angle of the footprint’s front end,
α, from Figure 18 and (b) obtain the footprint lag and outer frame of the footprint from Figure 16.
After α, the footprint lag and the outer frame of the footprint have been obtained, the trajectory of the
footprint’s movements may then be computationally modeled using the brush trajectory model.

(a) (b)

mm) :(unit handle  theofnt displaceme  Downwards:Z
-1.20,1ZZ 10
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0 1Z Z 1, 0.67
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  

A
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Figure 18. Dependence of the angle between the trajectories of the handle and front end of the
footprint, α, on the handle displacement distance. (a) Brush Pen #1, z0 = z1 = 1 mm. (b) Brush Pen #2,
z0 = z1 = 1 mm.
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4.2.2. Writing Calligraphy

The result of writing “Ke” with our system is shown in Figure 19. The character in this figure was
written by using a model character to determine the coordinates of the handle. If the footprint image
that was obtained by calculating the size and positions of the footprints from the statistical chart and
handle coordinates is excessively different from the model character, the handle coordinates will then
be readjusted. In Figure 19b, the red circles are the handle coordinates where the tip first touches the
paper, while the blue circles are the handle coordinates where the handle was pressed downwards.
The droplets are the brush footprints, and their sizes and positions were calculated using the brush
trajectory model.

(a) (b) (c)

Figure 19. Planning of the calligraphy writing process and the result. (a) Model character from the
internet. (b) Differences between the planned trajectory and model character. (c) Character written by
the robotic arm.

4.3. Evaluation of the Written Characters

The written characters were evaluated using the methods proposed in [14]. Figure 20 shows the
outer frame and intersection points of any two strokes of the character "Yong" where I

′
s represent the

intersection points of any two strokes of the sample and test characters and O
′
s represent the points on

the outer frame of the sample and test characters. Oi
min and Oi

max are the shortest and longest distances
from Oi to any corner, respectively and Ii

min and Ii
max are the shortest and longest distances from Ii

to any corner, respectively. To increase the sensitivity of this method to changes in the characters,
(Oi

max, Ii
max) was changed to (Oi

min, Ii
min). The mathematical equations for the evaluation of character

quality are shown below (Equations (9)–(12)).

s =



Atest

Asample
, 0 ≤ s < 1

2− Atest

Asample
, 1 ≤ s < 2

0, 2 ≤ s

(9)

where Atest and Asample represent the area of the outer frame in test and sample data, respectively.
The sample character is used as a reference for quality evaluation.

p =
7

∑
i=0

√
(xOi

s − xOi
t )2 + (yOi

s − yOi
t )2

(xOi
s − xOi

min)
2 + (yOi

s − yOi
min)

2
(10)

r =
4

∑
i=0

√
(xIi

s − xIi
t )

2 + (yIi
s − yIi

t )
2

(xIi
s − xIi

min)
2 + (yIi

s − yIi
min)

2
(11)
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where (xOi
s , xOi

t ) and (yOi
s , yOi

t ) are the X and Y coordinates of the points on the outer frame of the
sample and test characters, respectively and (xIi

s , xIi
t ) and (yIi

s , yIi
t ) are the X and Y coordinates of the

intersection points of any two strokes of the sample and test characters, respectively.

Figure 20. Outer frame and intersection points of any two strokes of "Yong" character where I
′
s

represent the intersection points of any two strokes of the sample and test characters and O
′
s represent

the points on the outer frame of the sample and test characters.

The s, p, and r parameters were changed to S, P, and R as follows:

s = 100s

P = 100(1− p)

R = 100(1− r). (12)

Each parameter has a maximum score of 100. The higher the score, the better the quality of the
character in that particular aspect.

In Figure 21a, the greyed area is the model character, and the center of each footprint is assumed
to be the projected position of the handle. The footprints have been modeled as circles, and the
planned trajectory for the footprints in this instance is the arrangement of circles inside the model
character. In Figure 21b, the brush trajectory model was used to simulate the footprints and obtain
the relative positions of the handle and center of each footprint. In this case, the planned trajectory
for the footprints is the arrangement of droplet-like shapes inside the model character. In this study,
it was assumed that each calligraphic character consists of trajectories traversed by droplet-shaped
footprints. Therefore, these trajectories can be decomposed into a series of droplet-shaped footprints.
For purposes of clarity, only a few representative droplet-shaped footprints are shown in Figure 21b.

(a) (b)

Figure 21. Trajectories that model the movement of brush footprints. (a) Footprints modeled by circles.
(b) Footprints modeled by the brush trajectory model (Brush Pen #1).
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Figure 22 shows the aesthetics evaluation scores of the “Yong” character that was written by the
robotic arm using Brush Pen #1 when the handle coordinates were obtained by modeling the brush
footprints as circles. Equations (9)–(12) were used to compare this character to the model character in
terms of size, position and stroke balance. The differences between the written character and model
character were thus quantified in terms of these parameters. Figure 23 shows the aesthetic evaluation
scores of the “Yong” character that was written by the robotic arm using Brush Pen #1 when the
footprints were modeled using the brush trajectory model to obtain the handle coordinates. Figure 24
shows the aesthetic evaluation scores of the “Yong” using Brush Pen #2 when the handle coordinates
were obtained by modeling the footprints using the brush trajectory model.

(a) (b) (c)

Figure 22. Aesthetics evaluation scores of the character that was modeled using circles and written
using Brush Pen #1 by the robotic arm. (a) Size: 85.02. (b) Position: 88.60. (c) Stroke balance: 91.98.

(a) (b) (c)

Figure 23. Aesthetics evaluation scores of the character that was modeled using the brush trajectory
model and written using Brush Pen #1 by the robotic arm. (a) Size: 93.24. (b) Position: 92.23 (c) Stroke
balance: 98.48.

(a) (b) (c)

Figure 24. Aesthetics evaluation scores of the character that was modeled using the brush trajectory
model and written using Brush Pen #2 by the robotic arm. (a) Size: 97.98. (b) Position: 89.28 (c) Stroke
balance: 97.25.

Figures 22 and 23 were written using Brush Pen #1, and it is intuitively apparent that Figure 23 is
superior to Figure 22. This is supported by their scores, which show that Figure 23 is indeed better
than Figure 22. Therefore, we have demonstrated that the use of a brush trajectory model improves
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the quality of robotic calligraphy. Figures 23 and 24 were written using different brush pens, and it
is shown in Figure 12 that the brush of Brush Pen #2 has a larger cross-sectional area than that of
Brush Pen #1. One may observe that the last stroke of the “Yong” character, a Na stroke, is completely
different in Figures 23 and 24. Therefore, the characters written by a brush pen are also affected by the
shape of the brush.

5. Discussion and Conclusions

5.1. Discussion

Our experiments have demonstrated that the brush trajectory model can be used to visually
guide users in the determination of handle coordinates, which then allow the robotic arm to write
calligraphic characters, like the “Sin” character shown in Figure 25. As the writing process is clearly
illustrated by the handle coordinates, this approach can be used as an aid in the teaching of calligraphy.

(a) (b)

(a)

(b)

Figure 25. Effects of different calligraphic techniques on the character. (a) A zuogou stroke that
was made without lifting the brush pen. (b) A zuogou stroke made by lifting the brush pen for a
brief instant.

Figure 14 shows that the shape of the footprints is highly sensitive to handle height, as different
handle heights will alter the width of the footprints’ outer frame and footprint lag. These variations
in width and lag will significantly affect the shape and quality of the written character. For example,
the first stroke of “Sin” (a dian stroke) will change slightly due to errors in the z-value, even if the
same parameters are supplied to the robotic arm. Therefore, for a user to freely write calligraphy using
the robotic arm, the robotic arm must have a reasonably high level of precision and accuracy, and the
operator must also have an understanding of basic calligraphy techniques.

5.2. Conclusions

The primary objective of this study was to obtain the handle coordinates that will allow a robotic
arm to write calligraphic characters by using a brush trajectory model in conjunction with model
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character coordinates. Our system allows the calligraphy writing process to be digitalized and recorded
clearly, which makes it a valuable aid in the teaching of calligraphy. The brush trajectory model was
created by leveraging the precision of robotic calligraphy to gain insight about the characteristics
of different brush pens and calligraphic techniques, which then allow the handle’s coordinates to
be correlated to footprint positions. This was performed by using DLT-corrected images of brush
footprints drawn by the robotic arm, and by describing the outer frame of these footprints with Bézier
curves. With this approach, we are able to freely vary the character written by the robotic arm, as well
as the character’s size and position; the robotic arm may then write any Chinese character by using
the appropriate brush pen. Since brush trajectories depend on the brush characteristics such as brush
thickness, brush material, and brush hardness, the brush trajectory model is nonlinear and highly
complicated. Thus, it is suitable for us to use machine-learning methods to investigate the intractable
brush trajectory model from different brushes in the future work. According to the findings of this
research, the footprint’s size, lag, and angle are the important factors of the brush trajectory model.
Thus, artificial neural networks or decision trees are considered as the regression methods to study the
mapping from the horizontal brush handle displacement and the brush handle height to the footprint
width, lag, and angle. To prevent overfitting of the machine-learning models, we will collect enough
data from different brush sizes and stratify them to build several brush trajectory models for different
brush sizes.
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